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Introduction

Concerning the stationary motion of a seismic system with one degree
of freedom subjected to both solid and fluid frictions and a harmonic
external force, the existence of the following three phases of vibrations
has already been announced by J.P. Den Hartog", T. Hagiwara® and
Thomas A. Parls and Emile S. Herrard”: (1) The motion is a continuous
vibration with instantaneous stop when the amplitude of the external
force is very large in comparison with the solid friction. (2) When the
force amplitude is not so large, however, a temporary stop with finite
time interval may arise in the vibration during its half period. (3) In
the case when the force amplitude becomes very small as compared with
the frictional force, the system is always at rest.

Now, the equation of motion of the system can be expressed as

d*x dx
22 42—t he= . ,
m i + ¥ Lhx=r+ f- cos (pt+a) (1)

where & is the displacement of the concerned system, ¢ the time, m and k the
mass and the spring constant of the system, b the coefficient of fluid friction,
f, p and « the amplitude, the circular frequency and the phase angle
of the external force respectively. Symbol 7 represents the solid frictional
force, and particularly in the state of motion, we can assume it as under:

TZ—TOS[%%]. (2)

1) J.P. Den HaRTOG, Phil. Mag., 9 (1930), 801.
2) T. HAGIWARA, Bull. Earthq. Res. Inst., 11 (1933), 14.
3) THOMAS A. PARLS and Emile 8. HERRARD, Jour. Res. of N.B. S. in U.S. A. 57

(1956), 2693.
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Here, 7, is the absolute value of the solid friction in the state of motion
and S is a symbolical function, taking the value of -1 or —1 when the
value in parenthesis [ ] becomes positive or negative respectively. Thus,
we can write as follows:

When (de/d)>0, S=+1, ) (3)

and when (do/dt)<0, S=-1. |

When the system comes to a standstill, the value of the solid

friction has to be determined by balancing the condition of forces. Using
.Eq. (1), we can obtain the value of » at rest as follows:

When (dz/dt)=0, r=kx,—f-cos(®Pt+a), (4)

where #, is the displacement during a rest.

The method taken by J.P. Den Hartog® is to confine the problem
only in a zone of S having the same sign for deriving general solution,
and to obtain the solution by determining two integral constants cor-
responding to the condition for the steady motion. The method of T.
Hagiwara? is, availing of the fact that the velocity changes its sign
before and after a point of time where an expected solution for steady
motion becomes maximum, to convert the solid friction 7 represented
in Eq. (1) to a continuous function of time by using Fourier Series, which
becomes a single differential equation, thus enabling a solution. The above
two authors, however, did not taken up the condition of solid friction
expressed by (4), and obtained only the solution for continuous vibration.
Thomas A. Parls and Emile S. Herrard®, considering the condition (4),
have traced the solution of the equation of motion by using an analog
computer, and thereby obtained the stationary solution with temporary
stop when the force amplitude is not so large.

Now, the method developed in Part I of this paper is, starting from
an arbitrary initial condition, to follow the successive calculation to arrive
finally at the desired solution for steady motion. As actual calculation
is too complex, however, an attempt is made to solve the problem by a
graphical method introducing the concept of topological space. In Part
II, an analytical method is applied to solve the problem, starting from
the solution directly derived from the equation of motion. The other
analytical method is developed in Part III by means of Fourier series

4) loc. cit., 1).
5) loc. cit., 2).
6) loc. cit., 3).
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to solve the same problem. In Parts II and III, a finite time interval
of stop is assumed during a period of vibration where the force amplitude
is not so large.

Part I. Theory of Graphical Approach
CHAPTER I. THEORY OF GRAPHICAL METHOD

1.1. Solution of Equation
For non-dimensional expression, let us rewrite Eq. (1) as

J+2hy+y=R+g- cos (r+a), (5)
where r=nt, n:\/ﬁ, y:—k'—m, RZ—T—, 9———»]:, T*—‘ﬂ, (6)
m 7o 7y 74 n

and dot means differentiation with regard to . By using these nota-
tions, the expressions for solid friction (2) and (4) become as follows:
When it is in motion,

R=-Sl[y}, (7)
and when it is at rest,
R=y,—gcos (yr+a). ‘ (8)

Solution of Eq. (5) can be expressed in the following form:

y=A exp (—hr) cos bt+e)— S[y]+% cos (yrt+a+p), (9)
where v=V1-h*, (10)
sin A= —2hye cos f=(1—7"¢, (11)
_ 1
V=@ (12
G=yge, (13)

and A and e are constants to be determined by the initial conditions.
Let us differentiate Exp. (9). Then, we have

y=A exp (—hz) cos (ir+et+o)—Gsin Grt+a+p) . 14)

Now, rewrite Exps. (9) and (14) as
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y=a1+2, (15)
7
g=at O, (16)
where u=Aexp(— ¢ o) —8[Y], (7)
w=A exp (—h- vrteto), (18)
v= G cos at+p), (19)
v=—yGs rtatP), (20)
in which coso=—h, dnoc=v. (21)

