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Abstract

Succeeding the previous works under the same title, the theories
on long waves around an estuary are developed under the approxi-
mations of the third, fourth, and fifth orders of the Bessel functions.
A principle used in this paper is a method of the buffer domain devised
by the author. The newly obtained facts are as follows:—

(1) In the interior of the canal, a valley of the amplitude is
found, which was passed unnoticed in the previous works, (2) a
trough line in the open sea bends down towards the mouth of the
canal, which results in an entrance of a tongue-shaped valley of the
amplitude inside the canal, (3) in front of the canal, isolines of phase
take a trapezoid form, and (4), when kd=1.4 (k: a wave number,
d: a half width of the canal), diverted waves appear in the open sea
which advance along the straight coast causing high waves there.

1. Introduction

We have already been studying a problem of a long wave in the
vicinity of an estuary?: 2 by use of a method of the buffer domain with
the aid of an electronic computer. In this paper, the theory is developed
under the third, fourth and fifth approximations. The used notations and
definitions are completely the same as those in the previous papers?: 2
(of which the first and second works are referred to as papers I and II
in the following). The summary of the definitions and notations are
presented in Section 2 of paper II. If necessary in the following develop-
ment of the theory, readers should refer to Section 2 of paper II.

1) T. Mowmol, Bull. Earthq. Res. Inst., 43 (1965), 291-316.
2) T. Mowmort, Bull, Earthq. Res. Inst., 43 (1965), 459-498.
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2. Formal Solutions

In paper I, formal solutions in three domains D;, D, and D; (refer
to Fig. 1) are given as follows:—

periodic
incident wave
Ds
buffer .
domom/ -
7 AN
D2 \
/ N
D,
e 2d

Fig. 1. A geometry of a used model.
in the domain D; (from (9) of paper I),
& =§0 L™ cos lndix-e‘”“(m)”; (1)
in the domain D, (from (8) of paper I),
C2=§,:J {T§™ cos 2nb - Jan(kr) + £8P sin (2n+1)0-Jpnia(Fer)} ; (2)
in the domain D; (from (6) of paper I),

{3=2C, cos ky + io £ cos 2nl - HS(kr) . (8)

3. Infinite Simultaneous Equations

Communicating the above formal expressions by use of the boundary
conditions between the adjacent domains and applying the operators,
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which have a property of orthogonality, to these relations (these proce-
dures are the first reduction of the method of the buffer domain®), we
have the following infinite simultaneous equations (For the detailed deriva-
tion of these equations, readers should refer to Section 2 of paper I):—

i I(JZn, ’m)-zgz") —sm.kd,cgm)=0

n=0

(from (12) of paper I),

il<%’ m)'CQ"“)H-em-M""d-CY"):O
n=0 r

(from (13) of paper I),

Femy 1 52 @nt1) Ton(kd) pann
Jom(ked) T8 + o Em. 2n+1)2— (2m)? &

= HO(kd) - L™ + L 20 5(kd) - Co
€m
(from (14) of paper I),

’ 7 1 &2 2u+1)-Juwalkd) rons
Jom(led) P 4= 3 2 +1 L pnt1)
(ked) em nz=:o 7z (2n+1)2—(2m)? &

= H (k) - L™+ 22 () -Co
[

m

(from (15) of paper I),

where

kd qn
I(J2m, @)= So Jan(2) cOS Wzdz ,

kd —
I<J2n+l ,q>=(2n+1)g :&E—H—(QCOS qr Zdz,
r 0 z kd

(’n’ q=0’ 1, 2’ : ”);

em=1 (m=0) }
=12 (m=1) )’

and m is a non-negative integer.

3) T. Mowmor, Bull. Earthq. Res. Inst., 43 (1965), 269-289.

(4)
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In the subsequent two sections, the further reductions are made,
following the second procedure of the method of the buffer domain, ie.,
an expansion of the expressions of the buffer domain by power series.

4. Third Approximation

In this section, general forms without any simplification, which are
described in (4)-(7) of Section 3, are further developed under the third

approximation such that
2
JO(Z) =1- g—z— ’
~2 7
Jl(z)—g 25.91 "

~ z
Tale) =5 5
23
23.31
In(2)=0  (m=4),

’

J3(Z) =

’

2 \ for z<kd.

