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Abstract

A least squares method for the focal mechanism determination is
given by use of S wave data, where the double couple hypothesis is
assumed.

The substantial idea of the method is based upon the assumption
that a finite set of the residuals of the polarization angles of S waves
for a particular earthquake is sampled from a population of the normal
distribution, where the residual is defined as deviation of the observed
polarization angle from that expected theoretically at an individual
station. Because of the non-linearity of the problem the sum of
squares of the residuals has secondary minima in some cases. For
such cases the use of the statistical test for the significance of dif-
ference of the population variances is proposed in order to distinguish
the most probable solution independent of the P wave observations.

1. Introduction

Up to 1960 the fault plane solution for an earthquake had been de-
termined visually by use of the compression-rarefaction distribution of the
initial motion of P waves in general. The polarization angles of S waves
were used for selecting an acceptable source model for an earthquake from
two. hypothetical models, that is, a single couple of body forces (type. I)
and a double couple (type II).

It seems to be very difficult to find analytical criteria for the best
fit required for the numerical determination of the focal mechanism from
the P wave data, since there is no information available from observations,
in general, except the sign of initial motion of the P waves. Although
there are such difficulties, Knopoff (1961, b) has given an analytical
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method to solve the problem. He introduces a kind of probability function
defined so that its maximum represents the maximum likelihood solution.
According to his definition, the probability that the reported sign is
correct depends upon the amplitude of the P wave expected theoretically
from the solution to be estimated.

Kasahara (1963) has improved the method. The amplitude rigorously
calculated is used in his computer program, while Knopoff uses the approxi-
mate amplitude which depends upon the relative distance of the station
from the two nodal planes of the P wave on a particular projection of
the focal sphere. Furthermore, Kasahara introduces the weight assigned
to each observation depending on the past reliability of station as reported
by Hodgson and Adams (1958). He has applied his computer program
to some earthquakes and obtained satisfactory results. It does not seem,
however, that the probability function ingeniously proposed by Knopoff
has been so satisfactorily justified that the standard error presented by
him is statistically meaningful. Recently Hodgson and Wickens (1965)
presented another numerical method for solving the problem.

On the contrary the problem concerning S wave data is rather simple
since the continuous quantity of polarization angle of the S wave can be
made use of. There seem to be, however, two difficulties in the case of
S wave data. The first is that the two hypothetical source models (single
couple and double couple) for the earthquake focus give different radiation
patterns to the S wave. This difficulty, however, has almost been re-
moved, and it seems that most of earthquakes, at least, can be explained
by the double couple hypothesis (¢f. Stauder and Bollinger; 1964). The
other difficulty is that the analytical expression of the polarization angle
derived frem the theoretical medel is very complicated especially for the
double couple model, the complexity leading investigators to overlook what
quantity should be minimized in applying the method of least squares to

the problem.
: As early as 1958 Adams presented a numerical method for the pre-
blem assuming the single couple hypothesis. He solved equations with
respect to unknowns for all possible pairs of observations and averaged
these solutions to determine the unknowns.

Stevens (1964) has given a least squares method for the double couple
model. A family of non-linear equations with respect to three independent
unknowns is solved by the following numerical method. A table is pre-
pared of sets of values of normalized direction cosines to represent 3240
orientations of the doukle dipole axis. The computer evaluates the quanti-
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ty (1/N) 2 R% for each set of axes, where Ry is residual for the Nth station
and a given set of axes. The best solution is the one for which this mean
sum of the squares of the residuals is a minimum. The computer selects
from the table the 10 best orientations. For each of these, the computer
again computes the above quantity for 45 possibilities in the neighborhood.
If the 10 best of the final 450 possible solutions are closely alike in ori-
entation, then the best solution is taken to be the orientation of the double
dipole.

Although the method is certainly a kind of least squares method, it
should be noted that the quantity which is minimized in her method is not
the sum of squares of deviations of the observed polarization angles from
the theoretical ones expected for the solution. The method is very advan-
tageous, however, since it does not require any preliminary information
about the solution of the earthquake concerned and gives a solution inde-
pendently of the P wave data.