1.2. Topological Plane (u—1)

As shown in Fig. 1, an axis 4 is taken as abscissa and w-axis is taken

in the direction which makes angle & with @-axis. Then let us consider a
u plane of oblique co-ordinate (u, i) and

plot on the plane a point represented by
Exps. ( 7) and (18) with - as a para-
meter. Then, we have as its locus two
Re foy logarithmic spirals having their centers
at =41 and u=—1 according to the

P
@ ©

v sign of S in Exp. (17), which can be
1 indicated by the following expression in
° a which p is a radius and ¢ is an angle
1 'measured in an anti-clockwise direction :
P =Avexp <ﬂ> . (22)
Fig. 1. Y

The variable angle 0 in this expressic can be connected with = as
0=rr 23)

What is concerned in the cu:'rent di.cussion is the value of y, that
is, the motion of the mass, and it can be determined by the values of
% and v. In this regard, v-axis is taken normal to u-# plane, in which
v is a function of r as indicatedt by Exp. (19), thereby, a point having
co-ordinates u, % and v traces @ space curve in the topological space
u-i-v thus established and the vibration of the mass under consideration

7) The mathematical proof in this regard can be obtained by referring to; FLUGGE-
Lorz, I, “Discontinuous Automatic Co ntrol”, Princeton Univ. Press, 1953.
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can be completely represented by the displacement of the point on the
space curve. Logarithmic spiral on u-it plane is the projection of this
space curve on the plane.

1.8. Topological Plane (i-v)

As already discussed, the center of the logarithmic spiral projected
on u-% plane changes to the location w=—S[y] according to the sign
of % ; simultaneously, it may be possible that the topological curve in
the space would also change its location. In order to clarify this ques-
tion, convert the form of ¥ in Exp. (20) to

=71V G@—4*S8[v]. (24)
Since the value of root form in Exp. (24) cannot be made greater than
that of G, we see that

when 4>G, %>0, @5
and when #<—G, ¥<0. )

Now, let us obtain the boundary at which ¥ changes its sign. This
changing will be called “switching”. The condition of switching is

¥=0, . (26)
thus, using Exps. (16) and (24), we have
U+1V'G—2*8[v]=0. (27

This equation represents two semi-circles of radius G with their centers
at the origin, and one locates on the right-zone and the other the left-
zone of v-axis as a boundary line. As can be seen from the inequalities
shown by (25), with these semi-circles as a boundary, ¥ becomes negative

Fig. 2.

where 4 is in the region of smaller value and becomes positive where
% is in the region of greater value, Fig. 2 illustrating these relationships.
The topological curve %-v obtained by projection of the space curve on
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the plane can be expressed as follows with 0 as parameter:

it=A exp (—ﬁ> cos (0+e+o), (28)
v
v=G cos (p0+a+p), (29)
where y:L . (30)

v

This curve can be traced by the graphical method, which will be fully
discussed afterwards. Anyway, the switching should occur at the very
moment when the topological curve on the concerned plane intersects
with the semi-circles.

1.4. Method of tracing Topological Curve

As a preparation, draw two planes %~ and i-v as indicated in Fig. 3.
Radius G of switching circle and oblique angle o are obtainable from
the constants of the concerned
system and the form of spiral
curve is determined by using
these constants. Now, let us
start from initial values of u,,
%, and v,, provided that the
absolute value of w, should be
made smaller than G. With
these initial values, a point p,
can be determined on u-% plane
and corresponding point p, on
it-v plane.

Exp. (29) indicates that the
vibration of v is a consine func-
tion with amplitude G and vari-
able angle gf. Thence, let us
consider an imaginary circle of
radius G with its center at the
point o and let a point q be
rotating about the circumference
with angular displacement g0
from a point g, as the starting
point. Then, the projection of
point ¢ on v-axis is the value of

<
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v, as seen from Exp. (29). With such a consideration that the variation
of v is produced by that of ¢, the curve tracing may become easier.
In this case, rotational direction of g should be made clockwise, and
this reason will be explained afterwards. As % and ¥ are both negative
in the current case, ¥ also becomes negative by Exp. (16) and the spiral
center falls in u=-+1. We can thus draw a spiral curve having its
center at w=-+1 and passing through p,. Drawing a line connecting
two points p, and w=+1 as a basic starting line, divide the curve at a
constant angular interval 40 (say 20°) as shown by points p,, p,, -
Through these points, draw each parallel line to u-axis and let I,, 1,, I;,
...+ be the intersecting points of w-axis with these lines. On the other
hand, make a similar circular division at a constant angular interval
Apd (say 30°) on the circle of radius G in a clockwise direction starting
from a line 0'q, as a basis as shown by points q,, ¢,, ----. And through
these points, draw each parallel line to #-axis and let these lines be inter-
sected with those drawn normal to it-axis through points I,, I,, 15, -

A point p; is an intersecting point of two lines, one from g, and the
other from [, thus drawn as above, p. corresponds to an intersecting
point of lines through g, and l,, in the same way, the following inter-
secting points p;, pi, ---- are thus graphically obtained. Now, con-
necting each point p,, p:, D, ---- by using a curve ruler, we can obtain
topological curve with regard to i-v plane.

