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Summary

A plane pulse passing through a heterogeneous medium consists
of two parts: an undisturbed and a disturbed pulse. The undisturbed
pulse transmits without changing its form. On the other hand, the
envelope of the disturbed pulse is of a function sin z/x, its maximum
appears to be delayed after the undisturbed pulse, and the period of
its carrier wave is =-(average velocity)/(wave length of the structure).
This disturbance is interpreted as scattering by the heterogeneity of
the medium.

1. Introduction

In the course of the study on the wave propagation in a periodic
structure’ ®, the propagation of plane harmonic waves was discussed,
connected with the stability of progressive waves. The wave passing
through a heterogeneous medium with a periodic structure is made ap-
parently to attenuate, where the wave length of progressive waves is
associated with twice the wave length of the structure. The modulus
of transmitted waves is made to attenuate at frequencies for each com-
ponent in which this condition is fulfilled, if the structure is expressed
by Fourier series.

“Recently, the wave propagation in such a medium has been discussed
by several authors®, and almost all of them are based on the characteristic
of an infinite determinant, or a continuous fraction.

1) R. YosHIYAMA, “Stability of Waves through a Heterogeneous Medium and Apparent
Internal Friction,” Bull. Earthq. Res. Inst., 38 (1960), 467-478.

2) 1. ONDA, “Propagation and Apparent Attenuation of Elastic Waves in a Hetero-
geneous Medium with Certain Periodic Structures,” Bull. Earthq. Res. Inst., 42 (1964),
427-447.

3) M. K. MILLER, “ Acoustic Wave Motion along a Periodic Surface,” J. Acoust. Soc.
Amer., 36 (1964), 2143-2148.
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In this paper, it is shown how some pulses distort during their
propagation through a heterogeneous medium fluctuating regularly. In
section 2 the stability chart and the applicable solutions of the wave
equation in this medium are given. In section 3, in order to discuss
disturbance of a progressive wave, the transmission coefficient is ecalcu-
lated. In section 4 the disturbed waves are integrated. In the last
section, 5, the mechanism of the wave propagation through a hetero-
geneous medium is discussed, and an interpretation of the apparent
consistency of @ on frequency is stated.

2. Stability of solution of the wave equation

For the sake of simplicity, it is assumed that the velocity of a
heterogeneous medium varies regularly. The stability of such a wave
equation was discussed by Prof. R. Yoshiyama®. In that wave equation,
an independent variable a is changed into a variable equivalent to a

travel time: r:de/c(x) , and a new funection ¢ is introduced in a form

of the product of a displacement % and the square root of an impedance:
¢=V1'pcu. The resulting wave equation is written as

2 62
ot (v
e d d 1

h L o (R

where “ \/p da Pe dw v/ pe

If the velocity varies periodically and the density does not vary, we
write, respectively,

e(x)=c,(1+ecosyx), and p=p,, (2)

where ¢ denotes a magnitude of a velocity fluctuation. If @ is denoted
by the ratio of the velocity maximum to one minimum in the medium,

a=1+le))/(1—el) .

As this ratio ¢ as well as its inverse o~ is always positive, ¢ is confined
between —1 and +1. Particularly in this investigation, ¢ is assumed
to be small. The wave equation for plane waves is written, within the
order &,

4) R. YosHIYAMA, loc. cit., 1).
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The solution ¢ can be written by the product of exp (;2) and some
periodic functions, and is unstable and stable, according to  being real
and imaginary respectively. Condition of the stability can be found by
the method stated in the previous paper®. The relation of the stability
between the frequency w and the velocity fluctuation ¢ are given as
follows :

y:% sin 20 -{——1}2’%53 sin 20 + 10724 ¢'sin 40+ O(¢%)
(5.a)
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5) I. ONDA, loc. cit., 2).
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Fig. 1. Stability chart for the solutions of the wave equation: c¢=co(1+¢cosrz),
a=1+]N/A—]e]). ¢ are maximum g for ¢=0.5.

and 2 is of the order of & for 2w/rc, near n, where ¢’s are determined
by the lower equations of each. Fig. 1 illustrates the stability chart by
means of these relations. From it the solution ¢ is unstable at frequency
@ near yc,/2, and may be regarded as stable at the other frequencies,
if 10~ is neglected.

