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Abstract

Succeeding the previous study on long waves in the vicinity of
an estuary, the theory is developed, in this paper, under the second
approximation to inquire numerically into the behaviors of the waves
around an estuary. When the approximation proceeds from the
first to the second one, the minute behaviors of the waves come
to light, which do not appear in the first approximation. The newly
exposed facts are as follows:—

High waves appear in the interior of the canal, which is due to
the diffraction of the waves in the estuary.

The way in which the incident waves invade the canal is such
that the waves first advance towards the center of the mouth of
the canal from the open sea (of which the crest line is a triangular
form) and then, as they progress, they are diverted to the direction
of the axis of the canal.

The damping reflected waves in the open sea are not so much
affected, when the approximation is generalized from the first to
the second one, expecting that the directivity of the damping reflected
waves is smoothed.

In developing the theory, a basic principle is based on the

method of the buffer domain which has been introduced by the author.

1. Introduction

In the previous paper” (referred to as paper I in the following dis-
cussion), a long wave in the vicinity of an estuary was studied under
the first order of the approximation. Then a new method named as “the
method of the buffer domain” was used, which was first introduced by
the author.? In the present purview, the theory is developed under the
second order of the approximation and further discussions are made for

1) T. Momol, Bull. Earthg. Res. Inst., 43 (1965), 291.
2) T. Mowmoti, Bull. Earthq. Res. Inst., 43 (1965), 289.
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the waves around an estuary.

The definitions and notations used in this paper are outlined in section 2,
which are completely the same as those in paper I, unless otherwise stated.

Since the general theory without any sim

plification has already been

described in paper I, the derivation of the general theory is not given
in the present purview. For the general theory, if necessary, readers

should refer to the previous study.

2. Definitions and Notations

In this section, the definitions and notations used in this paper are

summarized (refer to Fig. 1).

%,y : the Cartesian coordinates ; ! incident
7,0 : the polar coordinates ; wave
t . a variable of time; Ds Soexpl-iwt-iky)
¢ : a velocity of a long wave;
D; (7=1,2,3): the domains in butfer .
the ranges (|z|<d, y<0), (r< gen"" "N b, \\‘ 0:0  x
d,0<0<nm)and (r>d,0<0<7); N ]
k : a wave number of an in- \
cident wave ; Dy
 : an angular frequency of an
incident wave ; \ 24d>

i (7=1,2,3): wave heights in
the domains D;;

{, : an amplitude of invading waves:

d : half a width of a canal;

™ (m=0,1,2, ---): the amplitude facto
waves in the domain D, or the canal;

Fig. 1.

A geometry of a used model.

r of the m-th mode of the

gem L) (n=0,1,2, ---): the amplitude factors for the 2n-th

cosine and (2n+1)-th sine modes of the

waves in the domain D, ;

g™ (m=0,1,2, ---): the amplitude factor of the 2m-th cosine
mode of the waves in the domain D, or the open sea.

3. Outline of General Theory

In this section, the general theory developed in paper I is outlined.

An entire portion of the analysis is based on
(by use of the Cartesian coordinates)

a long wave equation, i.e.,
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A A (1)

o oyr ¢ o’
(by use of the polar coordinates)

o, 1,00 1 0% 1 8¢

. 2
or: r or 1 06* ¢ o (2)

Boundary conditions are such that there exist no fluxes at the rigid
boundaries, i.e., '

ﬂ.:
on (3)

where 0/0n is a derivative in the direction perpendicular to the rigid
boundaries.

The equation (1) or (2) can be solved formally so as to satisfy the
boundary condition (3) in each domain D;(5=1, 2, 3). The formal solutions
obtained involve the unknowns as coefficients. For these formal solutions,
reference should be made to paper I.

In order to obtain the explicit expressions of the unknowns, other
conditions are required, which are provided by the conditions:—
the continuity of wave height

‘ Ca:Cb ’
the continuity of flux (4)
.o
s 0s’

where {, and {, are the wave heights in the neighbouring domains, and
8/0s a derivative orthogonal to the boundary between the adjacent domains.

Substituting the formal solutions into (4) and applying appropriate
operators to these relations, we have the following simultaneous equations
(refer to paper I):—

S, H(Jeny 1) e, kLM =0, (5)

55 1L m ) eie, M- =0, (6)

n=0
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Z2m 1 & 2 (2n+ 1)'J2n+1(kd) on
Jon(Fed) ZEm =0 S 2 L Entl)
wn(lid)-C +sm pY T (2n+1)—(2m) &
= H{(bd)- L5 + 22T, (kd) €y (1)
' F(em 1 &2 (2n+1)"]2’n x(kd) 9 ’
J! (kd)-Tem 4 = “. + L)
an(fod)-C +8mn§(‘) T (2n+1)—(2m) ¢
= H (Jed) - £8m +€l-2J;m<kd>-co , (8)

m

where m is a non-negative integer;

1 (m=0),

Ep = l_ (m>]_)-

2 =

and
1., =\"7 97 . g
( 2ny Q)—SO 2n(z) CcOos _k?z z’
o Ny g“ﬁﬂ_(_zl ar (9)
I( : ,q)—(2n+1)o 28) cos 4% 2 dz,

(n’ q:()i 1, 2, °° .) .

Since the equations (5)-(8) are infinite simultaneous equations, they
must be solved as a finite number of simultaneous equations. For this
purpose, the method of the buffer domain is available.” Using this
method, a further reduction is made in the subsequent section.

4. Second Approximation

In paper I, the domain D, is considered as the buffer domain, to which
the approximation :

Jy(2)=1,

~%
J(2)= 5 (10)
J(2)=0 (m=2),

is given.
In the present work, the more generalized approximation :

3) T. Mowmor, loc. cit., 2).
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Jy(2)=1— (%)2 ,
J(z)=~ % .

Jz(z):%(i)z ,
J.(2)=0 (m=3),

is employed in the reduction of the equations.

The approximation (11) denotes that the Bessel functions are retained
up to the terms of the second order of (2/2), while, in (10), a linear
approximation is given to the power series of the Bessel functions.

Substituting (11) into (9) and after a few reductions, we have :—

! (11)

:kd—liz(kdf (q=0),
IJ,, ) . (12)
=(—1)*  (ed)® =1),
(1t ) (@21)
=%%MY (q=0),
7., q) . (13)
=Dy @21,
I(J2m Q):O (?’1:22, QZO’ 17 2’ "') ’ (14)
1 _
IGQAH_Ekd @-m,} (15)
r
=0 (¢=1),
I(LIJ— q):o n=1,¢=0,1,2,+--) . (16)
r

From (11), the derivatives of the Bessel functions are as follows :—

Ti@)=—=,

- an
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Since we are using the method of the buffer domain, the approximation
must be applied merely to the buffer domain, i.e. domain D,. Therefore,
applying the aforementioned approximations (12)~(17) to the expressions
relevant to the buffer domain D,, we have the following equations :—

I(Jy, 0)- 5"+ I(J, 0)-T7 —kd - (" =0 ,

1(Jy, m)-20 + I, m)-z;“—-"gi- m=0 (18)

(’m:l, 2, 39 "') ’

I<—‘;— O)-Cé”+ikd-C{°) —o0,

1
i Lima.gm=o (19)

(m:l, 27 37 ”') ’

Ty(led) 20 42 T (Jed) - £
T
=H"(kd)- £ +2J(kd)- L, ,

k) T+ 2 LT (k)£
T —3

= HO(kd) (2 + 4T (kd)-C, | (20)

_1 . N
1 @my Ji(kd)-;

= Hop (kd) - (8™ -4, (kd) - £,
(m’——z, 3’ 4’ . ') ’

4.
T

Jo’(kd)-Zé°’+%=71’(kd)~c&”

=H{"(kd)-L" +2J(kd)- L, ,

Tikd)- 29 +2 L i(ea)
T —3

= H"(ld)- £ + 4T 2(kd) - L, @1)

AL gkdyon
T 1—(2m)
= HOY (ked)- (0™ + 4T3 (lbd) -,
(m=27 3’ 47 M ') y
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where

ItJ,, 9), J,
=0,1,2,--), I{=+,0),
I(Jz,q), (q ’ b ’ ) (/r >

Jokd), Ji(kd), J(kd), Ji(kd), Ji(kd), and J;(kd)

are expressed in (12)-(17).
Using the first relation of (18) and the second equation for m=1in
(18), T and 7 are expressed explicitly by {{” and (", i.e.,

o %{kd 17, 1)-L0— ’“d - I(J., 0)- c}

o=t (8.5, 0)-¢;1>—kd-I<Jo, v-ze}, -
where
4=1(J,, 0)- I(J,, 1)— I(J,, 1)- I(J,, 0) . (23)
By use of (15), the first relation of (19) becomes
' =—15-200 . (24)

Substituting the first expression of (22) and (24) into the first equation
of (20), we have

Jo(kd), . . (m_ﬁ. S __4_ Lo
D g 107, 1)- 0= 2L 167, 020 |- 2,
=H"(kd)- L +2J(kd)-, . (25)

Likewise, substituting the second expression of (22) and (24) into the
second equation of (20), we have

D LML 17, 0)-C—hd- 10, 1)-L0}+ie o TGhd)

=HM(kd) - (P 4-4J,(kd)-E, . (26)

Putting the first expression of (22) and (24) into the first equation
of (21), (21) becomes