The above approximations denote that the Bessel functions are re-
tained up to the terms of the third order of (z/2).

Substituting (9) into (8) and after a few reductions, we have:—

1(Jo, O)=kd—11—2(kd)3 ,

(=1« | (kd)®

I(Jo, (1)= D) (qrr)z
1(J, 0)=§(kd)3 ,
102, = (=10 g

(¢=1),
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I(% 0):%(1«1)3, (11)
J3 _ (=1 (kd)?
I<7’ q)— 8 (qof (g=1),

I(M, q>=0 (n=2, ¢=0).
r

From (9), the derivatives of the Bessel functions become as follows :—

: P 2 <
To(z)~—%_ for z<kd. (12)

v 22
TR

Jn(2)=0  (m=4),

Putting (9)-(12) into the expressions of the buffer domain D, in the
infinite simultaneous equations of Section 8, these equations are reduced
to:—

1 —_
3 I(Jam, M) -TEP = e -kd-L=0  (m=0), (13)
n=0
i I(Ji*i , m).C§2n+l)+i.€m.k§m)d.Cgm)=0 (mgo) , (14)
n=0 r

Tom(led) -E8m 4 1

€m

1 2‘ (27L+1)’J2n+1(kd) .Cg2n+1)
=0z (2n+1)2—(2m)?

n=0

—ng,z(kd>-c§2m>=—€2—-J2m(kd>~co (m=0, 1),

1 &2 1) - Jonir(kd) vensny .
- (?gnﬁ)é]ﬁ (Elq(f)i) LD — i Yam(kd) - (=0

(mz=2),
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! 2m 1 L 2 (271+1)'J’n (kd) n+1
Tin(led)-Cgm + vy 2. 20F D) Junialkd) ponsn
) 0 €m "Z=° r  (2n+1)2—(2m)? ¢

' 2 ,
— H(}g L= 2. nlkd) - £ = 0, 1 ’
3 (kd) Ca e J? ( ¢ ) 0 (777/ ) (16)

L5 2. CuteTun(kd) conin iy, (kd)-8m=0
Em I

20w (2n41)2—(2m)?
(m=2),
where
I(JZn, m)
L = s m=>
I(J2n+1 , m) (n=0, 1; m=0)
r
and
In(ked)
r =0
T'(kd) (n=0,1, 2, 3)

have forms described in (9)-(12).
The equations (13)-(16) up to m=1 constitute simulateneous equations
with eight unknowns:—

oo, o, O, O, &Y, O, & and 5. (17)

These equations are readily solved with an electronic computer. In actual
calculations, the approximate expressions ((9), (12)) of the Bessel func-
tions and their derivatives are not used, for the use of the subroutine of
the Bessel functions in a computer makes the calculation of the rigorous
forms of the functions easier than their approximate expressions. Then
the derivatives of the Bessel functions are computed by

Z;(Z) =nZn(z) z— Zn+1(z) ’ (18)

where Z,(z) stands for Ja(z) or Ya(z).

Such a convention is followed in the calculations of the fourth and
fifth approximations in the subsequent sections.

The significance of the approximate expressions of the Bessel functions
(9) is to reduce the infinite simultaneous equations of Section 3 to the
finite number of the simultaneous equations. This process is very im-
portant in our method (the methed of the buffer domain).

After solving the equations (13)-(16) up to m=1, we can obtain the
numerical values of the unknowns given in (17). Substituting these solu-
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tions into (18) and (15) for m =2, the higher modes of the waves &, ™ and
L@ for m=2 are readily computed. Now, the substitution of the
above unknowns ;™ and ;@™ (m=0) into the formal solutions (1) and
(3) enables us to visualize the variations of the waves in the domains D,
and D; with a help of a computer.