In the unstable region, the solutions are expressed by

Soer“Z?/(zy 0') +Be"“y(z, *0') ’ ( 6 )

where Y(z, >o)=sin (zio)+—§— sin (32F o)

+é {%912 sin (5z10)$é’% sin 20 cos (32T o)

_692 cos 20 sin (3z ia)} +0(&) ,

and ¢ and o are determined by equations (5). In the stable regions, by
means of the solution developed in the appendix of this paper,

¢=A¢\(2, v) + B¢z, v) , (7)

where

—cos . ) 1 cos; io,_ L1 cos, }
0142, v)= sin V2 -+ 1 {u—i—l sin (»+2)z 1 sin (v—2)z
2

g (5v+6)  cos y ,_  (5v—6) cos v—4)zb 1O
+§'§{(u+1)(»+2) sin 4" =240,

(v —1)(»—2) sin

and
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(22) =a-e)[+5 2 +i4{3+4(25 e oE)]
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v may be approximately equal to 2w/rc,, for the factor of ¢ is smaller
than unity except for the frequency 1/ 2 <2w/[re,<V7/6. However,
in [¢]<0.3, the solution between these frequencies is stable in some part.
If the solution in this stable domain be given by equation (7), its con-
vergence is very slow. Therefore, the solution should still be stated by
equation (6).

3. Transmission of some waves

Fourier transform of a displacement u(x,t) is written as follows;
@, t)=r e-tu(e, 1)dt (8)

which gives a complex spectrum of the displacement specified by w.
If the complex transmission coefficient of waves passing through a
medium is specified by 7T(x,,®), where 2z, is the distance travelled,
multiplying the spectrum of an ineident wave #(0, w) by a transmission
coefficient yields the complex one of the transmitted wave u(x,, ®):

ﬁ(moy C())—_—-T((Uo, a))-ﬁ(O, (U) . (9)

Therefore, wave forms of the transmitted wave can be calculated by
means of the inverse transform

1

T

w(@, , t) =

Sm e“'T(x,, w)a(0, w)dw , (10)
and by using the convolution formula

w(@,t)= r

(0, t—17)-g(x, , T)dr ’ (11)
where

9, , T):E]::Sw e T(w,, w)dw ,

T il

which corresponds to the response to a pulse passing through the medium.

Velocity and its derivative are assumed as always continuous, to
discuss the effect of the periodic structure alone on the wave propagation.
The transmission coefficient 7' is derived from these solutions (6) and (7),
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by means of the formulae (17) of the previous paper”: In the unstable
region,

7 €Xp (—1z,— i) cos { (12.2)
cosh (p¢z, sin 20)

where Zo=7%,/2, p=¢/2.
tan ¢ =tanh (zz, sin 2¢) - (cos 25 — 25— 24" cos 25)/sin 20 ,

s_ € 2_1__cos2a)
’8+€<6 32 /)’

the relation between the frequency w and o being given by equations
(5). In the stable regions,

T=cos ¢ exp (—tvz,—1L") (12.b)
9! t =& _
where an¢ -

~

1

Vvi—

sin 2%, .

The expressions (12) give the transmission coefficient in a whole frequency
domain, and its modulus is shown in Fig. 2, as an example, for z,=10x

(Tl

i U

| l l |
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Fig. 2. Modulus of the transmission coefficient for zo=10r and ¢=0.05 or a=1.1053.

and ¢=0.05 for which the velocity ratio @ is 1.1053. Its modulus except
for frequency near jc./2 can be regarded as unity.

Substitution of these into (10) and a comparison with the initial
wave form yield to find the distortion of the wave form.

6) I. ONDA, loc. cit., 2), p.437.
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ot )= — 1 S.T;_o(l+—;——%e2) (0, ) {ei"’“ __cos { exp {t(wt—2,— )}

2n (2ot cosh (pz, sin 20)

13)

}dw (14)

and t' =t—=x,/c,. The term u(0,t) means that waves are propagated
without any distortion of the incident wave forms and are delayed in
time by =,/c,, which is regarded as the travel time through the hetero-
geneous medium, while the integral u, is related with the disturbance

of the incident wave resulted from heterogeneity of the medium.