M.{kd.](Jz, 1).§§0>_£§‘Z_.I(Jm O).C{l)}_fi. _‘i.J;(kd).gm
A4 2 T

=H" (kd)- " +2J(kd)- &, . (27)
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Likewise, a substitution of the second expression of (22) and (24)
into the second equation of (21) yields

Ml. ﬁ D —Ted .co . 8 . a0
1) (B 1Ty 0)-L9 — I TG, 1)- i )
=H,""(kd)- {447 (kd)-E, . (28)
‘Eliminating £ from (25) and (27) and after some reduction, we have
1 ked
. - I(J. Lo v, LW
L {ra- 1, -0 2217, 0)-017)
—2kd-{J (kd)- H"' (kd)—J\(kd) - Hy"(kd)} - {7 =2, . (29)

where Lommel’s relation

I, (led) H" (kd)— J(kd) - HO(kd) =1 - —2—

wkd
is used.
Likewise, the elimination of {{¥ from (26) and (28) yields
LA 19, 0)- 0 —ka- 107, 1)-£0
4 2
+-§—kd-{Jl(kd)-Hz‘”’(lcd)——J{(ch)-H;”(lcd)}-C{"’ =4z, . (30)
From (29) and (30), a further elimination of {{" yields, after a few
reductions,
§0,:2C0-{I(Jo, O)+2[(:1]2, 0)} , (31)
kd-(1—2-P0+§-P2>
where
P;=1(J;, 0)-{J(kd)- H'(kd)—J{(kd)- H"(kd)} (31")
(ij: 2) .
Using the approximate expressions (11)-(17), the above expression
becomes
=2 (32)

Q'
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where

ReQ,=1-+kd +-L (kdy'— 2 (edy® ,

6 288
Ilez{kd—gi—?}-{Yo(kd)nLkd- Y. (kd)} (33)
+@g-{yg(kd)—kd- Y, (kd)}

and where the recurrence formula of the Bessel function for the deriva-
tive of Y,(kd) has been used in the above reduction.

Multiplying (29) by I(J,,1) and (30) by I, 1), and adding two
equations, we have

%- o= <2kd-Ro—§kd-R2> Lo oI, D20, D}-E,  (34)
where
R;=1(J;, 1)-{J(kd)- H{"'(led) —J|(kd)- H " (kd)} (34")
(7=0,2).

Substituting (32) into (34) and after some reductions, (34) becomes

w_ 48 .
=g e, D21, )
{2k (T, =21, 0)- 1T, 1) ~41T,, 0)- 1T, }-S,
4 4 8
{5k I, D421, 010y D421, 0)- I, D)5, 65)
where

S;=J(kd)- H (kd)—J!(kd) - H(ked) . (35")

By use of (11)~(17) and the relation of the Bessel function
Yilkd)=- Y (kd) = Y s.(led)

the expression (35) is reduced to

=2. 00" 9 o (36)
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where

{132}

ImQ,=—{Y(kd)+kd- Y(kd)} 37
+ 1 {Ti(kd)—d- Yi(kd)}
and @, is given in (33).
Next, let us obtain the expression for I”.

Multiplying (26) by Ji(kd) and (27) by J(kd), and subtracting the
latter from the former, the expression

L =2kd -{J,(kd)J; (led) — I (kd)Jo(kd)} - £ (38)

is obtained, where Lommel’s relation for the Bessel function is employed
in this reduction.

Substituting the approximate expressions of the Bessel functions (11)
and the derivatives of the Bessel functions (17) into (38), we have

cor=—td-{1+ (2L} (39)

Likewise, multiplying (26) by J,(kd) and (28) by J.(kd), and sub-
tracting the latter from the former, the expression for (¥ becomes

(o=— % kd-{J (k) (kd)— J)(kd)J(kd)}- £,

where Lommel’s formula of the Bessel function is used.
Putting (11) and (17) into the above expression, we have

1 kd \*
@ — = Jedo 22 O
d 3 kd ( > ) o, (40)

Now, Substituting (32) into (39) and (40), these expressions become

(o= ﬁ_z_.kd~{l+(ﬁ)2}'ct> ,

f‘ 1 2 (41)
Gr=—grgr FO .

From the last equation of (20), the approximate expressions of the
Bessel functions and (24), the higher modes of the waves (m=2) in the
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domain D, are expressed as

4. 1  kd

T (2m)—1 Y,,.(kd) S (“42)

L=

Using (32), the above expression is further reduced to

e 81 1 . 43
s o S 43)
(m=2) .

Thus, each mode of the waves in the domain D, (in the open sea) is
given by (41) and (43). Then the wave height in the open sea is expressed
(refer to paper I) by the series

L, =28, cos ky + Ll | (44)
where

g amp) Z gem e HiD(fer) - cos 2mo . (45)

Here, the second term of (44), i.e., (45) denotes the damping waves re-

flected from the estuary of the canal.,
Next, let us obtain the expression of the wave height in the

domain D,.
From (24) and (32), the first mode of the wave in the domain D,

becomes

(o= _j. 2. 46
=2 (N 0. O ( )

Eliminating &P and {” from the first equation of (20), (41) and (46),
we have

E;"’:z-{lJrkd-_gi}-Co , (47)

1

where
Re@=—{1+(£2)},

e [ (], |
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and the approximated expression of the Bessel function is used.

Likewise, eliminating &% and {” from the second relation of (20),
the second expression of (41) and (46), we have

‘;2):2-{2+kd- 8‘}-@ : (49)

1
where

o= ()

ImQ,= _(k_iz)_z' (ot (Y. v},

(50)

and the approximate forms of the Bessel functions are used in the above
reduction.

Though the waves in the domain D, are described (refer to paper I) as
L=, {ZE™ cos 2m0- T, (lr) +CEm0 sin (2m 4+ 1)0+ Ty (k7)}
m=0

the above expression is reduced, in the approximation used in this pur-
view, to the form :—

L=COJ(ler)+ 0 sin 0+ J (kr) +E3 cos 20+ J,(kr) . (51)

Now, the behaviors of the waves in the domain D, are expressed,
in the approximation of the second order of kd, by (46), (47), (49) and (51).

Finally, let us obtain the solution in the domain D,.

Substituting (12) and (13) into the second relation of (18), the higher
modes of the waves in the canal are expressed as

g =(- (LY (—gp =), (52)

where " has already been given in (36), so that m is a positive integer
excepting 1.
By use of (47) and (49), (52) becomes

“‘:m)_(_l)m.w. —920).. = =
G = (/,nn')'-’ Ql ( 20‘, T Q4) (m 2’ 3, 4; ) ’ (53)

where @, @, and Q, have already been given in (33), (48) and (50)
respectively.
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Then the waves in the domain D, (in the part of the canal) are
expressed (refer to paper I) as

6= 3 6 eos Ba-exp (—iki™y) (54)
m=0
where

b=y - (") (55)

Next, the numerical calculations and the discussions of the results
are made in the following.

Firstly, the behaviors of the waves in the part of the canal are
examined numerically by use of (32), (36), (53) and (54).

When kd<m, the modes of the waves excepting the zeroth one are
the waves damping out as the advancing waves depart from the mouth
of the canal, because the expression (55) becomes imaginary for kd<z.
In the present approximation, the application range might be considered
to be limited to the range kd<w, so that the only zeroth mode of {, is
propagated into the canal without damping. The variations of | {{®| (the
absolute value of the non-damping wave in the canal) and | ™| (the
absolute values of the factors of the damping modes) are shown in Fig. 2,

2.0

&)

~—

kd

0 ] 0.5 o - 1.5

Fig. 2. Variations of the amplitudes of each mode in the canal
versus kd (unit: {o; the broken line stands for the curve obtained
in paper I). ‘
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of which the values are tabulated in Table 1. In Fig. 2, the inserted
broken line stands for the zeroth mode calculated in the previous paper
I, of which the theory is derived under the linear approximation of the
Bessel functions.

When the approximation proceeds from the first to the second one,
the curve [{{V/(,| is uplifted a little, so that the interpretation is more
acceptable that the occurrence of the intersection of the curve with a
line |{{®/{,|=1.0 in the former theory® is caused by a deficiency of the
approximation, but the intersection of the curves still takes place which
might be explained by the procedure analogous to that in paper I, i.e.
an estimation of the errors due to the approximation (which is not made
in the present purview).

Before proceeding with the discussions of the behaviors of the waves
in the canal, the complete form of the waves in this part is described
hereunder.

Allowing for the omitted time factor exp (—iwt) and taking the real
part, the complete form for the waves in the domain D, becomes, from (54),

=L+, : (56)

g =1L | cos (wt+ky—arg. {”) 57)
or =|{®|cos{wt+k @y —B)} |’

{{dam) :—_go | Z{™ | cos (wt—arg. L{™) cos %x exp (| k™ | v) (58)

(y<0),
where

B=(arg.")/kd .

In the above expressions, £ and {{*™ stand for the advancing
and the damping waves respectively.

As already mentioned in paper I, the former of (57) is convenient to
examine the phase difference at the mouth (y=0) of the canal, while the
latter to inspect a supposed origin of the cos (wt+ky)-type wave.

Since the variation of the amplitude |{{”| of the advancing waves
{4 for the second approximation nearly resembles that for the theory
of the first order (see Fig. 2), the explanation for the advancing waves

4) T. Mowmol, loc. cit., I).
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is terminated to the extent that the upheaving of the curve is rather
unexpectedly small in amount, hence details of the discussion is submitted
to paper I.