As far as the waves in the domain D, are concerned, the formal
solution (2) is reduced to '

L
L= f__.‘o {C§ cos 2n0+ Jon(Fer) + L™ sin (20 +1)0+ T gns1 (k) (19)

(note: the upper limit of ¥ is 1 in place of oo in (2)), since Jn(kr) (r<d)
m=4 can be set down equal to zero from the approximation (9). By use
of the solutions obtained in (17) and the above expression (19), the be-
havior of the waves in front of the canal (in the domain D,) is readily
examined numerically.

The results of the calculations and their discussions are made in later
Section 7.

5. Fourth Approximation

In this section, general forms (4)-(7) are further reduced under the
approximations such that

J( )N zz 24
oo T 201131 | for 2<kd. (20)

~ 2
Tole) =35 57

Im(2)=0 (m=5),

In the approximations described above, the Bessel functions are re-
tained up to the terms of the fourth order of (z/2).
A substitution of (20) in (8) yields:—
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1

175, 0)=hd——L(kdp+_2(kd),

170, )= (_:‘z)q“ : ((ZZ;ZJ“ LR e (q)ﬁ) SL.(kayp  (g21),

I(J5, 0)= o1 2 (ka)? —Zéa(kd) )

= 202 (U (o8 g gz, | 20
1(7s, 0)=—lﬁ(kd)5 ,

17, =G A28 ap (g2,

I(J3n, )=0  (nZ3, ¢=0),

1(fm2 ) (20, ¢20)

have completely the same expressions as those given in (1) [ 22

of the previous section (the case of the third approximation).

From (20), the derivatives of the Bessel functions are given as follows:—

3
J; =~ z - i )
(2) = .11-31 for z<kd . (23)

3
J()==%—,

Using the approximated expressions (20)-(23), the infinite simultaneous
equations (4)-(7) are reduced to the following:—

2

E I(JZm ) C(o") Sm ked- C(m)_ (24)

n=0




A Long Wave in the Vicinity of an Estuary [11I] 1017

(m=0; the upper limit of > becomes 2 in place of 1 for the third ap-
proximation (refer to (13))),

1 .
20]<i2_m , m ) LD jee B LM =0 (25)
n= r

(m=0; this expression is exactly the same as that given in the third ap-
proximation (refer to (14))),

Tan(ted)-Zgm 4 Lo 31 2. @D Tonn () e

em =01 (2n+1)2—(2m)?
—ng,zwd)-cg?m:si-hm(kd)-co (26)

(m=0, 1, 2; it is noted here that the parameter m is taken up to 2,
though the above expression is equal to the first one given in (15)),

1 &2 (2n+ 1)‘J2n+1(kd) D 5 Yo (Fed) - 8™ =0 26’
LY A. N4 —1-Yom . — 6
m ;L‘:ox (2n+1)2—(2m)? : i Yan{lid)- G (26)

(m=3; the above expression is the same as the second one in (15) except
that m=38 instead of m=2 for (15); the equations (26) and (26') are
derived from (6)),

J,m kd ,z(m)_l_i, ; 2 (2n+ 1)'J;n+1(kd) . gzn+1>
()G &m 07 (2n4+1)2—(2m)? :

— HE (led) - £ = 2. 73, (Jed) - o 27)

€m

(m=0, 1, 2; in the above equation, m is taken up to 2 instead of 1 (refer
to the first equation given in (16))),

1 -2 (2n41)-Jon (kd n g -
o D e ST =0 )

(m=3; in the above expression, m =3 other than m=2 for the case of
the third approximation (refer to the second equation of (16)); the equa-
tions (27) and (27') are obtained from (7)),
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where
I(J2,, m) (n=0, 1, 2)
I(_Jzn—“ m) (n=0. 1) | (m20)
r
and
J.(d)

} (n=0,1, -+, 4)

have already been described in (20)—(23).
Now, we can obtain

&, o, O, T, TP, B0, O, 49, €0, &0 and & (28)

as solutions of the simultaneous equations which consist of (24) (m<2),
(25) (m=<1), (26) (m=2) and (27) (M<2).

Substituting £ (n=0, 1, 2) and {0 (n=0, 1) solved in the above
to (24) and (26') respectively, the higher modes, ™ and (£ (m=8), of
the waves in the domains D; and Ds are readily computed. Now, using
the above obtained {{™ and (§™ (m=0), the waves in the parts of the
canal and the open sea are elucidated numerically through the expressions
(1) and (3).

