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Abstract

In this paper, a long wave in the vicinity of an estuary is
treated by use of the method of the buffer domain.

Dividing the whole domain into three parts, the equation of a
long wave is solved analytically by use of the Fourier Bessel
expansion. Then an electronic computer was used to obtain the
wave heights and phases in each domaln The conclusions obtained
in the present purview are:— :

(1) TFor the waves propagating into the canal, when kd (k: the
wave number of the incident waves; d : half the width of the canal)
approaches to zero, the wave height tends to double that of the
incident waves, the phase becomes zero and the waves in the canal
are propagated as if they originated at an infinite point. When kd
increases in amount, the wave height diminishes monotonically to
reach that of the incident waves at about kd=1.0, the phase takes
a maximum value at about kd=0.3 and later decreases monotonic-
ally to zero value at kd=1.0, and the supposed origin of the waves
propagated into the canal approaches the estuary.

(2) For the waves in front of the mouth of the canal, the
equi-amplitude and phase lines run parallel to the coast facing the
open sea and the amplitude of the waves increases in the direction
of the offing. Provided that the linear approximations for sine and
cosine functions are possible, it is found that the waves in front of
the mouth of the canal are propagated with the speed of a long
wave into the canal.

(8) As far as the waves in the open sea are concerned, our
greatest interest is in damping reflected waves (instead of merely
reflected waves). Regarding these waves, the following facts are
known.

When kd is small, the amplitude of the damping reﬂected waves
is also small. As kd becomes large, a contribution of these waves
to reflected waves is augmented. For the rates of the damping of
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these waves versus a variation of position, a similar tendency is seen.
That is to say, the damping rate is gentle for small kd and rapid for
large kd. And the rate is remarkable, in magnitude, in the
surrounding part of the mouth of the canal.

The surface composed by the amplitudes of the damping reflected
waves tends to an asymptotic surface as kd becomes large.

Finally, concerning the directivity of the damping reflected
waves, the fact is known that a contribution of these waves to
reflected ones is small in the direction along the coast and becomes
large as a line, along which a variation of the damping reflected
waves is examined, is directed to the offing.

1. Introduction

When the Chilean Tsunami of 1960 attacked Japan, severe damage
was incurred in the surrounding parts of the estuaries. Such heavy
inundations are considered to be due to the following two reasons: (1)
the nearby part of the estuary is low in land topography and (2) the
tsunami waves are diffracted into the rivers or canals around the
estuary. The second possibility mentioned above has not yet been
examined, hence it is checked in this article. Besides this examination,
the behaviors of the waves in the vicinity of the estuary are secrutinized
also in the present purview. The analysis has been carried out by use
of the method of the buffer domain, which was first developed by the
author. For this method, readers should refer to a paper under the
title ‘“ The Method of the Buffer Domain in the Water with a Step
Bottom ”’.V

In Section 2, the general theory is developed without any approxi-
mation.

In Section 3, the general theory derived in Section 2 is approxi-
mated to obtain knowledge of the waves in nearby areas of a mouth
of the canal.

2. General Theory

Referring to Fig. 1, the origin of the coordinates is located in the
center of the mouth of the canal, the «- and y-axes being taken along
the coastline and in the sense of the banks of the canal. Let the

1) T. Momol, Bull. Earthq. Res. Inst., 41 (1965), 296. In Section 2 of this paper,
the method of the buffer domain was outlined.
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domains separate into three parts as shown in Fig. 1, i. e.,

D,: the domain in the range (lz|<d, y<0);

D,: the domain in the range (r<d, 0<0<=), where (r, ) are the
polar coordinates and D, corresponds to the ‘‘ buffer domain”’
in the method of the buffer domain ;

D,: the domain in the range (r>d, 0<0<x).

/\y )
Incident
Wave
Ds Loexp(~iwt-iky)
Buffer
Domain v
®=1 : D2 h

N

Fig. 1. A model of an estuary.