It is of note, however, that if the topological curve intersects with
the circumference, the semi-circle in which the switching should occur
becomes different according to what sign ¥ should have at the point of
such intersection. Under the current status, ¥ is positive when switching
takes place, thus the concerned semi-circle is that located in the left-zone
and the intersecting point s, with this semi-circle is the switching point
of the it-v plane. Denote m an intersecting point of W-axis with a paral-
lel line to v-axis through s,;, and s, an intersecting point of spiral curve
with a line parallel to u-axis through m, then a point s, becomes the
switching point with regard to u-it plane as shown in Fig. 3.

Thus far we have discussed the procedure of tracing a topological
curve to obtain the switching point, and now we are in a position to go into
the method of tracing the topological curve after a switching and this
will be fully treated in the following chapter.
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CHAPTER II. TorPoLOGICAL CURVE AFTER SWITCHING

2.1. Motion after Switching

In preceding Chapter I, the method of obtaining the switching point
was fully discussed. To locate such a point means to determine the time
at which switching occurs. When it takes place, the velocity of the
system becomes zero. In order to study the nature of motion that would
oceur after switching, it is required to take into account an effect of
solid friction when the system is at rest.

A solid body would start its motion when it is subjected to an external
force of a magnitude greater than that of » defined in the preceding section
of this paper. Now, the force under consideration is expressed in the term of

feos (pt+a)—kx.

Let us denote the switching time as ¢, and add symbol “o0” to all notations
relating to the time. Then the condition of starting motion can be
mathematically presented by

| f cos (pty+a)—lao| >y, (81)

and its corresponding acceleration is given by

(m ‘5;3 ) = cos (pto-a) — kw7, SLS cos (ple+a)—kad . (32)
0

When this acceleration has a positive sign, the corresponding velocity
thereafter also becomes positive and vice-versa. Thus the sign of velocity
after switching is determined by that of the right-hand side of Exp.
(32), that is, :

S[%] =S[f cos (pt,+ ) —kv,—1,S[f cos (pt,+ a)—kx,]],

and also the following equation is justified in consideration of relation-
ship (31):

S[‘é—’;] =SS cos (pt,+a)— kag] . (39)

Fig. 4 (a) illustrates the case of the condition (31), and Fig. 4 (b)
indicates the case of

| f cos (pt, ) — kx| <7, (34)

In the case of the above condition, a body would continue to be at rest,
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even though it is acted upon by an external force, of which magnitude
is smaller than that of ,. The motion, however, will be resumed when

the condition satisfied by (31) comes into existence in the course of time.
When the following condition is satisfied :

|f cos (pty+ ) — ka,| =1, (35)

four cases are to be considered as indicated by Fig. 4 (c), (d), (e) and
(f). For the case (c),

d
{d—t[f cos (pt+a) — kxo]}tn>0 .
This means

{f cos (pt,+a)—ka,} sin (pt,+a) <0, (36)

and the acceleration and the velocity develops immediately after switching,
the motion then continuing. The sign of the velocity at the concerned
stage can be expressed in the same form as (33).

For the case (d),

{%M cos (pt+«) ~kw0|} <0,

¢y
and this means

{f cos (pt,+ ) — k) sin (pty+a) >0, (37)

the motion being brought to a stop after switching as Fig. 4 (d) shows.
For cases (e) and (f), '

d
{Wlfcos (t+a)— k| =0,

%
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and then, we have
sin (pt,+a)=0. (38)

For case (e), however, the following relationship must be satisfied in
addition to (35) and (38):

.
{ th | f cos (pt+a) _k%l}zo>0 ,

from which we have
{f cos (pty+a) —kx,} cos (pt,+a)<0. (39)

The motion under this condition continues, and its sign of velocity can
also be determined from (33). For the case (f), in the same way, an
additional condition required besides (35) and (38) is

{f cos (pty+ ) — k) cos (pty+a) >0. ' (40)

The motion corresponding to the cases indicated by Figs. 4 (d) and (f)
may stop after switching in the same manner as in the case of (b), the
system remaining at rest unless the condition (31) makes its appearance.

Table 1.
Condition Motion after switching
|20 >1 start
Jwol 21
Jwo| <1 stop
wo sin (ufo+a) <0 start
sin (0,4 )0
wo sin (¢0o+a)>0 stop
|we|=1
wo oS (ufo+a) <0 start
sin (p6o+a)=0
wo cos (#fp+a)>0 stop

All expressions of conditions developed thus far can be rewritten by
those notations introduced in the preceding chapter. The results of
comparison made on each other after re-arrangement are shown in Table
1, in which w, means that

W=7~ Yo » (41)
where 7,=g cos (p0y+a) , (42)

and Yo=Up— %‘ . (43)

!
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The value of u,, v, and pf,+« in above expressions can be obtained from
the position of switching points s, and s,.