Since our consideration is limited in the range of the approximation
(20), the formal solution (2) describing the waves in the domain D be-
comes as follows:

2 1
Lo= 2 T%™ cos 2n0 - J pn(Fer) + ZOC?"“) sin (2n+1)0-Jon 1 (kr) . (29)
n=0 n=

In a similar manner to that in the previous section, the behavior of
the waves in the domain D, is examined numerically by substituting the
solutions ¢ (n<2) and (P (n<1) into (29).

The results of the calculations are given in Section 7.

6. TFifth Approximation

In this section, the following approximations are utilized to reduce
the infinite simultaneous equations (4)-(7):—
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A o a—— +— 7
(&)=~ s 121 T 22131

2 z
)= 5 T a8l

. 2z
To(e)= 55 g7 " gea

~_ 2
ST

Tolz) =2
@)= 51

Im(z)=0  (m=6),

4

’

5

’

’

?

for z=kd.
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Then the expressions (8) become, after a few reductions, as follows:—

have identically the same expressions as

those given in {21) of Section 5,

1(% : 0):%}@ —;—S(kdf + 1—9123(’601)5 ;
(-
1(!7% 0):%8—(kd)3—17186(k ¥,

T =
I (% 0>= 38140 (kd)?,

1(L2, q) =l M8 oy qz),

1(*’2;“ , q>=0 =3, ¢=0)

The Bessel functions (80) yield the derivatives as given below :—

(31)
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ME=—Ee 2,

J;(z):é_ 23?2!z2+ 25-251-3! 2

e T 2%5?3! ’

Ti(z)~ 23z.22! _ 25?4!24 ’ for 2<kd. (33)
J;(z):%,

J;(z):ﬁT,

Jn(z)=0 (m=86),

Substituting the approximated expressions into the infinite simultane-
ous equations (4)—(7), these equations are reduced to the following ones:—

2 1(Jan, m) T — e kid- L™ =0 (34)
(m=0; this equation is the same as that described in (24)),

2
Z I( J2n+1 , m) . C§2n+l)+i‘ Em,kgm)d. Cgm)z_o (35)
r

n=0

(m=0; this expression is the same as that given in (25) except that the
upper limit of 2| is 2 instead of 1),

oy . 1 &2 @n41)Jone1(kd) i
Jom(kd) - T¢™ 4+ 31 2. + L
am{fed)-C €m nZ=IO7r (2n+1)2—(2m)? :

— H(kd) - 8™ =2 (k) - %o (36)

Em

(m=0, 1, 2; the above equation is the same as that given in (26) except
that the upper limit of > is 2 in place of 1),

1 2 2 (27’L+ 1) * J2n+1(kd) C(‘znﬂ) . Y kd (2m) O 7
e . — i Yon(kd) (™= 36
. P @Cn+12—2m)? i Yan(kd)- G (36)

(m=3; the upper limit of ¥ in the above equation is 2, though that in
(26') is 1),
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, = 1 2
sz kd’ (2m)+__
Ued) -t 2 ot 1)~ (2m)?

2, @n+1) Tunlkd)  ronin

—H (ed) - (™ =2 Jon(ed) - Co (37)

€m

(m=0, 1, 2; except that the upper limit of 2. is 2, the above equation
is the same as that expressed in (27)),
1 &2 (2n+1) Janlkd)

ol e i S Yanlld)-E0=0 (8T

(m=3; except for a difference of the upper limit of 2, the above expres-
sion is the same as that given in (27")),

where
I(J2n, m)
I(m, m) } (n=0,1,2; m=0)
r
and
Ta(kd) )

R =O’ 1’ RN 5
sy | ™ )
have already been given in (30)—(33).
In a manner similar to the procedures given in Sections 4 and 5, the
unknowns '

6, 6P, 40, T, TR, T, O, O, 00, 1P, &0 and &° (389)

are obtained as solutions of the simultaneous equations (34), (35), (86) and
(37) for m=0, 1, 2. Then a substitution of (38) into (84) (m=3) and
(36’) gives higher modes (™ and (™ for m=38, which enables us to
elucidate numerically the behavior of the waves in the parts of the canal
and the open sea through the expressions (1) and (3).

