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Abstract N

In this work, numerical solutions of the waves in the vicinity
of the crooked part of an L-shaped canal including the buffer domain
were obtained under the fourth approximation. Unlike the preceding
works, the expressions of the buffer domain are incorporated into
the simultaneous equations as members of the unknowns in order
to examine numerically the behavior of the waves in this domain.
Then the variations of the amplitudes and phases are illustrated
figuratively for the range 0<kd<1.0 (k: a wave number of the
incident wave, d: a width of the canal).

I. Introduction

In a series of papers’-»®* entitled “Tsunami in an L-shaped Canal”,
we have treated long waves in a canal in which a train of periodic waves
is invading from a branch of the channels,

In the present work, the study of long waves in a canal of uniform
width is made under the approximations
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(k: a wave number of the incident waves, d: a width of the canal) for
the expressions of the buffer domain.

1) T. Mowmoi1, Bull. Earthq. Res. Inst., 40 (1962), 719.
2) T. Mowmol, Bull. Earthq. Res. Inst., 41 (1963), 581.
3) T. Mowmol, Bull. Earthq. Res. Inst., 42 (1964), 449.
4) T. Momol, Bull. Earthq. Res. Inst., 43 (1965), 749.
The last two papers 8) and 4) will be referred to as papers A and B respectively
in later discussions.
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In the works treated so far, only solutions of the domains other
than the buffer domain have been obtained, while in this work the
numerical analysis of all the domains, including the buffer domain, is
carried out with the aid of an electronic computer.

2. Theory

The fundamental equation used in this study is an equation of a
long wave, i.e.,

<£+£+k°)§=0 (2)
ox* oyt
y l for periodic waves, where k=w/c (c: a
— d — velocity of a long wave, w: an angular
‘ frequency of surging waves).
Ds Then, according to paper A, the formal
expressions under the condition such that
o 1 9
Dz :' Dl d 5%
]
o ' l «  at the rigid boundaries (3/dn: normal deriva-
Fig. 1. Geometry of a canal. tiye to the rigid boundaries) are (refer to
Fig. 1):—
in the domain D,
L= 3 G cos Ty gtinme (3)
m=0
in the domain D,,
o= Ax(f:)-cos k& a-cos By ; (4)
So
in the domain D,,
i 20 cos Mot (5)
m=0

where the used notations are exactly the same as those in paper 4, and
where, since our analysis is limited to the case of a canal of uniform
width, the substitution d,=d;=d is made in the above formal expressions.
Communicating the above expressions (3) to (5) by use of the conditions
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(¢; and ; denote the wave heights in the neighbouring domains and 0/0s
a derivative normal to the boundary of the adjacent domains) and applying
the operators
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cos —— } (m: non-negative integers),
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we have the following relations (refer to (19)-(26) of paper A):—
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Applying the approximation (1) to the right-hand sides of (6)-(9) and
retaining the terms up to the sixth order of k{'d(z==x or y), we have:—
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Provided that the application of the theory is limited to the range
kd<m, (18)

the following expansion might be possible:
S S 5 (10
(kP d)*— (mm)* (m?r)2 nZ:'ﬂ M )
(z=x or y; m=1,2,3,..+). (19)

Applying the approximation (1) to the right-hand sides of (10)-(13)
and substituting (19) into these equations, we have the following
(retaining the terms up to the sixth order of k{"d (==« or y)):—
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where m is a positive integer.
In the equation (2) we have, after a separation of the variables,
the relation of the wave numbers

(k) ()= I (24)

Eliminating the terms with respect to %!’ from the equations (14) to
(17) and (20) to (23) by use of (24), the following are obtained:—

@y, X+ a,,: X5+ @y, X+, X+ 0y, Xg=0y, (25)
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It must be noted here that, since our treatment is confined to the
case kd <m, the factor 7-k®d involved in the first expressions of (38)-(41)
is real,

Now the relations (25) to (32) denote simultaneous equations with
eight unknowns X; (5=1, 2,8, ---, 8) given by (33), of which the coef-
ficients are shown in (34) to (41). Hence the physical quantities shown
in the right-hand sides of the expressions (33) readily begin to be known,
if one uses an electronic computer.

Eliminating the terms with respect to k’d from (20) and (21) by
use of the relation of the wave number (24), the higher modes of the
waves (™ (j=1,3; m=2, 8,4, ---) in the domain D; (j=1, 3) become as
follows:—
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and where X; (j=5,6, 7, 8) are as expressed by (33).

If one substitutes the solutions obtained from the simultaneous
-equations (25)-(32) into the higher modes of the waves /™ (j=1, 3;m=
2,3,4,..-), i.e., (42) and (43), the behavior of the waves in the domains
D, and D, are to be inquired into through the formal expressions of the
wave heights (3) and (5), of which the actual calculations are carried
out with the aid of an electronic computer.

In the foregoing works"—*, the solution of the waves in the domain
D, (the buffer domain) has not been obtained and, in this study, the
numerical analysis of the waves in this domain is made using an electronic
computer, the procedure of which is described hereunder;—

Since
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d=x(or 4)=0
in the buffer domain D,, the following approximation is permissible from
the approximations (1), i.e.,
" (k;z)z)Qn
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Substituting the above expression into (4) and retaining the terms
up to the sixth order of k{z (z=x or y), (4) becomes
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Using the relation of the wave number (24), the above expression
is reduced further to the following (eliminating the terms with respect

to k):—
=Ky Xt Ky Xt Koo Xt Ko Ko (46)

where

___1 21.4_1 6
K= 1=y o) = O

Kzﬂirﬁmw+%wﬂ

2
— 2t —Mw+—ww}
K:w{%~#ﬁmﬂ» @U
—% y{z, (J)1

1 ,4{ _ . 2}
o 1 2—!(1»?J) ,

1, 1.1

K== r g™
11421
HPTRETR A

and where X; (j=5, 6,7, 8) are described in (33).
Since the factors X; (5=5,6,7,8) have already been solved by the
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simultaneous equations (25)-(32), the behavior of the waves in the buffer
domain D, are examined numerically through the expression (46), of which
the actual calculations are also made by use of an electronic computer.