Udias (1964) has presented a numerical method for the double couple
model. The method is based upon a preliminary estimate or graphical
solution of one of the two P-nodal planes. The first least squares procedure
in his method varies the position of the pre-estimated plane so as to give
a minimum scatter of the poles of the second nodal plane, and a best
position of the first nodal plane is determined. Now there is only one inde-
pendent unknown to be estimated. KEach observation can give a solution
of the unknown parameter, and an average of the solutions thus obtained
is the final solution. In many practical cases, one can determine one of
the two P-nodal planes by use of the P wave data but not the other plane.
In such cases the method may be very efficient for practical purposes.

Numerical methods for the single couple hypothesis were given both
by Stevens (1964) and by Udias (1964). As is well known, for the single
couple the forces at the focus are directed along a single axis, and the
direction of the forces at the source and the S motion at a point on the
focal sphere are co-planar. Consequent upon the co-planar property, the
direction of the forces, or only one of the two P-nodal planes, can be deter-
mined from the polarization angle of the S waves defined irrespective of
the sense of the S motion. Since there are only two independent unknowns,
the problem of the focal mechanism determination is simpler than for the
double couple. Moreover, the single couple is of little importance for the
model of earthquake focus as was stated before. In the present paper,
therefore, the method for the single couple model will not be given.

Stauder and Bollinger (1964) have presented the frequency distribution
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of the residuals which are differences between the observed polarization
angles and the theoretical ones expected from the double couple solution
estimated graphically, superposing data obtained from thirty-six earth-
quakes. The frequency distribution suggests that it is a sample distribution
from a population of the normal distribution. If a sample of the residuals
defined above for a particular earthquake is assumed to be sampled from
a population of the normal distribution, the maximum likelihood estimates
of the unknowns are given by minimizing the sum of squares of the
residuals of the observed polarization angles at the individual stations
from the polarization angles calculated for the theoretical source.

The substantial idea of the method given in the present paper exists
in the above assumption, and statistical discussions on the assumption will
be made in the second paper.

2. Theory

A double couple source is formed by the superposition of two couples
of equal forces with opposite moments. Let (x, v, 2) be a right-handed
coordinate system related to the orientation of the source mechanism. The
Cartesian coordinates (z, v, z) are transformed into the spherical coordinates

(r, 6, o).
x=7sinfcos ¢,
y=rsinfsin ¢,
z=rcos .

When the double couple of bcdy forces which are oriented along the -
and z-axes acts at the origin of the coordinates in an infinite elastic medium,
the displacement components at a large distance from the source are written
in the spherical coordinates as follows (e¢f. Honda ; 1962);

Opr== K %—&ia)expiw (t—i>; u,=sin 20 sin ¢,
dmp vV, ¥ Vp

Bsﬂzi 13 Mo exp iw (t— r >; U,=cos 20 sin ¢, (1)
dzmp Vs 7 Vs

RS K %ﬂ“iwexpiw (f— r >; u,=cos 0 cos ¢,
drp Vs 7 Vs

where, p is the density, K is a constant, v, and v, respectively, are velocities
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of P and S waves, and a periodic function of the forces in time is assumed.
Relative amplitude distributions of P and S waves are represented by u,
and (u, u,), respectively, on a focal sphere with unit radius. Since %, is
propertional to 2yz, two P-nodal planes are expressed by z=0 and y=0,
and the direction of the null vector is the z-axis.

Let (& 7, &) be another right-handed coordinate system related to a
geographic coordinate system (N, E, and Down), which may be obtained
by suitably rotating the (z, %, z) system. The Cartesian coordinates (£, 7,
{) are related to the spherical coordinates (r, O, @) as follows,

E=rsin@cos @,
7=rsinO@sin?, (2)
{=7rcos O,

where » is the same as before and O refers to the incident angle of the
seismic ray at the focus measured from the downward vertical and @ to
the azimuth of the great circle path with respect to the epicenter measured
from the north clockwise.

Using direction cosines i of the x-, ¥- and z-axes with respect to the
Cartesian coordinates (&, 7, ),

x=IlnE+len+ilisL,
y=l21$+lzz7}+lzzc, )’ (3)
2=l &+ lnn+isL.