In the present approximation, the formal solution (2) becomes as
follows :—

L= }_:,; {Z8™ cos 2n0- Jou(kr) + 0 sin (2n+1)0 - Jon1 ()} (39)

By substitution of the solutions (38) into (39), we can determine the va-
riation of the waves in front of the mouth of the canal.
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The results of the numerical calculations are given in the subsequent
section.

7. Numerical Results and Discussions

In this section, the theories developed under the approximations of the
third (in Section 4), fourth (in Section 5) and fifth (in Section 6) order
of kd are utilized to inquire into the behaviors of the waves around an
estuary with the aid of an electronic computer.

To begin with, the waves in the part of the canal are discussed.

The variations of the amplitudes of the advancing mode (|¢{”]) and
the first mode of the damping waves (|(|) are shown in Fig. 2. In this
figure, the broken lines stated by the characters “second app.” stand for
the curves obtained under the second approximation in paper II, while the
solid lines stated by “third app.”, “fourth app.” and “fifth app.” denote
the results under the approximations of Sections 4, 5, and 6 in the present
work respectively. According to this figure, when the approximation
proceeds from the second to the higher onmes, the curve |(f”| is upheaved
gradually to converge on a certain curve which, when kd increases, runs
so as to make a line Amplitude=1.0 its asymptote. At any rate, as we
estimated in paper I, the advancing wave [({”| (higher modes are damping
waves, since our consideration is limited to the range kd<=) becomes
approximately a unit at kd=1.0. In other words, the shape of an estuary
does not affect the influence upon the advancing waves when kd=1.0. As
far as the first mode [({°| is concerned, when the approximation is more
generalized, the curve of the first mode begins to be suppressed with
a tendency of convergence. The converging line is nearly a straight one
which has the origin at k<d=0 and amounts to about 0.4 at kd=r.

We consider next the phases of the waves in the canal. As described
n (56)-(59) of paper II, arg {{” denotes the phase lag of the waves ad-
vancing into the canal and B (= (arg {{”)/kd) the hypothetical origin of
the cos(wt + ky)—-type wave in the expression such that

L= ] cos (ot +ky—arg () + L™

40
or = ] Cso) I COoS {wt-l—kd(y/d—ﬁ)} _*_C{dam) , ( )

where (%™ is the waves damping towards the canal. The variation of

arg {” is drawn in Fig. 3, in which the broken line stands for curve based
on the theory of the second approximation (in paper II) and the full lines
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arg ;"0'

0.5

== third app. fifth app,
T kd
0 05 10 NCRAT 20 z5 |70
fourth app,
second app. PP

Fig. 3. A variation of the phase of the advancing mode in the canal versus kd.

those for the third, fourth and fifth approximations in the present work.
With a generalization of the approximation, a curve of argl® is in a
sense of convergence. A maximum point which has already been noted
in paper II takes place at kd=0.5 and, on the upper side of this point,
the curve decreases gradually to tend to the kd-axis without intersection
(kd-axis seems to be the asymptote of the curve of arg({®), while, in the
stages of the previous approximations (papers I and II), the curve of
arg {{” crosses the kd-axis. With regard to the occurrence of the maximum,
a physical interpretation has been described in paper II. The curve of
B-value is shown in Fig. 4 (the broken line is that for the second approxi-
mation in paper II and the solid lines for the approximations in the present
work). According to this figure, the curve of B-value converges to a

third app, fourth app. fifth

A

20 25

second app.

Fig. 4. A variation of a supposed origin of the cos (wt+ky)-type wave
in the canal versus kd.
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0.42

046

0.50

0.54

Fig. 5.

(4th app.)

Isolines of phase around an estuary for kd=0.2 (the stated values

stand for arg ).




1026 T. Moxtor

-0.50
=040

o/
-030

=00

0.00

0.10

0,20

0,80
0.90
1.00
110
1,20

Fig. 6. Isolines of phase around an estuary for kd=0.G (the stated values
stand for arg ().
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\
| kd=1.0

I Phase

(4th app.)

