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Abstract

The value of vertical gradient of gravity obtained by actual
direct observations does not generally agree with the standard value.
So if reductions are made on observed gravity values by adopting
the standard value of gradient, appreciable errors in Bouguer ano-
maly are liable to result. Only by using the real value of vertical
gradient at each respective gravity station, can ‘real Bouguer ano-
maly’® which is different from the customary one ‘ station Bouguer
anomaly’ be calculated. On the basis of the potential theory, the
author obtained a mathematical relation existing between the two
anomalies—real anomaly and station anomaly—in three-dimensional
problems. The two anomalies can be connected through a 49x49
square matrix for example, so that the real Bouguer anomaly at
the center of the 7X7 square on the geoid is included in the solu-
tions of the simultaneous equations of 49 variables. This is an
extension of Tsuboi’s solution of the corresponding problem for the
two-dimensional case.

As an example of actual computations, an application of the
method is shown for analysing the gravity field over the Onikobe
Caldera and its adjacent area. The maximum difference between
the two anomalies reached about 20 mgals on the caldera rim. If a
local gravity problem in the mountainous areas is to be studied, the
real Bouguer anomaly should be used.

1. Introduction

Gravity anomaly has been customarily calculated by assuming that
the vertical gradient of gravity is equal to a standard value, 0.3086
mgal/m say. A free-air correction, amounting to 0.3086H mgals, is
therefore added to the gravity value observed at a station of which the
elevation is H in units of meter. Quite a few observations, however,
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revealed that the vertical gradient of gravity ranged from 0.27 to 0.33
mgal/m. Sometimes the deviations of the vertical gradient from the
normal value were reported even larger. In such cases Bouguer ano-
malies calculated on the basis of the normal value of the vertical
gradient should involve a serious error; for example, if we assume a
+0.01 mgal/m deviation, the error of the reduction at a height of 500 m
above sea level amounts to +5mgals which is too large to be ignored
in discussing local gravity anomalies.

Kumagai” made use of vertical gradient values actually observed in
estimating a Bouguer anomaly on the geoid, which he called “sea-level
Bouguer anomaly” discriminating it from “station Bouguer anomaly”,
the Bouguer anomaly calculated with the normal value of the vertical
gradient. A station Bouguer anomaly 4g;, is defined by the following
formula :

49y =g+-0.3086 H+ 69,09y —71, ,

where ¢ is the observed value of gravity, dg, terrain correction, dg;
Bouguer correction and 7, the standard gravity at a point O on the
geoid. Meanwhile the sea-level Bouguer anomaly is given by

g+693+696'—<ro+5%ﬂ)

where the last term is the standard gravity at a point P right above
the point O, 8y/6H being equal to 0.3086 plus deviation of the vertical
gradient of gravity anomaly.

Tsuboi* called the anomaly thus defined “real Bouguer anomaly”
instead of “sea-level Bouguer anomaly,” because we can obtain the
distribution of Bouguer anomaly not only on the sea-level but also on
any equipotential surface of the earth provided H is taken as the dis-
tance between the station and the equipotential surface. When we
discuss local gravity anomalies in a mountainous area, we might rather
adopt a datum level at an adequate altitude, for example, an average
elevation of topography.

If we take a level much higher than the average topography de-
tailed features of the anomaly tend to vanish. Contrarily, the anomaly
reduced to a lower level would become much too undulatory.

1) N. KuMAGAI and E. ABE, Sokuchi Gakkaishi (Journal of the Geodetic Society of
Japan), 2 (1956), 123.
2) C. Tsusol, Proc. Japan Acad., 41 (1965), 386.
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Tsuboi obtained a mathematical relation between station Bouguer
anomaly and real one in a two-dimensional case. If the distribution of
gravity potential is known on a surface enclosing the mass which causes
the gravitation we can calculate the distribution on any other surface
on the basis of the potential theory.

The present paper describes a method which is an extension of
Tsuboi’s method to a three-dimensional case. An IBM 7090 computer
program for computing real Bouguer anomaly from data of a gravimet-
ric survey is developed. As an example, real Bouguer anomaly over
the Onikobe Caldera and the adjacent area, Tohoku District, Japan” is
then obtained. The author will also discuss deviation of vertical gradient
of gravity with a particular application to the said areas.