When the approximation proceeds, the higher modes appear in
magnitude which cannot be neglected, the variations of which are shown
in Fig. 2 only for the first two modes, i.e., |{{"/{,| and |{?/C,|, other
modes not being depicted because of the smallness of the values. When
kd is small, the contributions of the higher modes to the waves in the
canal are also small. As kd increases, these values are augmented almost
linearly until the first mode at kd=1.0 amounts to about 21 percent of
the zeroth one and the second mode about 5 percent. Such augmentations
of the higher modes for growth of kd is physically accepted.

arg, ti®
0.5t
________ second app.
el kd
° 0.5 1.0°~<_ 5
05 first app,

Fig. 3. A variation of the phase of the advancing mode in the canal
versus kd (the broken line denotes the curve obtained in paper I).

B

4.0

3.0

20

second app,

0 0.5 1.0 7 ———————————————

first app,

Fig. 4. A variation of a supposed origin of the cos (wt+ky)-type wave
in the canal versus kd (the broken line stands for curve obtained in
paper I).




474 T. Mowol

Now let us consider the behaviors of the phases. The variations of
the phases are drawn for arg.(® in Fig. 3 and for 8 in Fig. 4, and
these values are arranged in Table 1. In both figures, the inserted
broken lines stand for the curves based on the theory of the first
approximation in paper I. Though the curves under the first approxim-
ation cross the zero lines at kd=1.0, such intersections, judging from the
computed results under the second approximation, seem to have occurred
occasionally. As the approximation continues, the curves denoting the
variations of arg.(® and B are uplifted, but the characteristic features
of these variations are little changed as compared with those in the first
approximation. That is to say :— Arg. {{® takes a maximum value at a
certain point apart from kd=0. On the lower side of this point, this
quantity diminishes to zero, while, on the upper side, the value decreases
monotonically until it takes a negative value. For the appearance of such
a maximum, the physical interpretation in paper I is also useful such
that, when a length (A) of the incident waves is large compared with a
width (d) of the canal, the advancing waves in the canal are motivated
in phase with the incident waves and that, when \ decreases for d, the
partial flow (diffraction) of the water mass into the canal occurs around
two corners of the mouth of the canal to cause a phase lag of the
advancing waves until such partial flow, when \ becomes further decreased
8]

2.0 0.02

o es -
es o
Lo -_”i.i//
0.9
1.0 r/d
o 0.5 10
'a B c

Fig. 5. A variation of the wave height in the direction ¢=0
versus r/d for a parameter kd in the range 0.02~1.0 (unit: &o;
characters 4, B, C stated in the abscissa refer to the positions in.
the figure on the right-hand side). :
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2.0|¢,| 0.02

o.l

) .
A B c
Fig. 6. A variation of the wave height in the direction of 0=
7/2 versus r/d for a parameter kd in the range 0.02~1.0 (unit: &o;
characters A, B, C stated in the abscissa refer to the positions in
the figure on the right-hand side).

arg.l, A B C

—————

o.!

)
A 8 ¢

Fig. 7. A variation of the phase in the direction of =0

versus r/d for a parameter kd in the range 0.02~1.0

-~ (characters A, B, C stated in the abscissa refer to the
positions in the figure on the upper side).
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for d, hardly contributes to the invading waves. The last interpretation
corresponds to the decrease of arg.” for large kd in Fig. 3.
As far as the variation of B is concerned, since this value denotes
a hypothetical origin at which the cos (wt+Eky)-type waves in the canal
originated, a supposed origin of these waves tends to an infinity for
kd—0 and approaches to an estuary as kd increases (refer to Fig. 4).
Later, the overall pictures visualizing the variations of the wave
height and the phase in site are given through two domains D, and D..
Now let us consider the waves in the domain D, in the following :
By use of the expressions (46), (47), (49) and (51), the wave heights
and phases in the domain D, are calculated with the aid of an electronic

™ O

arg. g,

—————s

Fig. 8. A variation of the phase in the direction 6=x/2
versus r/d for a parameter kd in the range 0.02~1.0
(characters A, B,C stated in the abscissa refer to the
positions with the same letters in the figure on the upper
side).
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computer, the results of which are tabulated in Tables 2 and 3.

In this domain, our main interests are centered in the variations of
the wave heights and phases in the directions =0 and z/2. These
figures are shown in Figs. 5, 6, 7, and 8 by using the values in Tables
2 and 3.

According to Figs. 5 and 6, when kd increases, the changes of the
amplitudes for r/d are rapid as expected and the variations in the direc-
tion 0 =7n/2 (Fig. 6) are larger than those in the direction =0 (Fig. 5).
This is considered to be due to the incidence of the invading waves
perpendicular to the coast. When the site moves from the outer edge
(C) of the domain to the central part (A), the wave height becomes greater
for the former and smaller for the latter. For the range kd>0.8, the
amplitudes at the central part (A) diminish below unity and this result
seems to contradict our past experience. The appropriate explanation for
this paradox might attribute to the deficiency of the present approximation.

For the variations of arg. {,, the situation similar to that for [Z,/¢|
is seen such that the changes of the phases towards 6==x/2 are larger
than in the direction =0 (see Figs. 7 and 8). The phase shifts of the
latter are considered to be caused by the diffraction of the waves around
the estuary while, for the variations of the former, the primary cause
is the direction of the incidence of the incoming waves to the coast, the
secondary cause being a diffraction around the estuary.

7

Fig. 9. Contours of the equi-amplitudes in the mouth of
the canal for kd=0.5 (arrows drawn in the figure designate
the directions of the positive gradient of the contours and the
stated values stand for the magnitudes of the amplitudes).
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Through Figs. 7 and 8, the phase lags in the central part (A) are
greater than in the outer part (C). This fact suggests that the waves
in this domain advance towards the central part (A). Furthermore, the
advancing speeds are faster for the direction 0=x/2 (Fig. 8) than those
for 6=0 (Fig. 7), judging from the gradients of the two figures.

Focussing our attention upon the behaviors of the phases in the
nearby part of the center (A) in Fig. 7, the gradients of the curves in
this region are very gentle as compared with those in the outer part (C).
In other words, the waves in the direction 0=0 get to stagnate when
advancing towards the central part.

Now, let us give overall pictures showing the variations of the

amplitudes and phases throughout two
‘domains D, and D,. In such explana-

incident tions, the expressions used are (51) and
w°v°difmc‘ed (54). The number of terms taken up,

wave in calculating the series (54), is up to

\ m=6. Then the neglected first terms
‘.-.E have been found, from numerical com-

5 putations, to remain at a maximum of

10=® for the range kd=0 to 1.0. The

calculated amplitudes and phases in

Fig. 10. A figurative explanation for the gomai)ln D, are ar.ranged n Tak,)les
the production of a small mount in 4 and 5, by us? of which the behaviors
the interior of the canal. of the waves in the part of the canal

Fig. 11. Contours of the equi-phases in' the mouth of the
canal for kd=0.02 (the stated values denote the magnitudes of
the phase lags). . - o .
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Fig. 12. Contours of the equi-phases in the mouth of the
canal for kd=0.1 (the stated values stand for the magnitudes
of the phase lags).

0.05

2y /7 ,

0557 |

\\\\§>

Fig. 13. Contours of the equi-phases in the mouth of the canal
for kd=0.5 (the stated values stand for the magnitudes of the
phase lags).

are visualized in Figs. 9, 11, 12 and 13 for specified values of kd, i.e., 0.5,
0.02, 0.1 and 0.5 in Figs. 9, 11, 12, and 13 respectively. Alternatively,
the variations in the domain D, of these figures are depicted by using
Tables 2 and 3 which have already been given before. If necessary, the
figure for other specified values of kd can readily be drawn on the basis
of the data in Tables 2 to 5.

To begin with, the explanation for Fig. 9 is given.

The most conspicuous feature in this figure is a generation of a
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mount in the interior of the canal. Since our theory is developed under
the assumption of uniform depth, such a mount is interpreted to be
produced completely as a result of the diffraction of the waves around
the estuary. As shown schematically in Fig. 10, the directly incident
waves are superimposed by the diffracted waves from either corner of
the mouth to cause high waves inside the canal.

Other features for the behaviors of the wave heights are such that :—

(1) The uniform decay of the wave height, near the corner, towards
the canal seems to suggest a strong divergence of the diffracted waves
(the waves are diffracted uniformly in space).

(2) The contours composed of equi-amplitudes, roughly speaking,
make a hyperbola outside the canal. This tendency is anticipated from
our past experience.

Although Fig. 9 represents the variation of the wave height for a
specified value, i.e. kd=0.5, such characteristic features are considered
to be still prevailing for other kd less than 1.0.

Now let us proceed with the explanations of Figs. 11, 12 and 13.

Throughout all the figures, the contours of the equi-phases are wedge-
shaped (of a triangular form) at the outer margin of the domain D,
(buffer domain). When approaching the canal, these contours begin to
run parallel to the coastline until the equi-phase lines, in the interior of
the channel, become completely straight and perpendicular to the axis of
the canal. Furthermore, noting the transitions of the stated values, it
is found that the waves in these domains are propagated into the canal
such that they first advance towards the center ((x, ¥)=(0, 0) : the origin
of the coordinate) of the mouth of the canal and, while progressing,
gradually deform the direction of their propagation into a line with the
axis of the canal.