Thus, the problem of determining a fault plane solution is identical with
the problem of finding these direction cosines, where independent unknowns
are only three because of the orthogonality conditions. By use of these
direction cosines, SH and SV components of the S wave motion are written
as

o=l lz101 + (laalar + lo1l32) a2+ (laslas + laslss) s
+ (laslsa + laolss)as + laslasas

Uo=la1l51b1 + (Lazlas + l21l52)b2 + (leslss 4 It I33) b3
+ (laslsa + laalss)bs + lzslssbs

(4)

where, a; and b; are known quantities and are expressed in terms of (CA
?) by
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= —2sin Osin 20 , b;=sin 20 cos 20,

@z=sin @ cos 20 , by=(1/2) sin 20 sin 29,

az=—cos Osin?, bz=cos 20 cos @, (5)
ay=cos O cos D, by=cos 20sin?,

as= —sin O sin 20 , bs= —sin 20-(1+sin? ?).

The angle of polarization of the S wave, 7, is defined theoretically by
y=tan~! (u./us). While the observed polarization angle I" is determined
by the angle between the observed S movement and the vertical plane
containing the ray. That is, I'=tan™! (SH/SV), where SH and SV are
SH and SV components, respectively, of the S wave amplitude. The sign
conventions given by Stauder (1962) are followed in the present paper.

Since the observed angle of polarization is usually defined independently
of the sense of the S motion (¢f. Stauder; 1962), it is convenient to define
the residual as the angle between the direction of the theorectical S motion
and that of the observed S motion, disregarding the sense of motion.
Let R; be the residual for the i-th station,

Ro=tan-{ HE)=Paiw)} g 5 5 4 (6)
UPifi(ay) + giley) }
where
Pi:tan Fi N )
filws)=1toi/(loslss) ,  gs(ws)=1ei/ (laslas) (7)

1=l31/lzs, Xa=ls2/lsz, @3=la1/las, Ta=lsz/ls3 y

and R; is defined in the region —=/2<R;<z/2. The subscript ¢ should
be attached also to aj; b;, ©, and @ in expressions (4) and (5). Since there
are only three independent variables, the following condition should be
satisfied ;

Tz + 2oy +1=0. (8)

If only three observations of the polarization angle are available, fault
plane solutions may be obtained directly from the equations,

filx;) = Pigi(e;)=0, i=1,2,3 (9)

under the constraint of equation (8), where the solution is not always
determined uniquely as will be seen later.
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From the theoretical point of view, it is necessary only to find a
minimum of the sum of squares of R; that is,

R:. (10)

M=

-

1

1
—

3. Numerical Procedure

Because of non-linearity of equations (6), it is not straightforward to
find a minimum of ¥, and usually it is required to have starting values
of the unknowns for the iterative process of the numerical method in order
to obtain the least squares solution. Moreover, there possibly exist more
than one minimum. Therefore, difficulties of the numerical method of the
least squares may be concentrated on the following two points.

1. How to find better starting points of the unknown parameters for the
successive approximation of the method.

2. How to improve the standard linearization method of the least squares
in order to expect better convergency in the iteration and yet not to
overlook any minimum around the starting point.

In general, a solution may be obtained graphically by the distribution
of the compression-rarefaction of the initial motion of P waves, and the
solution can be used as one of the starting points. Sometimes no solution
is obtained from the P wave data because of poor spatial distribution of
the observing points on the focal sphere. In either case, however, several
more starting points are required since it is not assured that there is only
one minimum.

If equations (8) and (9) are solved by use of a set of three observations
of the polarization angles, three solutions, in general, are obtained. Using
many sets of the three observations which are different combinations of
the observations from one another, many trial solutions will be obtained.
To do this, variables in equations (7) are exchanged for convenience sake.

Ki=xxs=—1—2123,
Ky=a24+ 2203,
K3=x1+x3 N
Ki=xo+s.

(11)

Thus, f and ¢ in equations (7) are linear functions of Kj, and the condition
to be satisfied by K; is expressed by
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(K3K4—21(2)2=(K§_4I{1){K§+4(1+K1)} . (12)

If three of the four variables, say, K;, K;, and K;, are eliminated from
the three independent linear equations (9) and substituted into equation
(12), a cubic equation with respect to K, is obtained and, therefore, three
roots of the equation may be found in general. The variables T; are ex-
pressed in terms of K; as follows;

if K3K4—2K>>0, then
x1=(1/2){K3+ VKi+4(1+K,)},
1/2){Ks+ VK:—4K, },

(1/2)
=(1/2){K;— VKi+4(1+K,)},
(1/2){K.s— VK:—4K, },

if K;K,—2K><0, then
x1=<1/2){K3+ VEKi+4(1+Ky)},
(1/2){Ks— VKi—4K, },
(1/2){K;— VKi+4(1+K,)},
(1/2){K:+ VKi—4K, } .