Then the basic equations for a train of the periodic waves are

® . :
o k2> =0 (j=1,2,3), 1
(Tt +)=0 G ) (1)

where ¢;: the wave heights in the domains D;;

I : the wave number of the surging waves, which is related
to an angular frequeney » and the velocity ¢ of the long
wave such as

w=ke .

The conditions at the rigid boundaries are:
in the domain D,

{?L:O at (lvl=d, y<0); (2)
x

in the domain D,,
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0%,

=0 at (Iz)>d, y=0). ‘ (3)

The conditions for connecting three domains with each other are:

C1=C2 ’
oc, _ oc, at (jz|<d, y=0), ' (4)
oy oy
and
C2:C3 )
o, _ oz, 2t (r=d, 0<0<m). (5)
or or

Provided that the surging periodic waves are given by
£, exp (—iwt—1ky) ,

where {, is the amplitude of the surging waves, the solution of (1) in
the domain D, satisfying the condition (3) is given as follows :

£,=27, cos ky+ 3, & cos 2n0- HY (kr) (6)
n=0

where the first term of the above expression stands for the standing
wave due to the reflection of the incident waves at the straight coast
and the second group of terms denotes the scattering of the waves by
the estuary, of which the azimuthal components are selected so as to
satisfy the boundary condition (3). Using the Bessel expression of
cosine,? i.e.,

cos kyzi, g, cos 2nd - J,,(kr) , (6)
n=0
the expression (6) becomes

Cszz/:o i g, COS znﬁ'Jzn(kT)
n=0

Ms

+ 3 &8 cos 2nd - H) (kr) (7)

n=0

]

2) G. N. WATSON, Theory of Bessel Functions (Cambridge, 1922).
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where
=1 and ¢,=2 (n=1) .

Likewise, by use of the polar co-ordinates, the solution of the
equation (1) in the domain D, is given as follows:

£=3, {5 cos 200, (k)
n=0
+E8 sin(@n+-1)0+ 5, 4.(k7)} (8)

In the expressions (7) and (8), the azimuthal modes are taken in
such a way that the symmetry of the phenomenon with respect to the
y-axis is satisfied, and &%, ,®» and £,°*V are the arbitrary constants
to be determined by the conditions communicating the domains D,, D,
and D,.

Next, following the same procedure as in the previous study for
the canal®, the solution of (1) in the domain D, satisfying the condition
(2) becomes as follows (using the symmetry) :(—

(m)

Clzm% ¢ cos %x-e‘“‘l v, (9)

where Z{™ is the arbitrary constant and

In the expressions (7), (8) and (9), a time factor exp (—iwt) is
omitted as usual (this convention is followed in the subsequent discus-
sions, unless otherwise stated).

In order to determine the arbitrary constants in the expressions (7),
(8) and (9), we have four available conditions (4) and (5).

Sustituting (8) and (9) into (4), we have:

S E8 (k)= 3¢ cos 7;7: v,
n=0 m=0
S @ne ). Tl r (10)

=3 L™ (—1ki™) cos T
m=0 d

3) T. Momol, Bull. Farthq. Res. Inst., 40 (1962), 719.
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In derivation of the latter of the relation (10), the reductions

6 _1 0 for 0=0,

0y r o0
_a :——L——6 for 0=m,
oy r 00

are used.
Likewise, substituting (7) and (8) into (5), we have

S {€ cos 2n0-J,, (kd)
28 sin 20+ 1)0+ Taysi(kd))

=2, i g, cos 2n0-J,,(kd)
+ 3 €8 cos 2n0- HE (kd)
" (11)

i (€2 cos 2n0-J,,(kd)
n=0
+&8 sin(2n+1)0 - Iy, ia(kd)}

—2z, 2 ¢, cos 2nd - J,,(kd)

£ eem cos 200+ HY' ()
n=0

Applying the operators (one of the reductions in the method of the

buffer domain) :
d
§+ cos ™ xpdax (m=0,1,2, ---)

—d

and
n=0,1,2, ..+)

Sx cos 2nf db
0

to (10) and (11) respectively, the following infinite simultaneous equations

are obtained :