In paper I, we have already stated that, provided that the linear
approximations of sine and cosine functions are held for the quantities
in the domain D,, the wave in this region are propagated with their
crests parallel to the coast facing the open sea. But, from the results
of the present paper, such approximations are found to be too extreme
for the analysis in the domain in front of the canal.

Through Figs. 11, 12 and 13, one more fact is seen such that the
equi-phase lines are denser near the corner of the mouth of the canal
than in the middle part. In other words, the waves in the former part
advance more slowly than in the latter.

Finally, let us consider the behaviors of the waves in the open sea
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Fig. 14. Variations of the damping reflected waves in the direction of =0 in
the open sea versus a position 7/d for parameters kd in the range 0.02 to 1.2 (the
stated number in the figure stands for the curve relevant to the parameter kd
of the referred value; unit: £o).

‘g(dump)
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Fig. 15. Variations of the damping reflected waves in the direction of §=xz/4
in the open sea versus a position »/d for parameters kd in the range 0.02 to
1.0 (the stated number in the figure stands for the curve relevant to the
parameter kd of the referred value; unit: go).
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Fig. 16. Variations of the damping reflected waves in the direction of 0=x/2
in the open sea versus a position »/d for parameters kd in the range 0.02 to 1.0
(the stated number in the figure stands for the curve relevant to the parameter
kd of the referred value; unit: o).

Jeggeme eggems
1.0 1.0
kd=0,1

Ist app.
0.5 / 0.5 T
]\\\ T T P o —
2nd app,

0 5 10 0| 5 0

kd=0,7

2nd app,

[eigem]
1.0

05

(o] 5 10

Fig. 17. Comparisons of the damping reflected waves in the direction =0 in the
open sea derived under the first and second approximations (unit: o).
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Fig. 18. Comparisons of the damping reflected waves in the direction §==/2 in the
open sea derived under the first and second approximations (unit: o).

(domain D,).

In the domain D,, our chief interest is the damping reflected waves
Clemn - which are examined numerically through the expression (45). The
figures showing the variations of {!*™ for position 7/d (the direction @
taken parameter) are visualized in Figs. 14, 15 and 16 (the actual
calculations of (45) have been made by use of an electronic computer).

Before proceeding with the detailed discussions, the convergence of
two results obtained in paper I and this paper must be checked. These
examinations are made in Figs. 17 and 18 for particular values kd=0.1,
0.4, 0.7 and 1.0, choosing two directions 6 =0 and 7/2 as other parameters.
In Figs. 17 and 18, the solid and broken lines stand for those relevant
to the second and first approximations respectively (the former is for the
present work and the latter for paper I). According to these figures,
the agreements of two curves (for the first and second approximations)
are fairly well up to about kd=0.5 except for a little departure near
r/d ~1.0. As kd increases beyond about 0.5, the departures of the two
curves become far from negligible in amount. But the main features of
the damping reflected waves in the open sea do not become lost, though
the approximation steps up from the first to the second one.
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Viewing Figs. 14, 15, and 16, we find the following facts, some of
which have already been observed in the previous study of paper I:—

For small kd, only a slight modification of the standing waves (the
first term of (44)) by the damping reflected ones (the second term of
(44)) is seen such that, when kd=0.02, the order of the modification
is about 10 percent of the incident waves in the nearby part of an
estuary (ra~d) and less than 10 percent when departing from the
mouth of the canal. When kd increases, the standing waves are more
influenced by {{*™». Along the coast (#=0), the contribution of =
at kd=1.0 amounts to 90 percent of the height of the incident waves
near the estuary and 27 percent at 7/d=10.0. As 0 increases (a line
tracing the variation of the wave height is directed in a sense perpen-
dicular to the coastline), the heights of the damping reflected waves are
slightly upheaved. But such upheavals are small in amount as compared
with those obtained in paper I, of which the theory was developed under
the linear approximations of the Bessel functions. The generalization of
the approximation from the first to the second one results in smoothing
the directivity of the damping reflected waves.

Ags far as the damping rate of {!%*™ is concerned, when kd is small
(a wavelength of the incident waves is long as compared with a width
of the canal), the rate of the damping is very gentle, as is to be ex-
pected, while, as kd increases, this rate also increases particularly in the
nearby region of the estuary, the damping rate being larger along the
coast than towards the offing.

Furthermore, one more outstanding feature, though we have already
mentioned it in paper I, is found such that the surface composed of the
amplitudes of the damping reflected waves tends to an asymptotic one as
kd increases.

Since the variations of the damping reflected waves in the second
approximation resemble those obtained under the first approximation, the
computed values are not presented in the present purview.
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Table 1. The variations of the waves in the domain .
D, versus kd.*®

kd 106 | arg g |16l arg. ¢
0.02 1.9572 i 0.06061 3.03053 } 0.00505 —1.5098
0.1 ; 1.7865 } 0.18616 1.86166 | 0.02342 —1.3768
0.2 ! 1.6065 0.26554 1.32771 ‘ 0.04360 —1.2751
0.3 1.4616 0.30671 1.02238 ‘ 0.06223 —1.1985
0.4 ; 1.3431 j 0.32631 0.81578 | 0.08031 —1.1321
0.5 | 12438 | 0.33175 0.66349 | 0.09843 —1.0698
0.6 1.1587 ’| 0.32684 0.54473 ‘ 0.11701 —1.0088
0.7 1.0844 ‘ 0.31377 0.44824 ‘ 0.13637 —0.9475
0.8 1.0184 | 0.29387 0.36734 | 0.15685 —0.8852
0.9 0.9588 0.26807 0.29786 0.17876 —0.8212
1.0 0.9045 0°23709 0.23709 0.20244 —0.7549
1.1 0.8542 i 0.20158 0.18325 0.22826 —0.6852
1.2 0.8073 { 0.16221 0.13518 0.25667 —0.6106
1.3 0.7632 ‘ 0.11971 0.09209 0.23818 —0.5286
1.4 0.7215 0.07485 0.05347 0.32360 —0.4344
1.5 0.6821 ‘ 0.02846 0.01897 0.36448 —0.3196

*) The calculation of the higher mode has been made only for the first mode of
the waves and the other higher modes are readily calculated by use of (52) and the

above values.
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Table 2. The variation of the ampliudes in the domain D,.
When kd=0.02,
Vrad) | ' i o
. 0 | /10 /5 37/10 ’ enis | W2
rd T l o B
0.0 10.1957x 10t | 0.1957 x 10t 0.1957><101‘0.1957><101 0.1957x 10t 0.1957 x 10t
I
0.2 0.1957x 101 | 0.1957x 10" | 0.1957x 10t | 0.1957x 10t | 0.1957x 10* 0.1957 X 10"
0.4 0.1957 10t | 0.1957 10t | 0.1957x 10t | 0.1957x 10" ; 0.19575 101 | 0.1957x 10t
0.6 0.1957x 10! | 0.1957x 10! | 0.1957x10! 1 0.1957x 10" | 0.1957x 10! 1 0.1957x 10t
0.8 0.1957 x 10t | 0.1957 x 10t | 0.1957 x 10t \ 0.1957x 101 | 0.1957 X 10t l 0.1957 X 10"
1.0 10.1957 10 0.1957x 10" | 0.195710° | 0.1957x 10 0.1957 101 ‘ 0.1957 X 10"
When kd=0.1,
rad ) \ Wri o ) h
v \\1 0 | /10 | /5 37/10 or/5 /2
0.0 | 0.1786 10" | 0. 1786><101i0 1786 10t | 0.1786x 10t | 0.1786x 10t | 0.1786 10t
0.2 |0.1786x 10" | 0. 1786><10110 .1786x 101 0.1786x 101 0.1786x10* | 0.1786x 10!
0.4 | 0.1786 101 | 0.1786 10 0.1786x 10t | 0.1786x 10t 0.1785x 10! | 0.1785 10t
0.6 0.1787x 10t | 0.1786x 10t | 0.1786 X 10t | 0.1785x 10t | 0.1785x 10 | 0.1784x 10t
0.8 10.1787x 10t 0.1787x 10t | 0.1786x 10 0.1785><101]0.1783><101‘0.1782><101
1.0 0.1787x 10t 0.1788x 10t | 0.1786x 10 | 0.1784x 10! ' 0.1781x 10 | 0.1780x 10
When kd=0.2,
0(rad ) - N B N - T
— 0 i /10 5 37/10 2m/5 /2
rld ! o o
0.0 0.1606x 10 | 0.1606x 10t | 0.1606x 10 | 0.1605x 101 | 0.1606x 10! | 0.1606x 10t
0.2 0.1606x 10 | 0.1605x 10t | 0.1605% 10t | 0.1605x 10t | 0.1604x 10! | 0.1604x 10t
0.4 0.1606x 10t ' 0.1605x 10! | 0.1604x 10t | 0.1603x 10! | 0.1602x 10! | 0.1602 10t
0.6 0.1606><101'0.1606><101‘0.1604><101 0.1601x 10t | 0.1598x 10t | 0.1597 x 10t
0.8 0.1607x 10! 0.1608 10" | 0.1605x 10! | 0.1598 10" | 0.1592x 10" | 0.1590 10t
1.0 0.1610x10' 0.1612x10' 0.1606x 10!, 0.1595% 10" 0.1584x 10" 0.1580x 10°
When kd=0.3,
T Tp(rady) R T T
\ 0 om0 a@ps w0 | 275 /2
r/d : !
0.0 10,1459 10" | 0.1459 X 10t 0.1459><10110.1459><101101459x101 0.1459 10t
0.2 10.1459x 10 | 0.1459x 10t 0.1458x 10t 0.1457x 10" | 0.1456x 10! | 0.1456 10!
0.4 !0.1460><101;0.1459><101 0.1456 10t . 0.14533 10" : 0.1451x 10" | 0.1449 X 10t
0.6 10.1462x 100 0.1461x 10t 0.1456x 10t 0. 1449><10110 1442x 10 | 0.1439 x 10!
0.8 10.1465% 10! 0.1466x 10! 0. 1458><101\0 1443><101}0 1429 x 10t | 0.1424x 101
1.0 0.1472x100 0.1475X 10 0.1461x 101, 10.1435x 10" | 0,1412x 10" | 0.1403 x 10t