Should the motion continue after switching, the sign of the velocity
is totally determined by the following equation rewritten from (33):

S{ose,)=S[w,] . (44)

2.2. Graphical Method of Discriminating Conditions

Various relationships to diseriminate how the motion continues after
switching and also what sign its corresponding velocity would take, were
derived in the preceding paragraph. Now, the method of graphical
discrimination will be developed.

Let us consider a rectangular co-ordinate parallel to - and v-axis
and rotate it by angle 8 in a clockwise direction. Then, we can establish
a new system of co-ordinates £, 7 as shown in Fig. 5 with positive

S USRS <

pl

Fig. 5.

direction as the arrow indicates. With o as the origin, draw a circle
of radius g and let D, and D, be intersecting points of this circle with
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7-axis. A point s’ is an intersection of the circle with a line parallel
to o's; through o”. Then,

ZD0"'sy =pb,+« .
Denoting the projecting point of s;” on 7-axis as E,, we have
0" 'Ey=g cos (u0,+a)=7, . (45)

Next, from two intersecting points s, and s;, we can obtain the value
of ¥, through Exp. (43). By using this value, three points I,, J, and K,
can be located on 7-axis through following calculation :
0'L=y,+1, l
0”J0:y0—1, (46)
OI/KOZvO_yOZIIUD . J
Moreover, the condition |w,|>1 in Table 1 is rewritten into
Yo—1>7,, or Y,+1<7,

and the condition |w,|<1 becomes

Yo—1<9,<Y,+1.

These satisfy the condition that the motion stops if E, locates between
I, and J,, and it starts if E, exists in the exterior zone of I, and J,.

When the point E, coincides either with I; and J,, what does it come
out as thereafter? If E, coincides with I,, then,

7 Po—Yo=1o=1. 3
If E, coincides with J,, then, 47
Do~ Yo=We=— 1.

For either case, it becomes |w,=1. Assuming that both points I, and
J, are included in the circle, let 1,, I, and J,, J, be such points of inter-
section of the circle with a normal line drawn to 7-axis through I, and
J, as shown in Fig. 5. In the case that I, or J, comes out of the circle,
however, I, and I, or J, and J, do not exist. When s, coincides with,
either I, or J,, then, sin (¢0,+a)<0, 48)
and either I, or J,, then, sin (x0,4+a)>0.
The combination of two relationships (47) and (48) all together leads to
that, when s, coincides either with I, or J., the motion starts, since
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w, sin (pd,+a) <0,
when it coincides either with I, or J,, the motion stops, since
W, sin (ul,+a) >0.

When I, or J, coincides with D, or D,, and also with S, , it means
that sin (0,4 a)=0, from which it can be deduced that

at point D,, cos (¢f,+a)=1, } (49)
and at point D,, cos (uf,4+a)=—1. J
Again, combining the two relationships (47) and (49), the results are
such that, when s, D,, J, or s{, D,, I, become coincident with one
another, the motion starts since w, cos (#0,+a)<0, and when s;, D,, I,
or 8, D,, J, do, it stops since w, cos (10, + ) >0.

In order to summarize all that has been discussed thus far, let ¢
plane be provided with certain characteristics. As we considered the
point q in u-v plane, that is, rotating on the circle at angular displace-
ment (¢0+a-+p), in the same way we consider the equivalent point e in
-7 plane, that is, rotating on the circle with radius g, having the angular
displacement (z#0+«). Then, let us call the zone enclosed by 7=y,+1
as “stop region,” and those totally outside the zone thereof as “start
region” as shown in Fig. 5. With these propositions, the condition of
“start” or “stop” can be summarized as follows :

When the point s;’ comes into the stop region, the motion stops
and when it falls in the start region, the motion starts. When the point
o just comes on the boundary, two cases are discriminated. If the point
e rotating from s, as a starting point enters the stop region, the motion
stops, and if it enters the start region, the motion starts. When the

motion starts, the sign of corresponding velocity thereafter would be
determined by that of w,.

2.3. Topological Curve after Switching

The motion of vibrational system should be continuous in its velocity
and displacement before and after switching regardless of start or stop.
Let the concerned symbol for motion just before and after switching
be represented by “o” and “1”, respectively. Then,

Yo=Y, )
. 50
and Yo=Y, . I (50)
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Since the last term of Eq. (5) representing harmonic external force is
always continuous, we have

V=71, ]
51
and Vo="; - f (51)
Substituting (50) and (51) into (15) and (16), we obtain
uozyo—%:un
(52)

and uozyo—f’izul.
7

Equations (51) and (52) indicate that the values of u, % and v before and
after switching are continuous, and the switching points on the topological
curve after switching are the points just before switching.

When the point s, enters the start region and the value of w, is
determined, the center of spiral curve in u-i plane can be located, and
we can then draw a spiral curve so that it passes through the point s, .
The point q starts from s, in %-v plane, thus, a topological curve in the
plane can be drawn in the way as described in the preceding paragraph.

When the point s;’ comes into the stop region, a discrimination is
to make to see whether it accompanies a permanent stop or a temporary
one. The condition for the permanent one is that the circle in &7 plane
is completely included in the suspending region.

When a part of the circle in £ plane exists in the start region and
s, falls in the stop region, the motion is brought to a temporary stop
until the moving point e comes out of the stop region.