Fig. 7. Isolines of phase around an estuary for kd=1.0 (the stated values
stand for arg ().
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=0.4

1.2

20

2.2
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Fig. 8.

Phase
(4th app.)

Isolines of phase around an estuary for kd=1.4 (the stated values

stand for arg Z).
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certain curve which has the kd-axis as the asymptote. The supposed
origin of the cos(wt + ky)-type wave is located at an infinity in the open
sea, when kd is very small, (which has already been noted in paper II)
and begins to approach infinitely an estuary without crossing, as kd in-
creases.

Next, the overall pictures of the variations of phases and amplitudes
of waves are given in Figs. 5 to 8 (for phases) and Figs. 10 to 13 (for
amplitudes), which have been drawn for specified values of kd=0.2, 0.6,
1.0 and 1.4 on the basis of the theory of the fourth approximation. For
the check of convergence, the figures of phases and amplitudes obtained
from the theory of the third approximation are shown in Figs. 15 and
16 respectively.

To begin with, the variations of the phases are discussed (Figs. 5 to
8). In the domain D; (the part of the canal), the convergence of the
waves to the axis of the canal are seen which produces high waves in the
interior of the canal (this fact has already been noted in paper II). Pas-
sing through all the figures of the part of the canal in Figs. 5 to 8, the
rates of convergence of the waves are hardly altered for the range of
kd=0.2 to 1.4. In the domain D; (the region in front of the canal, i.e.
buffer domain), the invading waves converge, as a general trend, to the
center of the mouth of the canal, but the states of the convergence are
different from each other for a change of kd. When kd is augmented,
the contours of the isolines of phases vary from an equilateral triangular
form (see Fig. 11 in paper II referred to kd=0.02) to a trapezoid form
(Figs. 5 and 6 referred to kd=0.2 and 0.6) which, when kd amounts to
1.4, becomes a very flat form (Fig. 8). These behaviors are illustrated
schematically in Fig. 9. Comparing Fig. 8 (the fourth approximation)
with Fig. 15 (the third approximation), the extent of convergence of cal-
culated results is fairly good for the above-mentioned discussion. In Fig.
18 of paper II (relevant to kd=0.5), such a feature of trapezoid does not
appear, the reason for which might be attributed to a deficiency of the
approximation (the second approximation). In the domain D; (the region
of the open sea except a semi-circular area in front of the canal), the
waves, for the range of kd=0.2 (Fig. 5) to 0.6 (Fig. 6), converge to an
estuary in a circular form, while when kd increases further from 0.6 to
1.0, the nature of convergence disappears gradually (Fig. 7) and even
divergence behaviors are preferably seen. When kd reaches 1.4 (Fig. 8),
such a divergence of waves is found clearly and the diverted waves advance
along the straight coast facing the open sea, departing from an estuary.
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Referring to Fig. 15 written based on the theory of the third approxima-
tion, the divergence of the waves is also seen so that an appearance of
the diverted waves around an estuary is considered to be an established
fact beyond the error of the approximation.

Next, let us discuss the variations of the amplitudes referring to Figs.
10 to 13. In the domain D;, a mount and valley appear in the middle and

T

Fig. 9. A variation of forms of crest lines versus kd (arrows stand for
the direction of propagation of waves),
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Fig. 10, A variation of amplitude of waves around an estuary for kd=0.2 (the
stated values stand for |{] ).
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Fig. 11, A variation of amplitude of waves around an estuary for kd=0.6 (the

stated values stand for |} ).
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Fig. 12. A variation of amplitude of waves around an estuary for kd=1.0 (the
stated values stand for |{]).
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Fig. 138. A variation of amplitude of waves around an estuary for kd=1.4 (the
stated values stand for }{]).
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//.

Fig. 14. Explanation of 4 and B points.

along the wall of the canal. This mount and valley are interpreted to
be caused by an interference of the waves invading directly from the
open sea and the waves diffracted around an estuary. The former (a
mount) has already been noted in paper II, while the latter (a valley) is
passed unnoticed. The differences of the amplitudes at the highest point
(A point in Fig. 14) of the mount and at the lowest one (B point in Fig.
14) of the valley are computed, of which the result is arranged in Table
1.