I(J2n) 0) ° 52(27” —kd- Cl((’) =0’
(12)

kd_ o _

>
n=0
S, Iy m) T8 — 1
n=0 2

(m=1727 3’ * ") ’




where
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Ms

0

3
I

I( Sont1 , 0>'Cé2n+n+i'kd‘dm:0 ,
r

M

1( Lo, m) g i Ll d- 0 =0
r i 2

n=0

Il

(mzl, 27 37 "') ’

1
2n+1

=Hy" (kd)- ;" +2J,(kd) - &,

Jo(kd)-(:_2‘°> +§% ey a(fed) - Cfm+D

Fom oo 4 @A Dk onss
Tonlld) L8 4 35— oy

=H(kd)-C&™ +4J,,.(kd) - ¢,
(m:l, 2, 3, "') ’

Tulkd)-L0 43, & ()

=Hy"'(kd)-{" +2Jo(kd) -,

’ e (em = 4 (2%+1)J2In 1(kd) 2n 41 $‘
am(bod) L™ —- x LY
Tinlled) T3y o o P

=H;, (kd) L™ +4d,,(kd) - &,
(/m‘zlr 2’ 3’ "') ’

kd qTf
17, q)=g0 Jon(@) cos L2 z2dz
kd
0

I(J—TL q):(2n+ 1)& J—;@ cos %zdz ,

(’)’L, ¢=0, 1, 2, "’)

297

(13)

(14)

(15)

(16)

When the caleulation is made, the above-mentioned simultaneous
equations are solved as a finite number of simultaneous equations as

usual.

sion of the result are made.

In the following sections, the actual calculation and the discus-
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3, First Approximation

In order to solve the equations (12) to (15), the approximation is
given to the expressions of the buffer domain. When kd is so small,
the Bessel functions can be approximated such that

Jo(?)=1,

~% .
S = (17)
Jn(2)=0 (m=2).

Substituting (17) into (16) and after some calculations, we have:

=kd  (¢=0),

I(J,, q){
=0 (¢=z1),

I(JQn’ Q) =0 (”Zli (]:0, 1» 2’ "') ’

1.0 (g=0) a9

= — q: ’

L
=0 (g=1),

1(*’2;*1, q> =0  (n=1; ¢=0,1, 2 ).

By use of (17), the derivatives of the Bessel functions are given as

follows :
Ju(z) =0,

Ji(2) :% , (19)

Jn(2)=0 (m=2).

Applying the approximations (17)—(19) to the left-hand sides only
of (12)—(15) (the approximation is given merely to the expressions of
the buffer domain D,), we have the following :—

kd €0 — kd-® =0,
B kzd—-cf’”=0 o (12)

(m=1,2,3, --+),
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%kd-Cé"H-kd-c{‘” =0,

i Lpmd.cm =0 (13"
2
(’)’)’L‘:l, 2, 37 . ')
&0+ L8
T

=H" (kd)-{5" +2J (kd) - &,

1.2 4.4 o . (14')
7 1—(2m) : '

=H(kd)- 5™ +4d,,(kd) - €,
(mzl, 27 3, "') ’

1, e

Vs
=H"'(kd)-¢” +2Jy(kd) -,

1.2 o - (15"
z 1—@2my ‘

=Hp/ (kd)- ¢ +4J5.(kd) - C,
(m:]-i 27 37 "') .
From (12') and (13°) we have

T =0,
¢ =200, (20)
Cl(m):() (m=l, 2, 3, ...)

Substituting the first two expressions of (20) into the first expressions
of (14') and (15'), the following equations are obtained :—

(1-i-2ka)-0 — B (kd) - €0 =27 (Id)-C,

— i 20— HP () -0 =2Jy(ed) -, .
T
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Solving the above two equations, {® and ¢ are expressed as

e
o
o 25 [(_14:.2
o= 4 {( 1+ nkd)Jl(kd) \ (21) |

+¢-3J0(kd)} ,
T

where

Al=(1—i-3kd)ﬂfl>(kd)—i-EHsn(kd) ,
e s (21')
d,=—nkd4, .