In order to indicate above-mentioned functions concretely, suppose
that the switching points s,, s; and s’ have been determined in each
plane as illustrated in Fig. 6. In this case, however, the motion stops
since the point s, locates in the stop region. But, at a moment when
the moving point e which starts its rotation from the point s;" in a clock-
wise direction reaches the point I,, the external force that would be
applied thereafter becomes positive (negative for J,), with the result that
the system thereafter is set in motion with positive velocity. The point
I, is also the switching point s, for starting motion. Denote s; an inter-
secting point of the circle in %-v plane with o's, drawn parallel to o"s;’,
then, the point s; becomes the switching point for starting motion in
this plane. Let i, and v, be co-ordinates of the point s;, then, from
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u

Fig. 6.

=gy L=y (07 (53)
7 7

and together with 4,, the switching point s, in u-i plane is determined.

Since the velocity expected thereafter is positive in this case, the

topological curve in this plane is a logarithmic spiral having its center

at the point w=—1 and passing through s,.

The discussion made thus far does not touch on the method of
drawing a curve connecting both points s, and s,, no need, however, is
called for in this regard since the point s, is obtained without an actual
drawing.

In addition to the above, a consideration will be paid to the topo-
logical curve in %-v plane when the motion is stopping. Through the
meaning of both Exps. (19) and (27), we can understand that a topological
point moves on the circle with radius G in a clockwise direction.

CHAPTER III. SOLUTION UNDER STEADY STATE

3.1. Solution
A detailed discussion has thus far been developed on the method of
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drawing topological curves to indicate
the motion of the mass. Continuation
of proposed procedure would finally
fall in the case of permanent stop or
would approach to a constant closed
curve, which corresponds to the limit
cycle for the desired solution under a
steady state. From such a limit cycle,
the maximum value of displacement
and the phase difference between ex-
ternal force and its corresponding
displacement can be made known.
Fig. 7 shows the limit cycle corre-
sponding to the case ¢=2.0, h=0.2 and
¢#=1.25, in which s, and s, are the
switching points, at which y becomes
its maximum value ¥.... BY measur-
ing the coordinates of s, and s," in Fig. 7

Fig. 7.

o

v
u
So 5\;0 t‘
/ /
lss S
/1 P /S; é
i -
-8 -G s
— o G g
7
X /1
~ /
- /
w
I
1
s i
0 _ 52 {L
S, 5o
Fig. 8.

Ymax Can be obtained from the follow-

egho® ing equation derived from (43),

Ymax=U-component of s,
+(v-c0mponent of sy) . (54)
7
Let the switching point be taken
as an origin of time, then, we can
understand from (42),

a=/%0's;. (55)

This means that the phase difference
« can be measured as an angle
between 7-axis and o's;, the clockwise
direction being positive.

The above example does not
include any existence of temporary
stop, however, there are some cases
where the limit eycle ean be obtained
for such steady motion which in-
cludes repetition of temporary stop.
This case as illustrated by Fig. 8, in
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which Exp. (54) is of a direct use to obtain the maximum displacement
Yms- For convenience, in this case, let us take the origin of time at
the beginning of suspending interval on #.... This means, in Fig. 8,
the moment that the rotating point q coincides with s,. Then, the same
expression as (55) is usable to know the phase angle « graphically.

3.2. Discussion

Now, let us compare the results obtained graphically with those
“obtained theoretically by T. Hagiwara®. His theoretical formulas with
notations used in this paper are

0=Yousp {L—7) AL+ 2Rr B + {“ (1—7%) B+ 2hy A;+ 'y4 } 2
o max
—(1—7) B+ 2hy Aj+—
=14 Sa
ymax
B= 5o,
ymax

Now, in order to compare both results, five cases will be considered.
Put the value ¥m==1.15 obtained graphically into (56) and calculate g
and tana by using the values S,=0.00436 and S;=0.197. Then, we
can compare the values g and « on both methods as shown in the case
(1) of Table 2. In cases (2) and (3) such can be done. These three

Table 2.

B T e R — ‘,77__ ,,,’, e ——~—'—~~:f——:

Case ] L . 9 S Eqgs. (56)’s Graphlcalﬁﬁd
g a g a

(1) 2.0 0.2 1.25 | .00436 | 0.197 | 1.996 103.9° 2.0 104.5
(2) 2.0 0.2 1.00 .00901 ! 0.313 | 2.003 84.3° 2.0 84.2/
(8) 4.0 0.4 1.00 .02300 ‘ 0.360 | 3.978 77.7° 4.0 7.7
(4) 2.0 0.2 0.50 | .14200 © 1.594 | 1.862 13.9° 2.0 23.5"
(4" 2.0 0.2 0.50 | .14200 | 1.594 | 1.985 14.0° 2.0 14.5
(5) 4.0 0.4 0.50 3.98 25.6° 4.0 26.0/
(5 4.0 0.4 0.50 4.00 25.6° 4.0 24.9

8) loc. cit., 2).
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cases show a satisfactory coincidence between the two methods: All of
these, however, do not include any temporary stop. Therefore, a need
is called for to make further analytical comparison on such a case as
includes a temporary stop.