(to be continued)
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When kd=0.4, (continued)
__ 6(rad.) o - o T
» . 0 /10 /5 31/10 2[5 ]‘ T2
r S R |
0.0 0.1337x 10t | 0.1337 10" | 0.13375 10" | 0.1337x 10! 0.1337x 10t | 0.1337 x 10t
0.2 0.1338 x 10! I 0.1336x 10! 0.1335x 10! | 0.1333x 10t 0.1331x10* { 0.1331x 10!
0.4 0.1340x 10 | 0.1337 x 10! ; 0.1333x 10! | 0.1327x10* 0.1322x 10! i 0.1321x 10!
0.6 10.1344 10 | 0.1341x 10 | 0.1333x 10! | 0.1319x 10t \ 0.1307 x 10* : 0.1303x 10t
0.8 1 0.1351x 10" | 0.1351x 10 ; 0.1336x 10t | 0.1309x 10! | 0.1285x 10 ; 0.1276 x 10!
1.0 ‘ 0.1364x10' | 0.1368x 10! 0.1342x 10! ‘ 0.1296 x 10! “ 0.1255x 10! ' 0.1238 x 10t
When kd=0.5,
) g (rad.) o o i I -
d\ 7T/10 /5 37/10 om/s 1 T2
‘,T/,,,, 7;\ ) b . L R ; o .
0.0 - 0.1233 x 10t 0.1233x 10" 0.1233x 10 | 0.1233x 10 ' 0.1233x 10! 0.1233 x 10!
0.2 £0.1234x 101 0.1231X 10" 0.1228x 10! | 0.1226x 101 1 0.1224x 10! : 0.1222x 10t
0.4 0.1238x10' | 0.1233x 10! 0.1225x 10! | 0.1216x 10! i 0.1208x 10 . 0.1206x 10t
0.6 0.1245x 10t | 0.1241x10' . 0.1226 x 10* | 0.1205x 10! : 0.1186x 10 0.1178x 10!
0.8 0.1258x10' | 0.1257x10* 0.1231x10' | 0.1189x 10! | 0.11562x 10t 0.1137x 10t
1.0 0.1281x10! | 0.1285x 10t 0.1243x10' ; 0.1171x10' | 0.1106x10' 0.1081x 10!
When kd=0.6,
~~__ O(rad.)!
i /10 /5 3T/10 27/5 P
rid o - e - SR
0.0 0.1141x 10! 0.1141x 10t . 0.1141x10* ‘ 0.1141x 10! ‘ 0.1141x10' | 0.1141x 10t
0.2 10.1142x 10t ‘ 0.1138x 10! - 0.1134x 10 ; 0.1130x 10* 0.1127x 10! | 0.1125X 10!
0.4 0.1148 X 10t 10.1142x 10t } 0.1131x 10t | 0.1117x 10! ‘ 0.1106x 10t | 0.1101x 10!
0.6 10.1161x 101 - 0.1154x 10t 10.1132x 10! | 0.1100 10t 0.1073x 10t | 0.1062 % 10!
0.8 ‘f 0.1182x 10! ‘ 0.1178 10t 1 0.1141x10* | 0.1080x 10!  0.1026x 10! | 0.1004 x 10t
1.0 E 0.1216x 10" ; 0.1220x 10t | 0.1157 x 10t | 0.1055 % 10 ‘ 0.9625x 10° | 0.9258 x 10°
When kd=0.7,
~_ 0(ady, . T T o
0 i /10 /5 3T/10 27T/5 /2
rld T -~
0.0 0.1057x 10" - 0.1057x 10t 0.1057x10' 0.1057x10' 0.1057X10'|0.1057 X 10
0.2 0.1059x 10t . 0.1054x 10! 0.1048x 10! 0.1042x10' 0.1037x 10! | 0.1036 x 10
0.4 0.1068x 10! ' 0.1059x 10! 0.1044x10! | 0.1024x10' 0.1008x 10 | 0.1002 x 10!
0.6 0.1087x 10! 0.1077x10' 0.1047x10' | 0.1003x 10!  0.9646x 10° | 0.9495% 10°
0.8 ‘ 0.1119x 10" 0.1113x10' 0.1059X 10t 0.9766 x 10° 0.9031x10° | 0.8738x 10°
1.0 £ 0.1170Xx 10 | 0.1171x 10* 0.1085% 10! | 0.9463 x 10° i 0.8226 x 10°

! 0.7736 x 10°

7 (to béﬁcéﬁr‘;i;lued)
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When kd=0.8, (continued)
0(radf)7' h ) S 7‘ 7 :7;777‘7 1 o Tf:r’:ﬁ o
\ ‘ 0 om0 @5 8w0 | 25 w2
rld T~ I I R
0.0 10.9786x10° 0.9786x 10° | 0.9786X10° 0.9786x 10°  0,978610° 0.9786 100
0.2 10.9826x10° 0.9755510° | 0.9673x 10° | 0.9592x 10° | 0.953210° | 0.9509 % 10°
0.4 ‘0.9959x10°1‘0.9836><100 0.9623><100“0.9364><100 0.9150 10° | 0.9067 x 10°
0.6 0.1022100.1009 X 10 | 0.9672 10°  0.9093 10° | 0.8591x10° | 0.8393x 107
0.8 10.1067x 10t 0.1057x 10t | 0.9858x 10° | 0.8781x10° | 0.7833 10 | 0.7458 x 10°
1.0 0.1138x 10t 0.1135x 10t | 0.1021x 10" | 0.8448 100 | 0.6893 107 | 0.6280 x 100 »
When kd=0.9,
T frad) om0 7 3T/10 | 2m/5 /2 ‘
R I R R
0.0 0.9036x10° 0.9036x 100 | 0.9036x 100 0.9036x 100 0.9036 100 0.9036 10°
0.2 0.9092x 100 0.9001x 100 0.8895x10° 0.8789x10°  0.871110°  0.8682x 10°
0.4 0.9277x10° 0.911710° | 0.8840x10° 0.8506x10° | 0.823210° | 0-8126 10°
0.6 0-9644x10° 0.9461x10° | 0.8922x10° | 0.8185x 100 | 0.7553 x10° | 0.7305 x 109
0.8 0.1026x10 0.1011x10t | 0.9186x10° | 0.7843x 10° | 0.6680 X 10° | 0.6225 x 10°
1.0 0.1121x10! 0.1111x 10t | 0.9671x10° | 0.7529% 10° | 0.5710x10° | 0.5018 x 10°
When kd=1.0,
2 grady i B T
0 T wh 37/10 omi5 T2
r/d I . o ) b )
0.0 10-8299x100 0.8299x10° | 0.8299x 100 0.8299x10° 0.8299x100 0.8299x 100
0.2 10.8375X10° 0.826210° 10.8128x 100 107999 10° 0.7898x10° 0.7862x 10°
0.4 10.8627x100 0-8425x10° | 0.8077x10° | 0.7661x 100 0.7321x10° | 0.7190x 100
0.6 0.9119x10° 0.8882x10° | 0.8207x10° | 0.7302x 10 ; 0.6537x 10° | 0. 6239 107
0.8 0.9936x10° 0.9713x10° | 0.8573 x 10° | 0.6968x 100 0.5623 x 10° ’ 0.5111 X 10°