Putting (21) into the first two equations of (20), the expressions of

€9 and ¢ are:—

Eéo)___i. 4Co ,

" ' (22)
=0,

4,

By use of the expressions of (14'), (21') and (22), the higher mode
of the reflected waves in the domain D, is expressed as

(2m):___4€_°_, i.l.—l—-___ kd
3 H (kd) {ﬂz 4, (@m)y—1 am( )}.

Using (17), the above equation is reduced to

o (Ay. 1 1. 1
: —(n) @my—1 4, HY(kd) & (23)

(m=1,2,3, --+) .

Substituting (23) into (7), the wave height in the domain D,
become :

G=5+02 (24

where
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¢,=2¢, Z._eo e, cos 2nd-J,,(kr) ,

¢ =0 - HP (kr)+-L0>°, (25)

(>0 _ _4_)2_§g S 1 Hi(kr) | onb
&5 (n b By 1 R (kd) cos 2n0 .

Likewise, the expressions of the wave heights in the domains D,
and D, become as follows :
in the domain D,,

clzi.%-e—w , (26)

0

which is derived from the last expression of (20), the first expression
of (21) and (9);
in the domain D,

= ‘250 i+ Jofer) +2 sin 0+ (k7)) . 27)

0

In the last expression, the equations (8) and (22) are used, and the
terms beyond ¢ and ¢ are neglected, because no contribution of these
terms upon ¢, may be considered under the approximation (17) used in
this section. .

Before proceeding to the numerical calculation and discussion, the
applicability of the theory derived under the first approximation is
discussed in the following.

From the expression of the ascending series of the Bessel function

10=(5) e

(m=0,1, 2, --+)

(28)

and the approximated ones of (17), the errors due to the first approxi-
mation (17) are estimated as follows" :—

4) The Bessel function (28) is an alternating convergent series with a maximum
absolute value at a certain term which is relevant to the magnitude of the variable z.
Therefore, in order to estimate the errors of the approximation, we must prescribe the
range of the argument z allowing for the convergence of the series.  When the series is
an alternating one, if the »-th term is in magnitude smaller than the (n—1)-th one for
a sufficiently large n, such a series is called to be convergent. Hence the determination
of the range of the argument z so as to make possible the estimation of the errors must
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an error from the approximation Jy(z)~1 is about

2
(%) for the values in the range |2]<4; (29)
an error from the approximation Jl(z):g about

%(%) for [21<21/6 ; (30)

an error from the approximation J,(z)~0 (m=2, 3, 4, ---) about

;%(—Z—)m for |z|]<2V'm+1. (81)
From (29)—(31), the error of the present appoximation is considered
to be approximately

2 —_—
(%) for |¢|<21/'F . (32)

Although the above estimation of the error has been made in the
absolute value, the error (32) is interpreted as a relative one because the
first term of J,(2) is a unit. -

Now, by use of (26) and (21'), the variation of the wave height in
the domain D, versus kd is examined numerically. Taking account of
the application range (32) of the theory, the parameter kd is varied
from 0 to 2. Then the expected error (a relative one) is (%@)2 on the

highest estimate. The calculated values of the wave height, arg ¢® and

be carried out in such a way that

|the n-th term|>|the (n-+1)-th term| for n=no, where |the mo-th term| is supposed
to be the error of the finite series up to the (no—1)-th term.

Hence if we retain the terms up to (no—1) in the series of the Bessel function J,(z),
the error due to the truncation of the series is

1 z \m+2ng
m(i) (at most) (I)

and the range of z to make possible the above estimation of the error is derived from
an inequality

1 < z >m+2no> 1 / z>m+2n0+2
nol-(m+mo)! \ 2 (o+1)!-(m+no+1)1\ 2 ’
ie.
12| <24/ (o +1)(m+no+1) (II)

Using (I) and (II), the estimations of the errors in (29) to (31) are made.
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B are tabulated in Table 1, of which the graphs are drawn in Figs. 2, 3
and 4 respectively. Here, 8 is defined as follows.
Setting down

B=(arg({")/kd , (33)

A%

kd

o)

Fig. 2. The variation of the wave height in the canal (the full line is the
variation of the wave height calculated based on the theory of the first approximation
and the broken line the estimated errors).

arg, £

=0.71

Fig. 8. The variation of arg ¢{” versus kd (the solid line is the variation of
arg({” for a change of kd and the broken line the estimated errors).