2. Two-dimensional Case

A seetion of a model topography is shown in Fig. 1. Thirteen

Tig. 1. Section of a model topography. 4G:: station Bouguer anomaly, dg::
real Bouguer anomaly.

gravity stations are arranged with the same intervals in a horizontal
direction on the surface of the earth. The station Bouguer anomalies
4G(i=1,2,..,13) at all the stations are assumed to be known by ap--
plying customary procedures such as free-air reduction, Bouguer correc-
tion and terrain correction to the observed gravity values. The height
of each station h; is measured in units of z/3s. Our objective is to
obtain the real Bouguer anomaly 4g, at the center point of thirteen
stations on the geoid from 4G, and %;,. By means of Fourier expansion
of 4g; and potential theory, Tsuboi obtained the following relations bet-

3) T. RIKITAKE et al, Bull. Earthq. Res. Inst., 43 (1965), 241.
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ween 4G; and 4g;, that is
AG4=¢3(h4)Agl +¢2(h4)dg2 + LR +¢3(h4)dg7
AG5:¢3(]7/5)AQ2 + ¢y (h;)dg, + . .. +¢4(h5) 495 (1)

oooooooooooo

AG10:¢3(hIO)Ag7+¢2(hlo)AgB+ v e +¢3(h10)dg13
where

¢o<hi>=%+§ exp (—h,) +§exp (—2h,>+% exp (—3h)

&, () =l+l exp (—kh;) -1 exp (—2h,) 1 exp (—3h;)
6 6 6 6
r (2)
(R =%—% exp (—h,) —% exp (—2h;)+ % exp ( -A3h,~)
1 1 1 1
s\Ib) =-——— —h)+= —2h;)——= —on;
$s(h) iz 6exp( )+Gexp( ) 12exp( 3h;)

Seven simultaneous equations indieated in (1) contain thirteen unknown
variables. Since Eq. (1) is hard to solve if the number of variables is
too many, it seemed that 4G; was approximately equal to 4g; in the case
of =1, 2, 3,11, 12 and 13, and then these terms were transposed to the
left-hand members of (1). Then 4g; and 4G, are connected with the
7Xx'T square matrix whose elements are ¢,(k;)’s given by

4G, So(lt) $1(hs) Po(hy) $5(h) O 0 0 4g,
4Gy $1(Ts) Go(lis) Gr(h:) @o(les) Go(ly) O 0 4g,
4G Go(hs) Suls) Po(Re) ¢i(ls) Dolhe) Gu(Rs) O 49,
4Gy | = 8y(ha) 8:(Rr) $u(hr) So(h) Si(R:) $o(h) B(hr) || g, (3)

AGy 0 ¢y(hy) ¢ h) b(Tog) ¢o(ha) $u(hs) ¢2(h‘8) A9
4G, 0 0 &s(he) 8u(ho) du(Ry) Bo(hs) Bu(Ry) | | 4g,
AGio) 0 0 0 ¢3(h'm) $s(Rp) $1(hy,) Bo(Pyg) 49y,

where
AG; :AG4 "‘¢3(h4)AG1 —"¢z(h4)dG2 _¢1(h4)AG3

4Gy = 4Gy —8(h) 4G, —é,(hy) 4G,
4Gy = 4Gy —64(h;) 4G,

4G, = 4G, . e (4)
4G} = 4Gy —(he) 4G,

4Gy = 4G, — () 4G 1, — 6, (ho) 4G,

4Gy = 4Gy~ 8,(hig) 4Gy — 6,( o) 4Gy — G (Tso) 4Gy
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The real Bouguer anomaly at the point O right under the gravity
station No. 7 is calculated with a scalar product of the column vector
4G, and the fourth row of the inverse matrix of ¢,(h;), that is

10
4g:= X, (i) 4G (5)
n=4

where ¢, (h;) denotes the (k,l)th element of the inverse matrix of
é,(h;). With a high-speed computer the inverse matrix is easily com-
puted by making use of a “ sweep-out method ” and so the real Bouguer
anomaly can be obtained.

When a more precise computation is needed, a practicable way is
to calculate seven real Bouguer anomalies on a plane having the average
height of the original thirteen elevations in the first place. The real
Bouguer anomaly at the point O on the geoid is then calculated from
these seven values. In this case the elements of the square matrix in
(3) and (4) can be expressed as ¢,(h;—h) instead of ¢,(k;), where b is
the average height given by

h=1% 6
e 1/1: .
13io (6)
After calculating 4g,’s (=4, 5, ..., 10), the seven solutions of the simul-

taneous equations expressed by (3), 497, the real Bouguer anomaly at
the point O is obtained as '

4= 355,00 4g, . M

The formula (7) shows the procedure by which we get an anomaly value
on the geoid from the anomaly distributed on the surface of the average

height. It is evident that a better approximation is achieved by this
method.