1.0 0.1115x 100 0.1097x10t | 0.9211x 10 | 0.6751x 100 0.4864x10° 0-4253x 100



A Long Wave in the Vieinity of an Estuary [II] 489
Table 3. The variation of the phases in the domain D,.
When kd=0.02,
6(rad.) B o T - -
\ 0 /10 /5 37/10 21/5 /2
rld 3 o
0.0 10.6273x 101 0.6273x 10 0.6273%10-1] 0.6273x 101 0.6273x 101/ 0.6273 X 101
0.2 0.6248 1071/ 0,.6129x 10! 0.6030x 10-1| 0.5957 x 10-!, 0.5914 x 10-1| 0.5898 x 10-!
0.4 0.6171x 10 0.5943x 10~ 0.5771x 10-1| 0.5657x 10~ 0.5595% 10-1| 0. 5575 x 101
0.6 0.6044 x 10~} 0.5717 x 10" 0.5497x 101 0.5373x 10| 0.5317 X 10!} 0.5302x 101
0.8 0.5865x10-1 0.5449 x 10-! 0.5206x 101} 0.5105x 10-1| 0.5081 x 10-1j 0.5081 x 10-!
1.0 0.5636 101, 0.5139 X 101 0.4901 X 10-4| 0.4852 10-1| 0. 4886 x 10| 0.4911 x 10~
When kd=0.1,
“"”Q(’ié’d]) - - T - -
- ‘ /10 /5 37/10 27/5 /2
rid T
0.0 0.1969x10° | 0.1969x10° 0.1969x10°0 | 0.1969x10° 0.1969x10° | 0.1969x 100
0.2 0.1956x 100 | 0.1897x10° 0.1848x10° | 0.1811x10° 0.1789x10° | 0.1782x10°
0.4 0.1917x10° | 0.1804x10° 0.1718x10° 0.1662x10° 0.1630x10° 0.1621x10°
0.6 0.1853x10° | 0.1690x10° 0.1581x10° { 0.1519x10° | 0.1492x10° | 0.1485x 100
0.8 0.1762x10° | 0.1554x10° 0.1435x10° | 0.1385x10° | 0.1374x10° | 0.1375x10°
1.0 0.1646x10° | 0.1399x10° 0.1281x100 ' 0.1258x10° | 0.1277x 100 | 0.1290x 100
When kd=0.2,
T flrad) | /10 75 37/10 2715 T2
r/d \ | :
0.0 0.288010° | 0.2880x10° 0.2880x10° | 0.2880x 100 0.2880x10° | 0.2880x 100
0.2 0.2853x100 | 0.2735x10° 0.2636>10° | 0.2564x10° 0.2521x10° | 0.2506 % 10°
0.4 10.2773x 100 { 0.2546x10° 0.2376x10° | 0.2264x10° 0.2204x10° | 0.2185x 100
0.6 0.2639x100 | 0.2314x10° 0.2098x10° | 0.1980x10° 0.1928%10° | 0.1914 x 10°
0.8 0.2451x10° | 0.2039x10° 0.1804x10° | 0.1710x10° 0.1692x 100 | 0.1694x 10°
1.0 0.2212x100| 0.1722x10° 0.1493x 100 | 0.1454x10° 0.1497 x 10° | 0.1524 x 10°
When kd=0.3,
= e(rady | - o T r
T~ /10 /5 3m/10 27/5 /2
r/d T~ ‘
0.0 0.3424x10° | 0.3424x10° 0.3424x10° | 0.3424 100 0.3424X 100 | 0,3424 X 100
0.2 10.3381x100 | 0.3204x10° 0.3057 %100 | 0.2949%100 0.2885x 100 | 0.2863x 10°
0.4 |0.3255 100 | 0.2916x10° 0.2663x10° | 0.2498x10° 0.2409x 100 | 0.2382x 100
0.6 0.3046x10° 0.2560x10°' 0.2242x10° | 0.2069x10° 0.1995x10° 0.1976x 100
0.8 0.2753x 100 | 0.2138x100 | 0.1794x100 | 0.1659x10° 0.1637x10° | 0.1642x10°
1.0 0.2378x10° | 0.1654x10° | 0.1320x 100 0.1267x10° 0.1336x10° | 0.1379 % 10°

(to be continued)
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When kd=0.4, (continued)
6(rad.) : ‘ ! ;
E\(\\) 0 ‘ /10 ‘ /5 377/10 ; or/5 T2
0.0 0.3771x10° 0.3771x10° | 0.3771x10° 0.3771x10° 0.3771x10° 0.3771x 100
0.2 10.3712x 100 0.3474%10° 0.8279x100 ' 0.3137x10° | 0.3052x10° 0.3023 x 100
0.4 ‘0.3534><10°}0.3083><10°!0.2749><10°{0.2533><10°‘0.2416><10° 0.2381x 100
0.6 10.3241X100 0.2597x10°| 0.2179X10° 0.1954x10° | 0.1857x10° 0.1834x10°
0.8 10.2833x 100 0.2022x10° 0.1571x10° 0.1395x10° | 0.1368x10° 0.1376x 10°
1.0 10.2316x10° 0.1366x10 | 0.9274x 10+ 0.8528x10-1[0.9418><10—1 0.9998  10-!
When kd=0.5,
T frad) /10 o5 smio or/5 T2
r/d ! 1
0.0 0.4001x10° 0.4001x10° | 0.4001x10° “ 0.4001x 10° | 0.4001x10° . 0.4001 X 10°
0.2 0.3923x 100 ' 0.3626 x10° | 0.8383x10° | 0.3205x10° | 0.3099 % 100 0.3064x 10°
0.4 0.3688x10° 0.3125x10° 0.2710x10° 0.2443x10° 0.2299x10° 0.2255x 10°
0.6 0.3301x10° 0.2501x 100 0.1984x10° . 0.1705x10° | 0.1585x 100 0.1555% 100
0.8 0.2768x10° | 0.1766 100 | 01207 x 10 ! 0.9825x 101] 0.9427 x 101 0.9495% 10
1.0 0.2103x10° | 093935 10| 0.3872 10! 0.2659 10-1, 0.3538 101 0,4195x 10+
When kd=0.6,
\\{(r\ad') o . om0 7@ 37/10 ems w2
rld T . | | \ o
0.0 0.4156x 100 | 0.4156x10° | 0.4156x10° 0.4156X10° | 0.4156x 100 - 0.4156 % 10°
0.2 0.4056x 100 0.3699x100 0.3407x10° 0.3195x10° | 0.3067 X100 . 0.3025% 10°
0.4 0.3758x 100 | 0.3081x 100 | 0.2585x 100 0.2266 10° | 0.2094x 10° ' 0.2040x 100
0.6 0.3269x10° | 0.2312x10° 0.1694x10° 0.1355x10°| 0.1206>10° 0.1167x10°
0.8 10.2603x 100 0.1415x 100 | 0.7404x 101| 0.4453x 10 0.3722 10~ 0.3704x 101
1.0 10,1787 100 0.4230 1071-0.2635 X 10--0. 4818 10-1|-0. 4459 x 101 -0. 3932 x 10-*
When kd=0.7,
~__ 6(rad.) D | o B
0 /10 7l5 37/10 e/s | w2
rl/d T~ ] - R B
0.0 0.4262x 100 | 0.4262x 10° | 0.4262x 10° | 0.4262 100 | 0.4262x 10° | 0.42625 10°
0.2 0.4137x 100 | 0.3718% 100 | 0.337610° | 0.3127x 10° | 0,2978x 10° | 0.2929 X 10°
0.4 0.3767x 100 | 0.2975x 100 | 0.2395x10° | 0.2020 10° | 0.1815x 100 | 0.1752 100
0.6 0.3166x 10 0.2054x 100 | 0.132710° | 0.9149x 101 0.7225x 101, 0.6697 x 101
0.8 0.2363x10° | 0.9936> 10 0.1860 10-1-0.2168 X 10 -0.3645 X 10 -0.3929 x 10-*
1.0 10.1403x 100 |-0,1491 X 101 -0, 1005 x 10° |0, 1408 10° 1-0.1531 X 10° -0, 1543 x 100

(to be continued)
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When kd=0.8, (continued)
~__ O0(ad), | ' B
\ 0 /10 /5 37/10 7/5 /2
rid , ‘ o ,
0.0 0.4331x100 | 0.4331x 10° ‘ 0.4331x10° | 0.4331x10° | 0.4331x10°  0.4331x10°
0.2 0.4178x10° | 0.3695x 10 | 0.3300x 10° | 0.3014x 10° | 0.2842x10° . 0.2785X 100
0.4 0.3728x10° | 0.2818x10° | 0.2149x 10° | 0.1710x10° | 0.1467x10°  0.1390 10°
0.6 0.8007x10° | 0.1737x10° | 0.8905x10-1| 0.3800x 10-1| 0.1185x 10~ 0.4011 x 10-2
0.8 0.2065 10° | 0.5182x 1071-0.4493x 10-0. 1024 10-1-0. 1326 X 10° -0.1410x 100
1.0 0.9774x10-1-0. 7508 x 10-1-0.1827 x 100 |-0.2555 x 10° 0.3056 X 10° -0.3256 100
When kd=0.9,
T flad. 0o @ /5 37/10 o7/5 72
A | | | | R
0.0 0.4369x10° . 0.4369x10° ' 0.4369x10° | 0.4369 x 100 i 0.4369x10° 0.4369 % 10°
0.2 0.4184x10° | 0.3633x 10° 0.3183x100 | 0.2856x10° | 0.2658 X100 0.2593 x 100
0.4 0.3644x10° | 0.2611x10° 0.1844x 100 | 0.1330x10° | 0.1036x 100 0.9411 X 10~
0.6 0.2795x10° [ 0.1364x 100 0.3777x10-1-0.2707 10-1/-0.6478 X 10 -0.7736 x 10-*
0.8 0.1721x 100 10,3823 10-5-0. 1167 X 10° -0. 2018 10° [-0. 2623 x 10° 0.2864X10°
1.0 0.5309x 10-1-0.1361 x 10° -0.2722x 10° -0.3989x 100 |-0.5285 X 10° |-0.5962 X 100
When kd=1.0,
0 (rad.) o i )
\ 0 7/10 /5 smil0 | emss /2
rld ] i | e
0.0 0.4372x10° | 0.4372x 10° | 0.4372x10° | 0.4372x10° i 0.4372x100 0.4372x10°
0.2 0.4150x10° 0.3525x10°10.3015% 10| 0.2641x 100, 0.2414x10° 0.2338x 10°
0.4 0.3509 % 10° | 0.2344x 10° ’ 0.1466 X 10° | 0.8548 10-1} 0.4893% 10~ 0.3668 101
0.6 0.2529x10° | 0.9320 X 10! -0.2265 101 -0. 1079 X 10° -0.1656 X 10° -0,1872x10°
0.8 0.1336x 10° -0.5552x 1071-0.1978 x 10° i~0.3265>< 100 i-0'4449>< 10° -0.5006 % 10°
1.0 0.8187x10-2-0.1962x 10° -0.3685x 10° -0.5784x 10° -0.8540x 10° -0.1014 X 10t
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Table 4. The variation of the amplitudes in the domain D,.
(The coordinates (x, ) used in this table are
dimensionless quantities divided by a
half width (d) of the canal).