(¢}

0.2 0.4 0.6 0.8 1.0 12 kd

Fig. 4. The variation of pB-value versus kd (the full line stands for the
variation of the computed values of 8 and the broken line the estimated errors).

the expression (26) is transformed into

¢,=|C| exp {—k*(y*—B)} , (34)
where
kE*=kd ,

(in dimensionless form with respect to d),
yr=y/d,

and where, since no higher modes of the waves exist in the expression
(26), the following identity holds, i. e.

1€.]=18] -

Allowing for the omitted time factor exp (—iwt) and taking the real
part, the complete form of the waves in the domain D, is

=12 cos {wt+E*(y*— P}, (35)
or

t,=1¢®| cos (wt+L*y*—arg &) . (36)

In the above two expressions, the former is preferred to inspect at
what position of the y-coordinate a wave of the type cos(wt+Fky) is
originated, and the latter to see at what extent the progressive wave
in the domain D, has a phase difference at the mouth of the canal (y=0).
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Table 1. The variations of the waves in the domain D,

versus kd.

kd 1€211¢0 arg (¥ B8
0.02 1.95523 0.062323 3.11616
0.04 1.90697 0.104274 2.60681 -
0.06 1.85811 0.137341 2.28903
0.08 1.80989 0.164225 2.05282
0.10 1.76295 0.186336 1.86336
0.12 1.71767 0.204581 1.70484
0.14 1.67420 0.219608 1.56862
0.16 1.63262 0.231906 1.44941
0.18 1.59292 0.241860 1.34366
0.20 1.55507 0.249780 1.24890
0.22 1.51900 0.255921 1.16327
0.24 1.48463 0.260495 1.08539
0.26 1.45187 0.263681 1.01415
0.28 1.42063 0.265630 0.94867
0.30 1.39083 0.266473 0.88824
0.32 1.36236 0.266323 0.83225
0.34 1.33516 0.265275 0.78022
0.36 1.30915 0.263416 0.73171
0.38 1.28424 0.260819 0.68636
0.40 1.26038 0.257550 0.64387
0.42 1.23749 0.253666 0.60396
0.44 1.21552 0.249218 0.56640
0.46 1.19440 0.244953 0.53008
0.48 1.17410 0.238809 0.49751
0.50 1.15455 0.232924 0.46584
0.52 1.18571 0.226630 0.43582
0.54 1.11755 0.219956 0.40732
0.56 1.10002 0.212928 0.38022
0.58 1.08309 0.205571 0.35443
0.60 1.06672 0.197906 0.32984
0.62 1.05088 0.189952 0.30637
0.64 1.03555 0.181727 0.28394
0.66 1.02069 0.173247 0.26249
0.68 1.00629 0.164527 0.24195
0.70 0.99231 0.155581 0.22226
0.72 0.97875 0.146421 0.20336
0.74 0.96557 0.137058 0.18521
0.76 0.95275 0.127503 0.16776
0.78 0.94029 0.117766 0.15098
0.80 0.92816 0.107854 0.13481
0.82 0.91635 0.097777 0.11924
0.84 0.90485 0.087542 0.10421
0.86 0.89363 0.077156 0.08971
0.88 0.88269 0.066625 0.07571
0.90 0.87201 0.055955 0.06217
0.92 0.86159 0.045153 0.04907
0.94 0.85141 0.034222 0.03640
0.96 0.84147 0.023168 0.02413
0.98 0.83174 0.011996 0.01224
1.00 0.82224 0.000709 0.00070