4. Forms of some disturbed pulse

If we know the response to an initial wave of the delta funection
type, the response to incidence of an arbitrary wave form can be

synthesized by the theorem of convolution mentioned above.
Fourier transform of the delta function is constant, the integral

e _ 7.2
g (1+5—e

Lt)= —_1_5

21 Jug (12— 1s?) cosh (¢z, sin 20)

is discussed in this section, where w,=7y¢,/2.
¢ can be expressed by means of Taylor expansion

€ w—w,\ (1—¢/3) tanh pz
= —— tanh gz, 0 ) 0
(=g tamhes ( w2 / 1+ (¢/16) tanh® 2,

(a)— W, )2 e _ tanh pz,—pz, sech® pz, e,

8 {(L+¢/16) tanh® pz)y

ONY]

16 {eim(t—:o/co) _ cos C ei(wt—zo—g)}da)

Since

(15)

(16)
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(w—w,) tanh (e2,/2)/(cw,/2) is much smaller than unity within the considering
frequency, and then the third term appears to be negligibly small.
The modulus of the second term of integrand (15) varies as U-shape, so
that we now assumed it as being a constant in this frequency interval.
Substitution of them into (15) yields the disturbance of the pulse. The
result is

IL(t)=— €Wy iogt—zq/cq)

7T
y [sin . exp {i(e/4)(tanh pz,—Tew,t/4)} sin <, +O(e2)] , (1)
7 cosh /2, T2
where n= =

20 (t——x(’/cn) ’

and __ewt  (1—¢/3) tanh pz,
2 14(¢¥/16) tanh? pz,

The disturbance of the pulse I,(f) represents a carrier wave with the
frequency w, and a modulation which behaves like sin x/x, the maximum
of which appears later than the arrival time; we approximate as

L,(1)= — Agioot==1/e sin (ew,/2)(t—1,)
‘ (t—t,)

where ¢, is a retarded time of the modulation with maximum amplitude of
(ew,/27) {sin r,/z,—sech (:2,/2) sin 7,/r,} . The disturbance resulted from an
arbitrary incident wave is expressed by means of relation (11):

, (18)

ol t):—ASm gimte=n/en SR OS2 =t) g ¢ g (1)
—o (t—1,)

Particularly, if the initial wave is given in duration 0<t<T, it is

written as

T 1 — 1, —
ud(xo ’ t): _Aeiwo(t—zolco)g e~ wo” Sin (6020/22 (t tl T) u(Oy T)dT ’
0 —U,—T

= — Agioott—/%) [ sin (6020/22(1"— b Sre”i“’ofu((), 7)dr
—t 0

_‘_{e_a)‘,’ cos (ew,/2)(t—1t,)  sin (ew,/2)(t—1,) }g:ewofu(o’ Jede

2 (t—t,) (t—t,)’
L. ] . (20)
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FExample 1. If an incident pulse is rectangular, we get
(0, t)=u, (for 0<t<T),
‘=0 (for t<0, and t>T).

sin (ew,/2)(t—1,)
w,(t—1,)

Uy , 1) =2 AU, L7020/ %=1/ sin co(jo {1+0()} .

This represents a carrier wave with the frequency w, and a modulation
2Au, sin (0,7'/2) sin (ew,/2)(t—t,)/w(t—1,) .
Example 2. If an incident wave is sinusoidal, we get

w(0, t)y=ue’t for 0<t< T,
=0 for t<0, and ¢>T.

Uity 1) =2 At EP =0/ i oy 73 sin (ew,/2)(t—t,) sin (w,— ) T/2 )
(w,—w)(t—1,)

The disturbance seems to resonate at the frequency @ which is near to @, .

5. Concluding remarks

Some finite wave trains passing through a heterogeneous medium
varying periodically are treated. The method used in this paper is the
same as that in the previous paper”, in which a harmonic wave was
treated. In particular, the solution convergent in as few terms as pos-
sible must be selected, in the neighbourhood of boundaries between the
stable and unstable regions of the wave equation. The modulus of the
transmission coefficient in the entire frequency domain is shown in Fig. 2
as an example. It follows from this figure that the dissipation of the
speetrum appears near the specified wave length 4 that is twice the wave
length of a structural heterogeneity L: 2=2L.

Next, the response to the incident wave of a delta function is
calculated. If the incident wave or its spectrum is given, the transmitted
wave can be simply synthesized by means of convolution of Fourier
transform.