3. Numerical Analysis and Discussion

To begin with, the calculations of the heights of the transmitted
and reflected waves are made, of which the variations are depicted in
Fig. 2. According to this figure, the result of the theory under the
third approximation is found to be in use for the range 0</kd=<1.0. As
far as the application range of the theory under the fourth approximation
is concerned, a further development of the generalized theory is required.

The variations of the phases of the transmitted and reflected waves
derived under the fourth approximation are presented in Fig. 3, according
to which a good agreement of the third and fourth approximations is
seen up to Ld=1.5.

Therefore, the discussions made in paper B for the wave heights
and phases are along the same lines.

We consider next the overall variations of the wave heights and
phases in the neighbouring part of the corner of the canal. The actual
computations are carried out by use of an electronic computer, following
the procedures described in the foregoing section. The behaviors of the
amplitudes are depicted in Figs, 4a, 5a, 6a, 7a and 8a for the parameters
l:d=0.1,0.3,0.5,0.7 and 0.9 respectively, while those of the phases are
drawn in Figs. 4p, 5p, 6p, 7p, and 8p.

Passing through all the figures of the amplitudes (Figs. 4a, 5a, 6a,
Ta, and 8a), these variations are marked with the contours of an elliptic
form which have their center in the very point of the outer corner of
the canal. Such variations are explained as follows. The incident waves
advance toward the wall AB (see Fig.9) and collide therewith, to be
diffracted primarily towards the leading canal along the wall AB, being
reflected partially to the canal through which the waves invaded., It
must be noted here that when the collision of the incident waves with
the wall occurred the waves diffracted along the wall AB did not stagnate.
That is to say, no appreciable retardation of the phases of the advancing
waves is seen in the figures of the phases (Figs. 4p, 5p, 6p, Tp, and 8p).
Through the five figures relevant to the amplitudes, the horizontal patterns
of the contours in the crooked part of the canal resemble one another,
but the vertical shapes differ from one another with a tendency such
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Fig.2. Variations of amplitudes of reflected and advancing waves.
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2 \ VlocuI<C

Incident Wave L
Vlocol >C

Fig. 9. Fig. 10. Viecar: local velocity of a wave,
C: velocity of a long wave.

that their gradients begin to increase as kd increases. The contours of
the amplitudes in the domain D,, through which the incident waves came,
run approximately perpendicular to the axis of the canal, reflecting the
direction of the incidence of the waves. When kd increases, the contours
of the amplitudes in the domain D, begin to incline (refer to Figs, 4a,
5a and 6a) until the small valleys appear in the upper side of the canal
(refer to Figs.7a and 8a). These inclinations and the appearances of
the small valleys are likely to be caused by the increase of the amount
of the reflected waves and their deviation from the axis of the canal.
When kd increases, the wave height at the outer corner (B in Fig. 9)
of the canal is gradually augmented, whilst that at the inner corner
(D in Fig.9) diminishes.

Another outstanding feature in the contours of the amplitude vari-
ations (Figs.4a, 5a, 6a Ta and 8a) is such that though the shape of
the contours is elliptic for the curves of || > 1.0, when the |{|-value
decreases over about 1.0, the elliptical patterns are deformed (a kink
appears on the circumference of the ellipse) to become diverging forms.

Next, our attention is directed to the behaviors of the phases in
Figs. 4p, 5p, 6p, Tp and 8p.

Through all the figures of the phases, a general trend in the variations
of these curves is very similar, though the contours of the amplitudes
have not a little difference in the domain D,.

In the nearby area of the inner corner of the canal, the neighbouring
equi-phase lines run very closely as compared with those in other parts
of the canal, which implies that the waves in the vicinity of the inner
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Fig. 4a. Variation of an amplitude for kd=0.1.
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Fig. ba. Variation of the amplitude for kd=0.3.
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Fig. 6a. Variation of an amplitude for kd=0.5.
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Fig. 7a. Variation of an amplitude for kd=0.7.
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Fig. 8a. Variation of an amplitude for kd=0.9.
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Fig. 4p. Variation of a phase for kd=0.1.
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Fig. 6p. Variation of a phase for kd=0.5.
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Fig. 7p. Variation of a phase for kd=0.7.
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Fig, 8p. Variation of a phase for kd=0.9.




140 Tsunami in an L-shaped Canal [IV]

corner are propagated at a lower speed than in other parts. Contrarily
in the nearby region of the outer corner of the canal, the equi-phase
lines run more sparsely. This fact denotes that as the incident waves
approach the crooked part of the canal the waves in the outer region
are more rapidly accelerated reaching a maximum at the very point of
the corner, the propagation velocity decreasing later on as the waves
depart from the corner. At a point (4 in Fig.9) far distant from the
crooked part of the canal, the transmitted waves advance with a speed
of a long wave (V/gH, where g is acceleration of gravity and H depth
of sea). Comparing the distance (4a..) of the neighbouring equi-phase
lines at the above point with the local distance (4a.,;) of the neighbouring
phase lines in the vicinity of the erooked part of the canal, one finds
that (1) the waves on the inner side of the crooked part (side D in Fig. 9)
are propagated at a lower speed than that of a long wave (da.> daen)
and (2) the waves making a detour along the wall (side B in Fig.9)
advance with a faster velocity than that of V' gH (da.. < dte,). This is
explained figuratively in Fig. 10,
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