For g=2, =0.2 and 2=0.5, which correspond to the case of Fig. 8,
the results in case (4) of Table 2 reveal a considerable amount of difference
between the two solutions under a steady state when the motion includes
temporary stop. In order to clarify the cause of such discrepancy on
both results, an attempt is made here to obtain the solution of steady
motion graphically as discussed in this paper under the assumption that
r changes immediately as soon as the velocity becomes zero, and to
compare the results with those obtained by (56).

If the change of  is assumed as above, the graphical tracing can
be made much simplified, and discrimination of the conditions with regard
to “start” or “stop” thereby being eliminated. Correspondingly, no
consideration is required as to the circle v
of radius ¢, which leads to an absolute 1 »
jump of the center of spiral from +1 %
to —1 or vice versa after the determina-
tion of switching point.

The limit cycle thus traced is g G
shown in Fig. 9. The value Y. is o
thereby measured in Fig. 9, which is
in turn put into (56) to calculate g and
«. The results for comparison are
shown in the case (4) of Table 2, from a
which we find that two results are in
satisfactory coincidence. After all, the
cause of disecrepancy appearing in this 1
case is undoubtedly due to the assump-
tion of friction when the system is
at rest. The limit cycle obtained o
graphically in case (5) of Table 2 also
includes temporary stop. The com-
parison of the results show a dis-
crepancy, too. But, the results shown
in the case (6) which is obtained
graphically without diserimination of
conditions is also in good coincidence. Fig. 9.

g
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As a conclusion, it can be said that the graphical method stated
in this Part is usable to solve the problem, not only when the steady
motion becomes continuous vibration, but also when it involves tem-
porary stop. As a matter of fact, it is a complicated matter to solve
the problem by analytical method using a directly derived solution from
the equation of motion, especially, in the case of vibration with temporary
stop. However, we can avoid this difficulty by using an electronic
computer, and such a method will be stated in the following Part.

Part II. Theory of Analytical Method

1. Introduction

When a system with one degree of freedom is set in motion by an
external harmonic force under the existence of both solid and fluid
frictions, the vibration remains continuous when the amplitude of external
force is sufficiently great compared with the magnitude of the solid fric-
tion. J.P. Den Hartog” has treated this case analytically and has
influenced the following formulas starting from a directly derived solu-
tion of the equation of motion:

ymux: - B1+-‘/(eg)z + Bv.-; ’

sin (a+p) = _efﬂ , and cos (a+,3):_—-_(yma>;;‘Bl) , j (57)
where
e y sinh (IL;> —h sin <’“T— > |
v{ cosh <h‘_‘> 4 cos( va )}
' ' (58)
. siln (—”Ti> |
v ;
ur{cosh ( ; > + cos(ur—r )}

The notations which were used in the above formulas and which will be
used from now on are the same as those in the preceding Part, unless
otherwise specified.

9) loc. cit., 1).
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2. Conditions of Steady State for Vibration with Temporary Stop .

When the external force is made smaller and comes in the neighbor-
hood of the magitude of the solid {riction, a certain stopping interval
would become apparent during a period of vibration and such steady
motion would continue. In such a case, a prediction will be made possible
as to the change of y and R, and it is summarized as follows :

i) Periods of vibrations of ¥ and R would be the same as that of
external force.

ii) Since it is natural to assume that ¥ and R in two intervals, in
which positive and negative directions of external force are acting, have
the same magnitude of variation with opposite sign,

Y(Gr+a)=—y(7), |

. 59
and R(rr-l—;r):—R(rr).J’ (59)

iii) During the moving interval, y is governed by Eq. (5) and
R=+1.

iv) During the stopping interval, ¥y=+%..., and R changes as
shown in (8).

Let us take yz=0 as the moment when the motion has just stopped,
further, the stopping and moving intervals be assumed as that,

y 0<yr<i, (60)

e[ /) and 1<yr<z (61)
) 1 | (&)
21

A T THA respectively. Then, in consideration of
! those mentioned above, the variations

of ¥ and R can be graphically re-

[ : presented as shown in Figs. 10 (a) and

/! ! o / (b). And, it indicates that a basic

o 7'\ 7} e (b) interval is

|

-1 X 0<TT<7T . (62)

Fig. 10. By shifting one cycle of the interval
as well as reversing the sign, the following variation corresponding to
the interval,

n<lrr<2z

can be obtained. This means that the basic interval (62) alone is sufficient
enough for the development of a discussion regarding the steady state.
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3. Solution of problem
The basic interval referred to in the preceding paragraph can be
divided into two groups, 4.e., stopping and moving intervals.
In the stopping interval, the variation of ¥ and E are
y:ymﬁ.x b
(63)
R=Ymix—gcos (rr+a) .
Furthermore, the boundary condition regarding the solid friction will be,
when ‘rz'=0 . R=R0 y
and when yr=21, R=1.
Substituting above conditions to (63), we have
Rozymax—g cos a, (64)
Ymx=1-4-g cos (A +a) . (65)