Although any combination of three observations taken arbitrarily from
the available observations can be used, it may be better to avoid use of
the combination of observations from stations located close by one another.

In practice ten to twenty trial solutions are obtained from several
sets of the three observations. The sum of squares of the residuals, 7,
is computed for each of these trial solutions. Several solutions are selected
from these trial solutions for the starting points of the parameters in the
iterative process of the least squares, for which the values of ¥ are small
compared with those for the others. Thus, the first difficulty stated at
the beginning of this section may be overcome.

According to the standard method of the least squares, the residual
R; in equation (6) is lineavized by omitting the higher order terms in
Taylor’s expansion, and then the normal equations are obtained. Provided
that @1, @, and w3 in expressions (7) are taken as independent variables,
let the initial value of x; be x; and the correction of x; be ¢ in each
successive step.
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x7=x0j+ej3 7=17 2’ 3

Ri(x;) = Ri(xo;) + 2 83'[ IR ]
=1 Ox; Jdzj=xoj-

(14)

The sum of squares of the residuals is approximately given in terms of
¢ by

v~ = 2 {Rian)+ 3 (s F0) (15)

vy,

&

Since a minimum of ¥ is given by =0, the following simultaneous

linear equations with respect to ¢; are obtained,

1161+ Q1282+ izes + A1 =0,
Q1261 + Aotz + A23€3+ Ao2=0, (16)
(1361 + Aossa+ Azsa+ap3=0,

where

oR, aR-] .
Uit == CEp t ; 5 k#O,
i ;[axo,- o !

(17)

a0k=Z|:Ri‘ aRi]; k=0.
¢ 0%or:

1

Solving the normal equations (16), corrections ¢; for xy; are directly found.
If the higher terms of Taylor’s expansion are not negligible in expression
(15), the minimum point of ¥}, cannot be taken as an approximate minimum
point of ¥. 1In such cases it is undesirable to take the values of x; equal
to xe;+¢; as a starting point in the next iterative step.

The method of the steepest descent (A. D. Booth; 1955) in solving
non-linear simultaneous equations may be applied to this problem. The
concept of the method is as follows: ¥ =const. represents a curved surface
or an error surface, where ¥ cannot be negative. At a given point (w1,
X2, Xo3) on the error surface, a vector of corrections for xo; should be taken
in the direction of the normal to the surface. Let components of the vector
of correction be d;, which are given by

8= ol

= ; =1, 2, 3.
8x0,- !

Using 0; actual corrections of x; are given by «d;, a@ being a constant.



910 T. Hirasawa

Although a may be determined in many ways, the simplest method is
adopted in the present study in order to make use of the results in
equations (17). If appropriate values of a; and @, are obtained so that
¥(x;) may be approximated by a quadratic form with respect to @ near
the point of wp;, a minimum of the quadratic function at a=«a, is obtained
by ¥(x05), ¥(@o;+19;), and ¥'(xo;+a2d;), where the a is regarded temporarily
as a variable.

Although «; and a; may be determined rather arbitrarily if only |e|
is sufficiently small, in practice a; and a» may be given in the following
way (cf. A. D. Booth; 1955). Using the notations given in (17),

Q2= — (x01)< Zi: >

a1=a2/2 .

If the quadratic function given by the above values of a does not have
a minimum but a maximum, (as/4, a2/2) are used instead of the above
(1, az). If the quadratic function constructed by (az/4, @2/2) does not
have a minimum either, in other words, if ¥(xo;+a20;/4) is larger than
U(205), @ is directly taken to be a3/80 by experience, since the value of
@y is arbitrary and the direction of correction d; is correct as far as |agd;]
is sufficiently small.

Thus two kinds of correction for xp; are obtained, that is, ¢; from the
method of linearization and @¢0; from the method of steepest descent.
Comparing the value of ¥(xo;+¢;) with that of ¥(xo;+ @od;), (xo;+¢5) ox
(w0 +aed;) is adopted as a starting point of x; in the next step.