As the result, the transmitted wave consists of two parts: an un-
disturbed wave and a disturbed one. The wave form of the undisturbed
wave agrees with the incident one after the time passing through this

7) 1. ONDA, loc. cit., 2).
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medium in phase. On the other hand, the disturbed wave has a period
of that specified wave mentioned above, and appears after the arrival
of the undisturbed wave. The envelope of this distrubance is spindle-
shaped. It seems that a portion of energy of that specified wave is
stored in the medium, and is spread out after the arrival of the undis-
turbed waves. Such resonant-like phenomena arise for the wave with
the corresponding components®, when the structural heterogeneity con-
sists of many structural wave lengths, so that the spectrum of transmit-
ted waves is dissipated at frequency resonated by each of the structural
heterogeneity. If the heterogeneity is finite in some range of the strue-
tural wave length, the apparent dissipation is proportional to the
frequency because sech x=exp (—2) {1+sinhx exp(—a)+---}, and then
it can be interpreted that the measure of internal friction @ is independent
of the frequency.
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Appendix; General Solutions of Hill’s Equation
in Stable Regions

In a previous paper”, we obtained the solutions of Hill’s equation
which were convenient to discuss the stability, according to the method
of Whittaker. It is to be noted that these solutions are very slowly or
not convergent in the stable regions. In this Appendix, the solutions
in the stable regions are introduced in a similar series as the previous
calculation. The equation is

§§+ (0y+2 3,0, cos 22)p=0 . (A-1)
z r

Let a solution ¢ and a parameter 0, be expanded as, respectively,

p=sinyz+ Zn 0.4,(z)+ kzl. 00, Au(z)+ -+, (A-2)

8) I. OnpA, loc. cit., 2).

9) 1. ONDA, “Propagation and Apparent Attenuation of Elastic Waves in a Hetero-
geneous Medium with Certain Periodic Structures, Appendix; General Solutions of Hill’s
Equation,” Bull. Earthq. Res. Inst., 42 (1964), 441-447.
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and 0=+ % 0.9, + AZLJ 00,9+ . (A-3)

Substituting these relations into equation (A-1), it is expressed by
a form of power series of ¢, and the condition under which this solution
must identically satisfy all the values of 0 is given by equalizing coefficients
of each term to zero. In addition, the solution ¢ and therefore A (z),
A,.(2), ete. must be periodic functions, respectively. Since the process
of calculations is the same as in the previous paper, we indicate merely
the final results:

> O = (BT o ad
2: 20 4702) + ;1 32(F — 1) (* — Ak?) +0(@") , (A-4)

® [sin (v+2k)z _ sin (v—2k)z
‘P—Sm”HZ%{ Te(v+F) Te(o—To) }0"
LZ{ sin (v+4k) z sin (v—A4Fk)z }02

32 © U(v+k)(v+2k)  E(v—Ek)(v—2Fk)

L { w(k+ )+ +1
16 A Lkl + D +E)Y e+ D) +E+1)

_ w(le—1)— (kB +17)
El(le—D(v—Ek)p+)(—k+1)

_ vk =)+ (E+1%)
El(e—D)(+E)(p—U(v+E—1)

w(lo-+1) — (k2 -+ 12) o :
A Ao o e (v—2k 2l)z}0,50,+0(()) )

sin (v+ 2k +20)z

+*

sin (v—2k +20)z

sin (v+2k—20)z

(A-5)

The second solution is obtained by writing cosine for sine in (A-5).
If all the 0,’s besides k=1 vanish, these solutions are agreement with those
defined as the Mathieu functions of the fractional order, se/(z, 0,) and
ce(z, 0)™.

Errata: Propagation and Apparent Attenuation of Elastic Waves in a Heterogeneous
Medium with Certain Periodic Structures. By 1. Onda, Bull. Earthq. Res. Inst., 42
(1964), 427-447.

Eq. (12) of p. 432 should be omitted, and The 4-th and 5-th lines of p. 446 should read

sin {(n+2k)z—a} _ sin {(n—2k)z—a} « sin {(n+2k)z—0} _ sin {(n—2k)2—a}
,§f"[ Ak(n+k) Ae(n—) ] for ,.,,,”"[ okt k) (1)

10) N.W. McCLACHLAN, Theory and Application of Mathiew Functions (Oxford, 1951),
§2.16, p.19.
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