(to be continued)
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(continued)-
kd 1¢21/¢o arg ¢¥ B
1.02 0.81294 —0.010687 —0.01047
1.04 0.80383 —0.022191 —0.02133
1.06 0.79492 —0.033798 —0.03188
1.08 0.78619 —0.045506 —0.04213
1.10 0.77764 —0.057311 —0.05210
1.12 0.76926 —0.069210 —0.06179
1.14 0.76104 —0.081200 —0.07122
1.16 0.75299 —0.093280 —0.08041
1.18 0.74508 —0.105447 —0.08936
1.20 0.73733 —0.117698 —0.09808
1.22 0.72972 —0.130031 —0.10658
1.24 0.72224 —0.142445 —0.11487
1.26 0.71490 —0.154937 —0.12296
1.28 0.70770 —0.167507 —0.13086
1.30 0.70061 —0.180151 —0.13857
1.32 0.69365 —0.192869 —0.14611
1.34 0.68681 —0.205658 —0.15347
1.36 0.68008 —0.218519 —0.16067
1.38 0.67347 —0.231448 —0.16771
1.40 0.66696 —0.244445 —0.17460
1.42 0.66056 —0.257509 —0.18134
1.44 0.65426 —0.270638 —0.18794
1.46 0.64806 —0.283831 —0.19440
1.48 0.64196 —0.297087 —0.20073
1.50 0.63595 —0.310405 —0.20693
1.52 0.63004 —0.323785 -0.21301
1.54 0.62421 —0.337224 —0.21897
1.56 0.61847 —0.350723 —0.22482
1.58 0.61282 —0.364279 —0.23055
1.60 0.60725 —0.377894 —0.23618
1.62 0.60176 —0.391564 —0.24170
1.64 0.59635 —0.405291 —0.24712
1.66 0.59102 —0.419072 —0.25245
1.68 0.58576 —0.432908 —0.25768
1.70 0.58058 —0.446797 —0.26282
1.72 0.57547 —0.460739 —0.26787
1.74 0.57043 —0.474733 —0.27283
1.76 0.56546 —0.488779 -0.27771
1.78 0.56056 —0.502875 —0.28251
1.80 0.55572 —0.517022 —0.28723
1.82 0.55095 —0.531218 —0.29187
1.84 0.54624 —0.545463 —0.29644
1.86 0.54160 —0.559757 —0.30094
1.88 0.53701 —0.574098 —0.30537
1.90 0.53249 —0.588487 —0.30972
1.92 0.52802 —0.602922 —0.31402
1.94 0.52361 —0.617404 —0.31824
1.96 0.51926 —0.631932 —0.32241
1.98 0.51496 —0.646505 ~—0.32651
2.00 0.51072 —0.661123 —0.33056
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As shown in Fig. 2, the amplitude of ¢, tends to double that of the
invading waves in the open sea, when kd—0. Starting from kd=0,
|¢,| decreases rapidly to the value® of about 1.0 as kd increasing to
0.7, and then the rate of decrease of || becomes gradually small when
the argument kd further inecreases. It is noteworthy that, when kd
increases beyond about 0.7, the wave height in the domain D, becomes
smaller than 1.0 in magnitude. It is thought that, from past experience,
|¢&,| approaches a unit when kd increases. For the result computed
above, one of the possible explanations is attributed to the fact that the
present theory developed in the first approximation cannot be applied to
the range beyond kd=about 0.7. In order to examine this possibility,
the probable error estimated from (32) is inserted in Fig. 2, which is
shown by the broken line (in the absolute errors).”? An shown in Fig.
2, the absolute error for kd=1.0 is about 0.2 at most. Suppose that
all of the error 0.2 contributes to the wave height |¢,|, the value of
|&,| is 1.0222 which is considered to be plausible in magnitude from our
experience, according to which || seems to have to exceed 1.0.
Likewise, the absolute error for kd=2.0 is about 0.5. Then if 0.5 should
be added to the value of ||, the corrected |¢,| is nearly equal to a unit.
Hence the paradox that the curve of |£| values transverses the line of
|€,]=1.0 is explained by the correction of the error.

At any rate, from the above examination, we may come to the
conclusion that, when kd=1.0, the height of the waves propagated in
the domain D, does not completely become affected by the shape of an
estuary.