When kd=0.02,
\\\\\\\\\:f 0.0 0.2 0.4 0.6 0.8 1.0
Y T~

0.0 = 1.957 1.957 1.957 1.957 1.957 1.957
—0.2 1.957 1.957 1.957 1.957 1.957 1.957
—0.4 1.957 1.957 1.957 1.957 1.957 1.957
~0.6 1.957 1.957 1.957 1.957 1.957 1.957
—0.8 1.957 1.957 1.957 1.957 1.957 1.957
-1.0 1.957 1.957 1.957 1.957 1.957 1.957

When kd=0.1,
7 0.0 0.2 0.4 0.6 0.8 1.0
R

0.0 1.786 1.786 1.786 1.787 1.787 1.787
—0.2 1.787 1.787 1.787 1.786 1.786 1.786
—0.4 1.787 1.787 1.787 1.786 1.786 1.786
—0.6 1.787 1.787 1.787 1.786 1.786 1.786
~0.8 1.787 | 1.787 1.787 1.786 1.786 1.786
~1.0 1787 | 1787 1.787 1.786 1.786 1.786

When kd=0.2, - L o
~_7 0.0 | 0.2 0.4 0.6 0.8 1.0
Y T \

0.0 1.606 | 1.606 1.606 1.607 | 1.608 1.610
—0.2 1.607 | 1.607 1.607 1.606 :  1.606 1.606
—0.4 1.607  1.607 1.607 1.606 1.606 1.606
~0.6 1.607 . 1.607 1.607 1.606 . 1.606 1.606
-0.8 1.607 | 1.607 1.607 1.606 1.606 1.606
~1.0 1.607 | 1.607 1.607 1.606 | 1.606 1.606

When kd=0.3,
P ! |
I 0.0 0.2 ﬁ 0.4 0.6 08 1.0
Yy : ‘ i :

0.0 1.459 | 1.459 | 1.460 1.462 | 1.465 1.471
-0.2 1.462 1.462  1.462 1.462 - 1.462 1.462
—0.4 1.463 1462 1.462 1.461 | 1.461 1.461
~0.6 1.463 ©  1.463 . 1.462 1461  1.461 1.461
-0.8 1.463 1.462 1.462 1.461  1.461 1.461
~1.0  1.462 1.462 1.462 1.461 1.461 1.461

(to be continued)
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When kd=0.4, (continued)
\\;\ 0.0 0.2 0.4 0.6 0.8 1.0
Yy ~_ |
0.0 1.337 1.338 1.340 1.344 1.351 1.362
—0.2 1.342 1.342 1.343 1.343 1.345 1.346
—0.4 1.344 1.344 1.344 1.343 1.342 1.342
—0.6 1.345 1.344 1.344 1.343 1.342 1.342
—0.8 1.344 1.344 1.344 1.343 1.342 1.342
—1.0 1.344 1.344 1.343 1.343 1.342 1.342
When kd=0.5,
—~ z T ; T
T 0.0 0.2 i 0.4 0.6 0.8 1.0
0.0 i‘ 1.233 1.234 1.237 1.245 1.258 1.277
—0.2 1.241 1.242 1.243 1.245 1.248 1.250
—0.4 1.245 1.245 1.244 1.244 1.243 1.243
—0.6 1.246 1.245 1.244 1.243 1.242 1.242
—0.8 1.246 1.245 1.244 1.243 1.242 1.242
—1.0 1.245 1.245 1.244 1,243 1.243 1.242
When kd=0.6,
S S— S | e e e ==
~ — 0.0 0.2 i 0.4 0.6 0.8 1.0
__ Y B :
0.0 1 1.140 . 1,142 1.148 1.161 1,182 1.211
—0.2 1.154 1.154 1.156 1.160 1.166 1.170
—0.4 1.159 1.159 1.159 1.159 1.159 1.159
—0.6 1 1.161 1.161 1.160 1.158 1.157 1.157
—0.8 i 1.161 1.161 1.160 1.158 1.157 1.156
—-1.0 1.161 1.160 1.159 1.158 1.157 1.157
When kd=0.7,
~__ x o -
T~ 0.0 0.2 0.4 0.6 0.8 1.0
] T~
0.0 1.056 1.058 1.068 1.088 1.119 1.163
—0.2 1.075 1.076 1.080 1.087 1.096 1.102
—0.4 1.084 1.084 1.084 1.085 1.086 1.087
—0.6 1.087 1.086 1.085 1.084 1.083 1.082
—-0.8 1.087 1.087 1.085 1.084 1.082 1.082
—-1.0 1.087 1.086 1.085 1.084 1.082 1.082

(to be continued)
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When kd=0.8, (econtinued)
f 0.0 | 0.2 i 0.4 0.6 0.8 1.0
oy T~ |

0.0 0.977 0.980 | 0.994 1.024 1.068 1.129
—0.2 1.004 1.005 1.011 1.022 1.037 1.046
—0.4 1.016 1.016 \ 1.017 1.019 1.022 1.023
—0.6 1.021 1.020 1.019 1.018 1:017 1.016
-0.8 1.022 1.021 1.020 1.017 1.016 1.015
—-1.0 1.021 1.021 1.019 1.018 1.016 1.015

When kd=0.9,
T~ 0.4 e
S 0.0 0.2 . 0.6 0.8 ’1.0

0.0 0.901 0.906 0.926 0.966 1.027 1.108
-0.2 0.937 0.939 0.948 0.964 0.986 0.999
—0.4 0.954 0.955 0.957 0.961 0.965 0.968
—0.6 0.961 0.961 0.960 0.958 0.958 0.958
—0.8 0.963 0.962 0.960 0.958 0.956 0.955
—-1.0 0.962 ’ 0.962 0.960 0.958 0.956 0.955

When kd=1.0,
—~ 7 0.0 0.2 0.4 0.6 0.8 1.0
Y \

0.0 0.826 0.833 0.860 0.914 0.994 1.099
—0.2 0.873 0.877 0.889 0.912 0.943 0.961
—0.4 0.896 0.897 0.901 0.907 0.915 0.919
—0.6 0.906 0.905 0.905 0.904 0.904 0.904
—0.8 0.909 0.908 0.906 0.903 0.901 0.901
—-1.0 0.909 0.908 0.906 0.903 0.901 0.900




A Long Wave in the Vieinity of an Estuary [II]
Table 5.

495

The variation of the phases in the domain D,

(The coordinates (x, ) used in this table are
dimensionless quantities divided by a

half width (d) of the canal). -

When kd=0.02,
~ s \
~ 0.0 0.2 | 0.4 0.6 i 0.8 } 1.0
Y T~ i
0.0 |0.6270x 10 0.6249><10-1: 0.6173X 101, 0.6039x 10 0.5870 1071, 0.5675x 10
—0.2 | 0.6583x 107 0.6566 10" 0.6515X 10" 0.6435 10 0.6346 10 0.6298 10
; —0.410.6929>10°4 0.6918x 10" 0.6887> 107 0.6843x 10" 0.6800 104 0.6781x 10}
—0.6 | 0.7208x 104 0.7292 104 0.7274x 104 0.7250x 10 0.7228x 10 0.7220 10~
—0.8  |0.7681x 101 0.767710-% 0.7667x 101 0.7654x 10~ 0.7644)(10'11‘ 0.7639x 101
. ~1.0  |0.8072x10 0.8070x 10 0.8064x 10% 0.8057 10* 0.8052 104 0.8049 101
When kd=0.1,
Tt 0.0 0.2 | 0.4 0.6 « 08 | 1.0
s ) ) | ) . ) | .
0.0 | 0.1967x10° | 0.1957x10° 0.1918x10°|0.1850%10° 0.1756 10° 0.1666x10°
—0.2  10.2123x10° 0.2115x10° 0.2089x10° | 0.2049x10° ' 0.2003x 10° ; 0.1979x 100
~0.4 |0.2296x10° | 0.2291x10° 0.2275x10° 0.2253><100?0.2231><100;0.2221><100
—0.6 | 0.2481x100|0.2477x10° 0.2468x10° | 0.2456x 100 | 0.2445x 100 | 0.2441x 100
—0.8  |0.2672x 100 0.2670x10° 0.2665x10° | 0.2658x10° | 0.2653x 100 ' 0.2651x 10°
—1.0 | 0.2867x10° | 0.2866x10° 0.2863x10°| 0.2859x10° 0.2857x10° 0.2855x10°
When kd=0.2,
\\x 0.0 0.2 | 0.4 0.6 0.8 1.0
Y T~ .
0.0 | 0.2875x100|0.2854x10° 0.2773x 100 | 0.2632x 100 | 0.2455x 100 | 0.2252x 100
—0.2  |0.3185x10° | 0.3166x10° 0.3112x 100 | 0.3029x 100 | 0.2935x 10° | 0.2885% 10°
0.4 |0.3527x100|0.3516x 100 0.3483x 100! 0.3436x10° | 0.3391x 10° | 0.3871x 10°
0.6 |0.3895x1000.3888x10° 0.3869x10° | 0.3844x10° | 0.3821x10° | 0.3812x 100
0.8 | 0.4277x10° | 0.4273x 100 0.4263x 100 | 0.4249x 100 0.4237x10° | 0.4233%10°
—1.0 | 0.4667x10°| 0.4665x10°, 0.4659x10° | 0.4659x10° | 0.4646x 10° | 0.4644x 10°
When kd=0.3,
' T~ 0.0 0.2 0.4 0.6 0.8 1.0
Y T~
0.0 |0.3412x100(0.3378x 100 0.3252 10 | 0.303110° | 0.2754x 100 | 0.2437x 100
. —0.2 | 0.3870x10° |0.3841x10° 0.3756x10° | 0.3626x10°  0.3478x10° 0.3399x10°
~0.4  10.4381x10° 0.4362x10° 0.4311x10°|0.4237x10°, 0.4166x 10 | 0.4135x 100
—0.6 | 0.4929x10°| 0.4918x10° 0.4889x10° | 0.4849 10 0.4814x 10° | 0.4799x 100
—0.8 | 0.5501x10°|0.5495x10° 0.5478x 10° | 0.5457x10° 0.5439 100 | 0.5432 10°
—1.0 | 0.6085x10°|0.6082x10° | 0.6073x10° | 0.6062x 10° | 0.6052x 10 | 0.6049 X 100