The method of steepest descent has the advantage of the other in
some points. DBecause by using this method one may confine magnitude
of the correction for x; within small quantity so as to satisfy the condition
that ¥'(xo;-+ao0;) <¥(x0;) and not to overlook any minimum point of ¥ around
a given starting point of z;, This advantage may be very helpful for
the present problem where some secondary minima may exist. However,
when 2o; is located at a point very near a minimum of ¥(x;) in a certain
successive step, the method is no longer useful especially in the case of
less accurate observations. In the present computer program, therefore,
the method of linearization only does work when ;(%L> <1073, Thus,

J
the second problem stated in the beginning of this section may be solved.
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4. Standard Deviations for Arbitrary Quantities

At present the computer program for the problem consists of the
following three parts.
(i) Computing starting points of variables ;.
(ii) Finding minima, more than one in general, of ¥(x;) from the above

starting points by the successive method of the least squares.
(iii) Calculating standard deviations for the quantities, dip directions,
dip angles, etc., according to the minima obtained above.
Practical processes for (i) and (ii) have already been stated in the previous
section. For a given starting point of wx; the computer program for the
successive approximation for (ii) is prescribed to stop the computation at
the tenth step of iterations or at the step where 2 (g)2<10‘8. In some
: .

unfavorable cases it happens that the sum of squares of the partial
derivatives becomes almost zero but z; does not converge to a fixed point.
The reason may be apparent if one recalls definitions of ¥ and z; The
variable z; can take any value from negative to positive infinity, while
the sum of squares of the residuals, ¥, should be finite for any value of
2;, That is to say, the methed may hardly be applied to the case of,
for instance, purely vertical strike slip unless the method is modified. To
avoid such unfavorable cases, and to confirm the minimum obtained in
part (ii) more definitely, the new combination of independent variables x;
is taken in the program for (iii) instead of @; in the former part. Using
these mew variables several steps of the iteration of the linearization
method are operated in the process of (iii).

x=1lz1/lss ’ CC;’—‘lsz/lss y x5 =1loz/la , } (18)
Xi=la1/lpa= — ('L‘fl"%';)/x; ,

fz (x})=1lwi//(l22l33) ’ } (19)
Q; (x})=1lei/(lzzl33) .

Substituting expressions (19) into (6) instead of fi(x;) and gi(x;), the residual
R; is obtained for the new variables ;. At the final stage of the program
high accuracy in the numerical calculation may be attained by requiring
3 3 s
satisfaction of the condition that ] &<10~ and z(_ai,)2<1o-9.
J=1 7=1\0x;
The unbiased estimate of population variance of the observations may
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be expressed by
§2=U/(N-3), _ (20)

where the observation means deviation of the observed polarization angle
from the polarization angle expected theoretically. The estimate of the
standard deviation of population of the observations may be given by

6= VT/(N—-3). (21)

The standard deviation thus obtained is used for expressing accuracy of
the observation.

It is remarked, however, that the average of a sample of the residuals
is not necessarily equal to zero because of non-linearity of the problem.
The average of the residuals (R) may provide a kind of measure for
reliability of the solution. Since the population average should be equal
to zero, the above definitions of the variance (20) and of the standard
deviation (21) will be used. '

In order to derive standard deviations of the most probable values
for arbitrary functions of x;, each element of the variance matrix is
computed. Let the elements be Vi;, where 4, =1, 2,8, and V;;=V;. The
weight for the variable «; is expressed by 1/Vy, and Vi(ixj) gives the
covariance between x; and x,. The weight p, for an arbitrary function
h(z;) is given by

1Sy (e g v (2)( 2 o0
ph _i§1 V‘LL ax; + 7.;{ V'LJ ax; ) ( ax; . ( )

The standard deviation of the most probable value of h(x;) may be given
by

on=0/Vp. (23)

In the present computer program standard deviations of the following
quantities are computed ; dip directions and dip angles of the two P-nodal
planes, slip angles, trends and plunges of the pressure and tension axes
and of the null axis. It is noted that the standard deviation for the
trend of an axis has different meaning from that for the plunge. That
is, the latter always refers to angular variation along a great circle,
whereas the former is along a minor circle and loses its practical meaning
as the plunge tends to 90 degrees. It may be convenient, however, to
present the standard deviation of the trend in some particular cases, for
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example, in the study on the distribution of horizontal pressure directions
of the earthquake mechanism.