Next, let us consider the behavior of the phase. In Figs. 3 and 4,
the inserted broken lines stand for the absolute errors calculated from
(32). In both figures, the most conspicuous features are those that,
when kd approaches a unit, arg¢® and £ take zero values.

As far as the variation of arg¢{® is concerned, it has a maixmum
value at the point kd=about 0.3. On the lower side of this point, arg
¢ wvalue diminishes to zero, while, on the upper side, the wvalue
decreases monotonically crossing the zero line. As shown in Fig. 8, the
absolute error amounts to not a little magnitude in the range above
kd=1.5, so that the theory of the present approximation is considered

5) The value of the wave height ¢{; has a unit {,. Therefore, the value 1.0 stands
for 1.0x¢o and this convention is followed in the following discussion.

6) The values of the probable absolute errors computed from (82) are tabulated in
Table 2.
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Table 2. The absolute errors of |£:]/&, arg¢® and
estimated approximately.

kd 1¢11/Co arg ¢ B
0.1 0.00441 0.00046 0.00465
0.2 0.01555 0.00249 0.01248
0.3 0.03129 0.00599 0.01998
0.4 0.05041 0.01030 0.02575
0.5 0.07216 0.01455 0.02911
0.6 0.09600 0.01781 0.02968
0.7 0.12155 0.01905 0.02722
0.8 0.14851 . 0.01725 0.02156
0.9 0.17658 0.01133 0.01259
1.0 0.20556 0.00017 0.00017
1.1 0.23524 —0.01733 —0.01576
1.2 0.26544 —0.04236 —0.03531
1.3 0.29601 —0.07611 —0.05855
1.4 0.32681 —0.11977 —0.08555
1.5 0.35772 —0.17460 —0.11640
1.6 0.38864 —0.24185 —0.15115
1.7 0.41947 —0.32281 —0.18988
1.8 0.45012 —0.41878 —0.23366
1.9 0.48049 —0.53110 —0.27953
2.0 0.51072 —0.66112 —0.33056

to be in use supposedly in the range kd=0 to at most 1.5. At any
rate, the result obtained in Fig. 3 is physically acceptable such that, when
a length of the incident waves (1) is large as compared with a width of
the canal (d), little effect of the form of an estuary appears on the phase
of the progressive waves in the domain D,. And when 2 decreasing in
magnitude for d, the phase increases to a certain maximum value and
later decreases monotonically until the value of the phase becomes a
negative one. The last phenomenon is interpreted to be due to the fact
that, when d becomes large for 2, the corner of the mouth of the canal
does not effect its influence very easily upon the waves in the central
part of the canal. When kd tends to zero, arg({” approaches zero
value, but j increases to an infinitely large value, as seen in Fig. 4.
From the expression (35), the S value is interpreted as a position at
which cos (wt+ky)-type waves are supposedly originated on the y-
coordinate. Allowing for the above mentioned fact and from Fig. 4, it
turns out that the cos (wt+ky)-type waves propagated into the canal have
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a hypothetical origin at an infinite point in the open sea, when kd limits
to zero.

Now, a consideration of the waves in the domain D, is made in the
following.

Using the first equation of (21), the expression (27) becomes

C=0{Jy(k*r*)—i-2J,(k*r*) sin 6} (87)
in a form excepting the time factor, where r*=v/d.
Then
] = 1E0 1V Tk r*) + 4T Xk r¥) sin® 6 ,
k) | 38
arg {,=arg {o —tan‘l{% sin 0} . (38)

If the time factor is included, the above expression is re-arranged
in the form

¢.=|¢;| cos (wt—argly) , (39)

where the only real part is retained.
When 0=0 or =, (39) is reduced to

¢:=1¢"] cos (wt—argl),

which is equal to the wave height in the domain D, at y=0 (refer to
(36)).

When the radial component » is increased (then the azimuthal
component § is fixed), the amplitude factor |&,| is augmented monotonic-
ally, the wvariation of which is most conspicuous in the direction
perpendicular to the coast.