3. Three-dimensional case

For an actual use of real Bouguer anomaly it is highly desirable to
develop a method suitable for a three-dimensional problem. In a two-
dimensional case topographical elevations and values of station Bouguer
anomaly at thirteen points about a point P are, as shown Fig. 1, re-
quired for computing the real Bouguer anomaly at the point O on the
geoid. When we apply a similar mathematical method to a three-di-
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mensional problem, values of elevations and station Bouguer anomaly
at 169 grid points have to be prepared for computing the real Bouguer
anomaly. Then the square matrix in (3) is written by a major matrix,

o5 o 05 @ 0 0 0
;¢ v @ 0 0
% o oy @5 @y @ 0
O=|0; o7 O] & &7 Dy @ (8)
0 ¢ O @ O @ b
0 0 @ ¢ @ o &
0 0 0 Y ¢r g° oY

where @} is a minor matrix of @, and an element of one of the minor
matrices is

Pon(lsi)  Pra(li)) Poulls))  au(ley) 0 0 0 Y
Pin(hss)  Ponlls) Grultsr) Gonllss) San(hs) 0 0
Pon(si)  Pra(hes) Bon(Poi) Prulle)  Bonhoi)  Boul(Pics) 0
o= $su(hr) F0u(his) G1a(lri) Pou(hr) Srallr) Gon(Pri) o) | (9)
0 Gon(lei) B2nls))  Puu(lss) Pon(Psi) Brn(lss)  Pon(Poss)
0 0 Sulhe) Sulhe)) Sin(hi) PonlPo) Pinlhos)
0 0 0 S3n(h10:) Bon(Pr0i) Pru(Proi) Bonh(roi)

Number of the elements of @ amounts to 49 x 49, while the elements
of the right- and left-hand column vectors are expressed as 4g;; and
4Gii(i, j=4,5,...,10) respectively. 4Gi; can be denoted with 4G,,’s
and ¢,,(h;;)’s similar to (4).

The values of ¢,,(h;;) is given by an integral formula as follows;

Brn(Ps) = SOSO exp (h;;V p*+q*) cos mp cos ngdpdq . (10)

As the integral cannot be analytically solved, it is time-consuming to
evaluate the integral at various values of h;. Fortunately, B (Pi5)
could be approximately integrated into the following form as shown by
Kanamori? :

4) H. KANAMORI, Proc. Japan Acad., 39 (1963), 469.
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Y= 1 [ eqia— sin @
Boun(T:5) @ e @ T e d(d* —a*+y*) == - cos Y

+ed(d*+x*—y*) cos xsmy 2d%e? cos x cos Y
Yy

)+ ) SR g ] (11)

where ®= +mz, y=+nzx and d=h,;;—h. & indicates the mean value of
h;; written as

13

1 13
79212: ij (12)

In an actual computation ¢,.,(k;;) is programmed as a function subpro-
gram of the computer. After solving forty-nine variables of the forty-
nine simultaneous equations, we get the real Bouguer anomaly distributed
on the surface at an altitude of 4. Finally, 4¢%, the real Bouguer
anomaly at the point O on the geoid, is obtained by using the summation
formula similar to (7), that is

A= 35 3, 6ua(B) A - (19)

In the case mentioned above, gravity stations are situated just at
the grid points with the same spacing “s.” But in actual gravity sur-
veys the stations are not always coincident with the grid points. It is
therefore required to draw contours of station Bouguer anomaly first
from the values at the actual gravity stations, and then to read the
data for punch cards at the grid points with the same spacing from
the contours. The topographical elevations are also read at the same
point where anomaly values are read.

4., Actual example

Onikobe area is considered to be a caldera of Krakatau type, with a
diameter of about 10 km, which must have been formed by a Neogene
voleanic activity. We can see a marked ring structure probably formed
by a collapse around the south and west walls of the caldera. A
gravimetric survey there was conducted by Rikitake et al.® Seventy-
three stations are distributed over an area approximately 20 km x 40 km.
The highest gravity station is a triangulation point on Mt. Kamurodake
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a peak on the caldera rim, with an altitude of 1261.7 m above sea level,
while the top of Mt. Araodake, the central cone, is 984.2 m high. The
caldera floor lies at a height of about 800 m. The mean density is
estimated to be 2.27 g/em® for calculation of Bouguer correction and
terrain " correction. The terrain correction was made by a computer
with data of about 5,000 topographical elevations. The map of the
station Bouguer anomaly is reproduced in Fig. 2 in which we clearly

UNIT :MGAL ¢ 1 2 3 ¢ 5Km

Fig. 2. Map of the station Bouguer anomaly over Onikobe Caldera (after Ri-
kitake et al).

observe three gravity lows; the west one coincides with Maemorihara
Basin, the middle one with the center of the caldera, but we see no
geological and topographical evidence for the east one which is covered
with a sheet of welded tuff. Along the caldera rim we observe a belt
of positive anomaly. Difference in gravity anomaly between the high
on the caldera rim and the low on the caldera floor amounts to more
than 30 mgals.