5., Numerical Examples

As an example the numerical method is applied to an earthquake
which took place off the coast of Kamchatka, July 22, 1953, 05" 11™ 15°,
51° N, 157° E, h=60km (USCGS), the magnitude being 63/, For this
earthquake, Stevens (1964) and Udias (1964) have independently presented
numerical solutions from S wave data. All the data requisite for the
present study, such as the azimuth of the great circle path with respect
to the epicenter, the angle of incidence of the ray at the focus, and the
observed polarization angle, are given by Udias (1964). For the purpose
of comparison of the final results no modification of the given data is
made. :
Table 1 shows eight sets of observations constructed from 19 observa-
tions and 18 trial solutions obtained by using these sets and equation (9).

Table 1. Combinations of observing points and obtained
trial solutions.

. Solution 4 Order

Stations used No. (in rad?) of U
(Sol. by Udias) 1 0.64 3
PAL, SLC, SVE 2 5.21 —
3 1.40 7

CLE, TUC, COP {4 8.45 —
5 1.19 5

6 4.26 —

SAS, PAS, STR {7 7.34 -
8 0.81 4

9 1.87 6

SLM, RIV, KIR {10 6.21 —
11 2.48 —

12 4.19 —

FLO, BAG, DBN {13 6.13 —
14 0.54 1

BOZ, TAS, KEW 15 13.28 —
SLC, SVE, SCO 16 5.15 —
17 5.21 —

PAL, BAG, STR 18 12.57 —
19 0.55 2
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The sum of squares of the residuals (¥') corresponding to each trial solu-
tion is also presented. The first trial solution in the table is the nume-
rical solution given by Udias (1964). Seven trial solutions are selected
for the starting values in the successive method of the least squares,
which show smaller values of 7" than the other solutions.

From these starting points all the cases converged to the same
minimum and no other minimum was found. At the final stage of the
successive approximation,

2
2 <ﬂ) =55%X10710, 3 &=55x10711,
7 \ox;

¥=0.46551 (rad?), R=-0°6,

and unbiased estimate of population variance of the observation (polari-
zation angle) is 0.029094 in square of radian, and estimated standard de-
viation of the observation is 9°.8. Table 2 shows comparison of the

Table 2. Comparison of the present least squares solution with
the solutions given by Stevens (1964) and
by Udias and Stauder (1964).

L. S. Sol. oan toes)
Plane (a)  pib Xt Tio 11 E Ti2.7 0.4
Plane (b) Big gggfe 1233 ?3 1;% 1:38
Pressure Axis g{&gge 132:% ?i 14% 132:?
Tension Axis gffﬁge 82:(1) 12:(1) —slgg ggg
Nul Axis  Lrend, B %3 R
Siip Angle Elane (o) S5 6.9 8 Y

present solution with the results given by Stevens (1964) and by Udias
and Stauder (1964). It may be reasonable that the quantities with small
standard deviation of the present solution agree well with one another
among the three solutions. Relatively small standard deviation of the
polarization angles suggests that the data for the Kamchatka earthquake
are well refined, and actually there was little trouble in obtaining the
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least squares solution by the present method.

There are many examples of earthquakes in which from some of the
selected starting points the successive approximations do not converge. As
an example of such cases an earthquake which took place near Japan,
October 8, 1960, may be suitable. For this earthquake the data of the
polarization angle have been given by Ritsema (1965) and detailed dis-
cussions will be made in the second paper. A graphical solution given
by Ritsema is taken as one of the starting points and the sum of squares
of the residuals (¥') is equal to 6.50 at the starting point. Using 15 ob-
servations, four starting points are chosen besides the above graphical
solution. From the graphical solution and from two of the four trial
solutions obtained numerically, for which ¥=1.51 and 3.15, respectively,
the successive approximations converge to the same minimum point at
which ¥,,=0.8539. From one of the other trial solutions for which ¥=2.88
the approximation fails to converge. From the last trial solution (¥"=38.99)
the method converges to another minimum point at which ¥,=3.539. For
the purpose of comparison, major quantities for the two tentative solutions
are tabulated in Tables 3a and 3 b.

Table 3 a.
“q/' 2 62 A —_
v ha] it &2 & R
(axj) 25 (rad?)
Sol. (1) 0.854 7.4X101° | 6.0X10- 0.0712 1573 424
Sol. (2) 3.54 4.7X1071° | 1,3X10°!2 0.2949 3101 3:8
|
Table 3 b.
Dip Direc. : Dip Angle Dip Direc. Dip Angle
Sol. (1) 116:8+28:1 1 102511 —61:9+5:2 7915+1%1
Sol. (2) 71+ 437 i 42:9+9:0 —20:9+57 82:6+4:0

The difference of the variances of the observations between the two
solutions is so big that it may be natural to choose the solution (1) as the
most probable solution from the S wave data, while standard deviations
for dip directions and dip angles of the P-nodal planes as shown in Table 3 b
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are rather in favor of the solution (2) as a whole. This circumstance may
be suggestive. It is naturally concluded that one should not discuss for
superiority of the solutions by means of standard deviations for such
quantities as dip directions and dip angles so far as the normal distribution
of population of the observation (polarization angle) is assumed.