In the moving interval, since R is assumed as +1, the solution of
the equation of motion (5) can be written with two integral constants
C, and C, in the following form:

y= exp (—hr)(C, cos vr+ C, sin vr)+ (A cos yz+ B sin r7) cos
+(B cos yr— A sin yr) sin a4 1. (66)

And, its differentiation with regard to r is

= exp (— h7){Cy(v cos yr—I sin vr) — Ci(h cos yr+v sin vr)}
+7 cos a(B cos yr— A sin yr) —y sin a(A cos yr+ B sin y7), (67)

in which A and B are

— 1= B= 2hrg .
e e A (e S CTey 9

Before and after the concerned interval, conditions with regard to
the displacement and the velocity of the system are given as
when 7r=2, Y=¥ms, and y=0,
and when 7r=7, Y=—¥mux, and y=0.
Applying above four conditions to (66) and (67), we have
CT.,4C.T,=Ype—T:cos «—T,sinax—1,

’ ’ ’ ’ . (69)
C\T,+CTo=—Yupe—T:cos a— T sina—1, ‘
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A
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i

1.2\
00.2 V 0;'6 1.0 \1- 1.8
Fig. 11.
C\ T+ CyTs=y(T,cos a— T, sin a) , } 70
C\T;+C,Ti=y(T;cos a— T sin ) , (70)
where
T,= exp( _h')‘)cos (—’31{—> , Ti= exp( —h”>cos (ﬂ) ,
T T T 7
T,= exp< _h)‘>sin(”—x>, T.= exp<_h’7>sin<ﬂl>,
7 T T 7 (71)

T.=AcosA+Bsin4,
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T,=Bcos2—Asin 2,
Tb:th+ vT,, nghTi‘l‘VT; ’
Ti=hT,—T,, Te=hT,—vT;.

We can obtain C; and C, from Eqs. (69) as under:

C. = UilYmx+ Upt U, cos a+ U, sin «
1= ’
Us

ng'— U;ymax'i" U;+ U; COos (x+ U; Sin [0 4
U, ’

(72)

where
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U1=T2+T;’ U£=T1+T1’
U2=T2_‘T;, U;:T1_ T, ’
U3=—AT2‘—T;T3 ) Ué:—'ATl—T;.TS ’ (73)

U,=-BT,-T.T,, U,=—BT,—T,T,,
U="7T7T,—T.T,.
Substituting (72) into (70), we have
Yoo V,cos a-+ ]I: sin a+ V, ’

_ Vicosa+V,sina+V;
'ymfax'— -[7, ’
4

(74)
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where

Vi=UT,—UT—7yUT,,
V,=U,T,— U;T6+TU5T3 ’

V,=U,T,— U.T,,

V,=U,T,— UT,,
Eliminating ¥... from Egs. (65) and (74), we have
S, cos a+ S, sina=S;, }

Vi=UT;—UTs+1BU,,
Vi=UT;— U Ti—rAU;,

Vi=U,T;—U:Ts,
Vi=UT—UT;.

S:cos a+S.sin a=3S;,

709

(75)

(76)
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where
S,=V,—gV,cos 1, Si=Vi—gVicos i,
S,=V,+gV,sin2, S:=V;4+gV,sina,

S3= V4'_ V3 ’ S:'x= V;—“ V;.
From (76), we can obtain
sin a:———S‘S;—S 15
8,8:—S:8S,’
‘ __88;,-8i8,
cosa=—

S,S:—S:8S,

(T7)

(78)
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Eliminating sin « and cos « from above equations, we have
(SS:—818.)*=(8.S;— S18:)*+ (S.S; — S:S,)2 . (79)

Since Eq. (79) has only the variable 2, we can obtain its value as
the root of Eq. (79). With 2 thus obtained, firstly « from (78), secondly
Ymax from (65), thirdly R, from (64) can be caleculated.

Thus far, we have developed in the preceding paragraph a discussion
on the general method of deriving a solution for steady motion. The
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solution thus obtained by giving all possible arbitrary values of g, & and 7,

however, may not lead to the true solution of this problem. In this Part,
a discussion is made assuming that the value of 2 would fall in a zone, i.e.,

no consideration being paid to the other value of 2 than mentioned above.
Therefore, the value of 2 thus calculated is in need of selection to satisfy
the condition (80).
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Among the values of g, i and 7, for which an existence of actual
solution for steady motion including temporary stop can be promised,
let & and y be constant and g made gradually greater, the stopping
interval 2 is then supposed to become gradually smaller to reach zero
finally. Since the limit 2=0 is considered to be exactly on the boundary
of two, t.e., one including stopping interval and the other zero or not,
the condition to be satisfied at such a boundary should be found. For
this purpose, putting =0 into (71), and carrying out the same calcula-
tion as described from (72) to (79), instead of Eq. (79), we can obtain
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%{Bz (9= A AT —T3)— (L+ T5) (o— T

=(g—A)AT;:—vT)+r—T)F+{FA@—T)+BhT+ Ty .  (81)
This is the equation giving the relation between g, h and 7y at the
boundary.