(to be continued)
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When kd=0.4, (continued)
\\\\ x T T } T
. 0.0 | 0.2 0.4 0.6 0.8 } 1.0
oy f !
0.0 [0.3747x10° | 0.3699x10° | 0.3521x10° | 0.3213x 100 | 0.2826x10° | 0.2387x 10°
~0.2 | 0.4348x10°| 0.4308x10° | 0.4188x 10° | 0.4005x 10° | 0.379710° | 0.3686 109
—0.4 | 0.5024%10° | 0.4997x100 | 0.4925x 100 | 0.4821X 100 | 0.4721x 100 ' 0.4677 x 10°
—0.6 | 0.5751x10° | 0.5736x10° | 0.5694x 10° | 0.5637x 10° | 0.5588 10° | 0.5567 100
—0.8  |0.6511x10° 0.6502x10° | 0.6478x10° | 0.6449x10° | 0.6424x10° | 0.6414x 100
—~1.0  [0.7288x10°|0.7284x 100 | 0.7271x10° | 0.7255X 100 | 0.7242x 100 | 07237 x 100
When kd=0.5,
= z T T 1
T~ 0.0 0.2 0.4 0.6 0.8 | 1.0
y
0.0 |0.3956x 100 0.3892100 | 0.365710° | 0.3251x10°  0.2747x10° | 0.2181x 100
—0.2 | 0.4696x 100 | 0.4642x 100 | 0.4483x10° | 0.4239x 10° | 0.3966x100 | 0.3819 100
~0.4 | 0.5531x 100 0.5497x 100 | 0.5399%10°  0.5261x10° | 0.5128x 100 0.5069 100
—0.6  [0.6435x10° 0.6415x10° | 0.6358x 100 | 0.6283%10° | 0.6217x10° 0.6190% 100
—0.8  [0.7381x10°|0.7369x100 | 0.7338x 100 | 0.7298x 10° | 0.7264x 10° | 0.7251 x 100
—1.0  |0.8351x10° | 0.8344x100 | 0.8328x 100 | 0.8307x 100 | 0.8290x 10° | 0.8283x 100
When kd=0.6,
S 0.0 0.2 047 0.6 0.8 1.0
0.0 | 0.4078x10° | 0.3997x100| 0.3698x 10° | 0.3185x 100 | 02556 10° | 0.1863 x 100
—0.2 | 0.4953%10° | 0.4884x 100 | 0.4681x10° | 0.4369x 100 | 0.402210° | 03836 100
~0.4  |0.5944x100|0.5899x 100 | 0.5774x 100 | 0.5596x 100 | 0.5425x 10° | 0.5350 100
—0.6  0.7020x10° 0.6994x100| 0.6921x100|0.6824x10° | 0.6739x10° | 0.6704x 10°
—0.8 0.8149x10° | 0.8135x 100 | 0.8095x 100 | 0.8044x10° | 0.8000x 10° | 0.7983 X 10°
—1.0 . 0.9311x10°|0.9303x 100 0.9282x100 | 0.9255x 100 | 0.9233x 10° | 0.9224 x 100
When kd=0.7,
- =z o
\\ 0.0 0.2 04 0.6 0.8 1.0
Y T
0.0 0.4136x10°| 0.4035x10° 0.3665x100|0.3036x10° | 0.2279x100 | 0.1463x 10°
0.2 0.5142x10°| 0.5055x10° 0.4801x10° | 0.4415x10° | 0.3986x 100 | 0.3758x 10°
—0.4 0.6284x10°|0.6227x10° 0.6070x10° | 0.5846x 100 | 0.5632x 10° | 05539 10°
—0.6 | 0.7529x100]0.7496x10° 0.7405x100|0.7282x 100 | 0.7174x 100 | 0.7130 10°
—0.8  [0.8840x10° 0.8822x10° 0.8772x10°|0.8707x 100 0.8562x 100 | 0.8630 10°
~1.0  |0.1019x10 ' 0.1018x10! 0.1015x10! | 0,1012x10' 0.1009x 10 0.1008x 101

(to be continued)
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When kd=0.8, (continued)

x ;
\ 0.0 0.2 | 04 0.6 0.8 1.0
y i

0.0 0.4145x10° | 0.4021x10° ; 0.3571x 10° | 0.281810° | 0.1934x10° | 0.1011 x 10°
—0.2 0.5278x10° 0.5171><10°;’0.4859><10° 0.4389x10° | 0.3874x 100 | 0.3602x 10°
—0.4 0.6567x10° 0.6497><10°;0.6302><10° 0.6026x10° | 0.5763:x10° | 0.5648x 10°
—-0.6 0.7977x 100 0.7935><10°{0.7822><10° 0.7670x10°| 0.7535x 100 | 0.7481 x 10°
-0.8 0.9467x10° | 0.9444x 100 | 0.9381x 100 | 0,9300 100 | 0.9231 % 100 | 0.9204 % 100

~1.0 0.1100x 10! 0.1099><101:10.1096><101 0.1092x10! | 0.1088x 10" ! 0.1087 x 10t

When kd=0.9,

\ 0.0 0.2 | 0.4 0.6 0.8 , 1.0
y 1 |

0.0 0.4111x10°| 0.3961 X 10° | 0.3423x10° | 0.2541x 10 | 0.1538x 100 | 0.5313x 10t
-0.2 0.5372x10° 0.5241><10°;0.4865><10° 0.4302x10° | 0.3694x 10° | 0.3377 x 10°
—0.4 0.6804x 100 0.6719><10°i0.6479><10° 0.6144 x 100 0.5824><10°i0.5686><10°
-0.6 0.8375x10° 0.8324X10°30.8183><10° 0.7995x10° | 0.7829x 100 0.7762x 10
—0.8 0.1004x 10* | 0.1001x 10t | 0.9933x 10° | 0.9832x 10° | 0.9747x 10, 0.9713 X 10°

-1.0 0.1176x10! | 0.1174x 10! 0.1171x 10t | 0.1165X 10" | 0.1161x 10*  0.1159 x 10t

™

When kd=1.0,
T x i

0.0 0.2 0.4 0.6 0.8 1.0
y\ | 1

0.0 0.4041x10° | 0.3862x 10° ' 0.3226x 100 | 0.2213% 100 | 0.1108x 10° | 0.5066 % 10-2

—-0.2 0.5433x10°| 0.5276x 10° : 0.4825x10° | 0.4161x 10° | 0.3458x 10° | 0.3098 < 10°

—-0.4 0.7005x 10 | 0.6901x10° 0.6611x10° | 0.6206x 100 | 0.5824x 10° | 0.5659 x 100

—0.6 0.8732x10° | 0.8669x 10° | 0.8496 % 100 | 0.826610° | 0.8063x 10° | 0.7981 x 100

—0.8 0.1056x 10! | 0.1053x 10! | 0.1043x 10! | 0.1031x 10t | 0.1021x 10! | 0,1016 10t
-1.0 0.1247x 10! 0.1245><101§0.1240><10l 0.1233x 10! | 0.1228x 10! | 0.1226x 10t
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31, WORfEes I ARz wT [1I]
wEmer ke H owm R

ey DL ERT BT 2 BB B IR N v e LR ORERE U O Tk & o,
FLTHFDELRE 2 JOR P CREF TR S ieofc ERA ¥ LD DORSEOHE TH 5,
FORER, 1R T b okl DO DM I LT E e, HiLhho
Pl EBRDE I ETHD,

O ORBOHCIE, EOEITC Lo TAE U EBbh s REENTE 5,

IR D SEAPE LR, JEYG (open sea) X il O OFuNZE DT A (B OGEFII=AIERE
L LTW3), FDIZEH S 2o Toh boFIIKEBOMH M ExE L TPL.,

SELIASET 1L v oE 2 SRR (RIfEG ) iElricoh T, R sT 2WMERMEILS E HE
{L2ZF3, ZLohboFEofFmErdbh s Ths,

AL oM ORIMTA WV btk FAFEIIEHIC Lo T B buffer domain DJEET
H5.