Generally speaking, significance of the difference of the variances
should be subjected to the statistical test. This may be done by testing the
null hypothesis that the population variances of the observations are equal
to each other by use of the F-distribution where five per cent of the level
of significance is taken in the present study. If the null hypothesis is
rejected by the test, one may take the solution which has smaller variance
than the other as the most probable solution with the five per cent of the
level of significance. If it turns out to be no significant difference of the
variances by the test, both of the two solutions should be adopted tenta-
tively as far as the S wave data is concerned, and the best solution should
be determined in contrast with the observations of P wave.

For the present earthquake the statistical test shows that the dif-
ference of the two variances is significant. Thus, solution (1) is the most
probable solution determined indepedently of the P wave data. As will
be seen in the second paper, the sclution (1) is a better solution for the
P wave data than the other. This example may suggest that the use of
preliminary solution from the P wave data is desirable as one of starting
points.

6. Summary and Acknowledgements

Assuming that a sample of the residuals, deviations of the observed
polarization angles from those expected for the theoretical model of the
double couple hypothesis, is extracted from a population of the normal
distribution, a least squares method is presented in which the sum of
squares of the residuals is minimized.

In practice starting points of successive approximations in the method
of least squares are obtained by solving directly non-linear equations with
respect to three independent variables which are constructed by three
observations. Two different kinds of numerical method are co-operated
in the computer program of the successive approximation process, and
the program is so carefully designed that any minimum around the start-
ing point may not be overlooked.

Standard deviations of such quantities as dip direction, dip angle, etc.
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which should be obtained in the focal mechanism study are computed.
These standard deviations depend upon variance of the observations and
size of the sample and largely on the spatial distribution of observing
points on the focal sphere. For any quantity expressed by a function of
the parameters (x1, x;, 2;) of the estimated solution the standard devia-
tion can be obtained by using numerical values of elements of the vari-
ance matrix.

The method is successfully applied to two examples of earthquakes.
For one of the two examples two minimum points were found. For such
cases, in general, use of statistical test is proposed in order to distinguish
the most probable solution from the two solutions.

Thus, the fault plane solution of an earthquake is obtainable inde-
pendently of the P wave data by use of the analytical method in which
any preliminary solution is not necessarily required.

The author is greatly indebted to Rev. William Stauder, S. J. who
suggested the problem of the fccal mechanism determination and offered
valuable advice. He wishes to thank Prof. H. Honda and Prof. T. Asada
for their discussions and encouragements. He is also grateful to Dr. R.
Sato who read the paper in manuscript and provided many helpful com-
ments.
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47. S EBEN A SHEOA I =2k RD B
m/NT T f—

BURCKSEED - BRI AEE s SE RO P

S 3@ polarization angle O E double couple DIRBLICHE B OE (FRE) ZHER
WL B2 L, FEEFAMAET/NCT 3 A =X L0ARD 3BT ESE L 5.

MM CH B 120, BEFEHFMOMNLEIR—2 LRSI, o TRAZEBERD S
BIGEUREI Iy Ol EA Ry 2088 % L. T bONRARE T OB OEEOHRE
DHEFANTIEL =X L0HERBBZINCLDVITONSE. Tbb, ZOFKIKGLTIEAA
=2 ADRICIT B RRFAZ DM, A SOTHMIHLERINIZN. e, Z7 Y LORAEHN
RIS N Ay, SHOEOFEMAMET 3TN & - T P ORI & 1M g #2185 31
Tx5.

BENFRUN /RS SHIII NG, LA YHRICH LTS, < ORERERHIEHDS
Bt OIS IR TEHITE 345, T a7 A0 TCEHEIAERIE, 200 P EHEm dip
direction & dip angle, null axis, pressure axis, ¥ k¥ tension axis @ trend & plunge,
Zhic slip angle TH 5.

Ik, oDz LT TOREHIVRENTNHS.