Table 1. Differences of the amplitudes at A and B points
(refer to Fig. 14)

[{lB [Ela—I¢lB

-

kd €l a |

0.2 1.6144 l 1.6127 0.0017

0.6 1.2230 1 1.2196 0.0034

1.0 1.0660 i 1.0594 0. 0066

1.4 1.0051 ! 0.9930 0.0121

(1.4) (1.0015) (0.9905) (0.0110)
where |{]a : amplitude at A point, |<IB : amplitude at B point and the

values in the parentheses denote those obtained from Fig. 16 (the figure of the
third approximation).

For convergence check, the values obtained from Fig. 16 (the figure
of the third approximation) are also listed in Table 1. According to this
table, the difference of the amplitudes at the mount and valley is in a
sense increasing as kd increases. One more features is seen in the be-
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Fig. 15. A variation of phase around an estuary for kd=1.4 (the stated values
stand for arg {, which are computed by the theory of the third ap-
proximation).
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Fig. 16. A variation of amplitude around an estuary for kd=1.4 (the stated
values stand for |{|, which are computed by the theory of the
third approximation),
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Fig. 17. A figurative explanation of tongue-shaped valley.

haviors of the waves in the canal, that is to say, tongue-shaped valleys
are seen to extend to the inside of the canal from the open sea (Fig. 17).
Passing through the figures of the amplitude (Figs. 10 to 13), such an ex-
tension is found to begin to be greater with an increase of kd. Discus-
sions in the region of the open sea are made through two domains D, and
D;.

Referring to Figs. 10 to 13, the isolines of the amplitude in the open
sea bend down to the direction of a canal. For the figures of kd=0.2 and
0.6 (Figs. 10 and 11), the amplitude is increasing monotonically in magni-

saddle part

S
%

trough trough

trough

7

Fig. 18. Figurative explanations of trough and saddle part.
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Fig. 19. A variation of the amplitude of waves for kd=1.4 along the
straight coast.

Diverted
Waves

Fig. 20. A figurative explanation of high waves along the straight coast.
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tude towards the straight coast facing the open sea, while, for the figures
of kd=1.0 and 1.4 (Figs. 12 and 13), a trough appears in the offing which
has a saddle as designated by “saddle part” in Fig. 18. Comparing Figs.
13 and 16, an appearance of a trough with a saddle part is considered
to be a phenomenon beyond the error of the approximation. In Fig. 13,
when one departs from an estuary along the straight coast, the magnitude
of the amplitude is augmented gradually to exceed 2.0 which is an ex-
pected value when periodic waves invade perpendicularly to a straight
coast. Such an excess is seen also in the figure (Fig. 16) based on the
theory of the third approximation. For the behavior of the amplitude
variation along the straight coast, Fig. 19 may be referred to, which is
written for a parameter kd=1.4. According to the figure, a maximum
of the amplitude appears at »=2.7 (a point nearby C in Fig. 19). The
appearance of the maximum point is explained in such a way that the
diverted waves (referring to Fig. 20) collide with the coast to produce
high waves there. ‘

51. WO EBIEBIT 3EKic>vwT [1IT]
wEmiEsn Bk H B R

MERE W DN CH OIS 2 BRI 2 B~y L vl o8 3, 8 4, % 5 500 %
CIZEBII TIN5, BRIEMOEIMIZIE I - THAZI NI buffer domain OFHTH 3. *
UTIKD XD BIEBFLLmdShic. Tibb,

(1) KEoWPRMOBMBEONE (RIS BN TRBERI WITETH3),

(2) JR¥E (open sea) izl 3RMOAEE (trough line) FEDICH > THEEL, FKOBH
FAODOWFICAVIAATNG,

(3)  JKEERTIC B W THMRBTEITEZ L LTS,

(4) kd=1.4 (k: P¥, d: KEOMO¥FDIEE) 0L, EiEcRFOL Y T hTY L ¥
(diverted wave) HEbh, TIENHETHEELES 2 LAMN SRS - THlits.