Fig. 3 shows the real Bouguer anomaly on the geoid as ecalculated
by the present method. AnIBM 7090 computer completed all values of real
Bouguer anomaly at a speed of about six seconds per station. We find
several conspicuous differences between the station Bouguer anomaly
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B,
UNIT: MGAL i 12 3 4 sKm
Fig. 3. Map of the real Bouguer anomaly over Onikobe Caldera.
THE REAL BOUGUER ANOMALY
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Fig. 4. Gravity profile and topography along the section AB.
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and the real one. First, the amplitude of the undulation of the real
Bouguer anomaly is larger than that of the station one. An extremely
large difference, say 20 mgals, is found at the triangulation point on Mt.
Kamurodake. In order to see the differences between them more clearly,
a gravity profile along the section AB is shown in Fig. 4. ~ Second, the
profile of the station Bouguer anomaly approximately forms a sine wave,
while that of the real one looks like a square wave. This fact tells us that
waves of shorter length are emphasized in the latter. In other words, a
procedure of computing real Bouguer anomaly from station one is equi-
valent to that transfering an input to an output through a filter whose
characteristics have a good gain in high frequency range. However, it
is natural that the gain of the filter is identically zero in frequency
ranges higher than z/s, where s denotes the spacing between the grid
points. Finally, we find no marked difference between both the anomalies
in the eastern part of the profile. The topography there is not steep
because of the plateau covered with a thick welded tuff. It is obvious
that the real Bouguer anomaly agrees with the station one in relatively
flat areas where the effects of terrain correction are negligible. But
the difference between the two becomes very important in the case of
a local gravity survey over mountainous regions.

UNIT: MGAL/M 0 1 2 3 4 s5Km

Fig. 5. Deviations of the vertical gradients from the normal value.
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The vertical gradient of gravity anomaly is given by the following
formula ;

% = 0.3086 4 49:—4G:

z h;

where h; is measured in units of meter. The last term of the right-
hand members is the deviation of the vertical gradient, the actual
computation of which is shown in Fig. 5. We can see in Fig. 5 low
gradient ranges in the three geological depressions including Onikobe
Caldera. It is also noticeable that a number of lows of vertical gradient
are being arranged along topographical lows. On the other hand, the
heights agree with the mountain ranges, where outcrops of granitic rocks
are taking place. To compute 6g/6z from ¢ is equal to a filtering pro-
cedure by a high-pass filter. It should be pointed out therefore, that
seventy-three stations are insufficient for estimating the distribution of
0g/0z over an area of approximately 20 km x 40 km.

5. Concluding remarks

The author extended Tsuboi’s method of caleculating real Bouguer
anomaly to a three-dimensional case. As an actual computation, the
real Bouguer anomaly over Onikobe Caldera and the adjacent area was
calculated. The computation time was about six seconds per gravity
station by an IBM 7090 computer. Marked differences between the
real Bouguer anomaly and the station Bouguer anomaly can be seen by
the following points:

(1) The amplitude of the undulation of the former on the geoid is
generally larger than that of the latter. The maximum difference bet-
ween the two amplitudes reaches 20 mgals on the caldera rim,

(2) The short wavelength which is included in the latter is em-
phasized in the former. In order words, the real Bouguer anomaly is
the response through a filter whose characteristics have a good gain in
a high frequency range.

We may also conclude the following :

(3) We can probably say that the computation of the real Bou-
guer anomaly is needless where the effect of terrain correction is
negligible. But it becomes very important in mountainous regions.

(4) When a local gravity problem, for example, a geophysical
prospecting for a metal mine, is treated, the real Bouguer anomaly
should not be calculated on the geoid but on an eguipotential surface
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with an adequate altitude.
(5) The deviation from the normal value of the vertical gradient
of gravity is easily estimated by dividing the difference between the
two Bouguer anomalies by the elevation of the observed station.
The writer greatly acknowledges the advice and suggestions given
by Emeritus Prof. C. Tsuboi. Acknowledgment is also due to Prof. T. v
Rikitake for his general encouragement.
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