4. Frequency Response .
Results obtained by the above stated method are given in Figs. 11-20.

Among them, response curves shown in Figs. 11-15 are the relationships

between the relative frequency y and the relative maximum amplitude
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Yomax with g as a parameter. The relationships of the relative frequency

and the angle of phase difference « are shown in Figs. 16-20. In Figs.
11-20, the dotted line indicates the border-line between the continuous
vibrations and the steady vibrations with one stop in a half period, being
obtained as follows: Using the constant values of g and %k, the value

of 7 is obtained from Eq. (81), and these three values are applied to the

formulas (57) of J. P. Den Hartog, therefore, we can calculate ?—/’;ﬂ and

a as the boundary values.
With regard to the curves for the relative amplitude, upper lines
above the boundary-line correspond to the continuous vibration, and are
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the results from (57). Lines lower than the boundary correspond to a
temporary stopping vibration, and are the results from the method
developed in the preceding paragraph.

In this Part, the discussion has been developed under the assumption
of stationary vibration with only one time interval of stop during a half
period. Accordingly, all results obtained here were solutions correspond-
ing to one stop. Thomas A. Parls and Emile S. Herrard” have, however,
pointed out that stationary vibrations having two or more stops in a
half period are possibly in existence.

Part 1II. Theory of Analytical Method

The theory developed in the preceding Part with regard to the
analytical method obtaining the solution under steady state corresponds
to the case where & is smaller than unity. In the other case, an applica-
tion of a different type of solution would be required. Here will be
explained another analytical method of solving the problem with Fourier
series which allows no consideration of the value of h.

As described in Eqg. (59) of Part I, the following conditions exist
under the steady motion:

Y(p+m)=—y(4), } .
R(p+7)=—R(9),
where b=r7. (83)

The variations of ¥ and R under steady state can be expressed in
the terms of Fourier series, in which the terms of even number would
disappear through the characteristic indicated by (82), i.e.,

y= i {A2N+1 COs (2N+ 1) b+ B2N+1 sin (2N+ 1)(]5} ’ (84)
N=0
R= 3, {Curss €08 2N+ 1)+ Dursa sin (2N+1)g) (85)

where the coefficients C,y,, and D,y., provide the following relation:

Currn == | B cos 2N+ D)ga
(86)
DZNH:%SOR sin 2N+ 1)pa .

10) loc. ecit., 3).
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The value of R under steady state can be assumed as described in
Part I;

when 0<¢p<2, R=%Ymn—gcos(p+a),
(87)

and when I<¢p<z, R=1.

Putting these relationships into (86), the results of calculation are as
follows :

Co — 2¢g cos (A+ «) sin (2N +1)4 __g_[sin (2Ni—a)+ sin @
e (2N+1)z 27 N
sin {2(N+1Di+a} — sin« ] 88
+ Nl ) (88)
Do = 2{2+g cos (A+a)—g cos (A+«) cos (2N+1)4}
241 @N+1)=
n i_[cos (2NA—a)— cos @ 4 cos {2(N+DA+a}— cos @ ] , 89)
2n N N+1

In deriving above relationships, ¥.m.; has been eliminated by applying (65).

Let us rewrite the expression (84) here again and differentiate with
regard to r, thus, we have

oo

y= >, {Asy+1¢08 2N+1)dp+ By, sin (2N+1)¢},

N=0

J=1 3, (@N+1){Buyy11 c0s BN+ 1)p— Ayys, sin @N+1)¢} (90)

N=0

J=—1" 35 @N-+1{Asy 1, 08 2N+ 1)+ Buyia sin @N+1)g} .

Putting above expressions into the equation of motion (5), and comparing
the coefficients of sine and cosine terms, the results are obtained as,
i) for N>0,

A — {1— (2N+ 1)272} Coys1—2hy2N+1)D,y 4y

T {1—@N+ P @N+ Y o1
B, 20N Copt (L= @N+ 1) Doy v
{1~ @N+ 17+ @k N+ DF

i) for N=0,
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A= (1—9y)(C,+g cos o) —2hy(D,— g sin ac)
A=+ @)’

B.— 2hy(C,+ g cos a)+ (1—7y*)(D,—g sin a)
= (A7) +@hrY

Therefore, the values of A,y,, and B.y,, have been expressed as functions
of a and 2 under the given values of g, 2 and 5.

When ¢=2, or ¢==, ¥ should become zero. Applying these condi-
tions to ¥ of Exp. (90), we have

(92)

S (2N+1){Byys: cos (2N-+1)2— A,y sin 2N+ 1)} =0,

N=0

i (93)
N§=:|0 (2N+ 1)Byy.=0.

The above two equations make up simultaneous equations with regard
to  and 4.

After obtaining the values of « and 4, y,.. can be calculated from
Eq. (65), and further, the value of R, can also be calculated from (64).

In this Part, we have developed a method to solve the problem by
applying Fourier series and have derived the formulas to lead to a
solution, but have not attained to numerical results. We assume that
this kind of calculation is not so difficult when using an electronical
computer.
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