Since, in the domain D, the variable » is smaller than d, the
approximation (17) can be applied to the Bessel functions in (37) and
(38). Then the expression of the wave height in the domain D, is
obtained in a further simplified form :

from (37),

,=C"(1—1i-k*r* sin ) 67
from (38),
|€.l=1¢0 [V 1+ (F*r* sin 6)°

(38)
arg {,=arg {{” —tan~'(k*r* sin 0)
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Although the above expressions have accessible forms to the discus-
sion of the behavior of the waves in the domain D,, there exists some
disadvantage with respect to the continuity between the neighbouring
domains. In the domain D,, the approximation (17) cannot be applied
because the argument r goes beyond the application range of (17), so
that the reduction by use of (17) cannot be made. Hence the continuity
of the waves between the adjacent domains D, and D, do not hold
owing to the partial assessment of the approximation and the amount
of the discontinuity is of the order of the error estimated from (32).

Introducing the Cartesian co-ordinates, (37°) and (38') are reduced
further to the following forms :—

C=C"(1—1-k*y¥),
1G] =10V 1+EFy ), j (40)
arg {,=arg {® —tan~'(k*y*) ,

where y*=y/d.

From the expression (40), it is found that the equi-amplitude and
equi-phase lines run parallel to the straight coast.

Supposing that the approximations for sine and cosine functions,

sin (k*y*)~k*y* }
cos (B*y*)=1

are possible, of which the convergence is not so good as that of the
ascending series of the Bessel function (28), the equation (40) is likely
to be transformed into

C=C" exp (—1-k*y*) , }
&=L, arg {;=arg & —k*y* .

When the time factor is involved, the above equations become as
follows :—

=20 cos (wt+k*y* —arg £0) , | (41)

where the only real part is retained.

From the above expression, we find that the waves in front of the
mouth of the canal leading to the open sea are propagated into the canal
with a period and wave length of the incident waves.
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Next, we proceed to the discussion of the behavior of the waves in
the domain D,. As far as the waves in the domain D, are concerned,
our greatest interest is for the directivity and a rate of decay of the
diverging waves, which are investigated from (24) and (25). The second
term of (24), i.e., £¥ denotes the damping reflected waves, instead of
merely reflected ones, in the open sea. By use of this expression and
an electronic computer, the behaviors of the damping reflected waves
are inquired into in the following.

The variations of the amplitudes of ¢ for a change of the radial
component 7* (=r/d) are shown figuratively in Figs. 5 (then k* (=kd)
and the azimuthal component ¢ are parameters), of which the values are
tabulated in Tables 3.

From Figs 5, it turns out that :"—

When k* is very small, little contribution of the damping reflected
waves to the standing waves, ¢, in (24), is made, of which the order
is, for k*=0.02, about 10 percent of the amplitude of the incident
waves in the nearby part of an estuary and becomes less than 10 percent
when departing from the mouth of the canal.

1of[SFe/ Lo

0.571

Fig. ba. The variation of the heights of the damping reflected waves in the
direction of 0=0 for a change of r/d (the curves with the stated values stand for
those relevant to the relative wave numbers kd=0.02, 0.1, ---, 1.0).

7) In Figs. 5, the curves for stated parameters k*=0.7~1.0 intersect at the nearby
part of r*=1.0, but these intersections are considered to be due to the approximation
employed in the derivation of the theory. When %* becomes large, little validity for
the theory of the first approximation exists.
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0.02 r /d
) i 2 3 4 5 6 7 8 9 10

Fig. 5b. The variation of the heights of the damping reflected waves in the
direction of #=z/4 for a change of r/d (the curves with the stated values stand for
those relevant to the relative wave numbers kd=0.02, 0.1, ---, 1.0).

[t5e /b

0.02 r/d
0 1 2 3 4 5 [ 7 8 ) 10

Fig. 5c. The variation of the heights of the damping reflected waves in the
direction of #=x/2 for a change of 7/d (the curves with the stated values stand for
those relevant to the relative wave numbers kd=0.02, 0.1, ---, 1.0).
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When k* increases, a contribution of the damping reflected waves
to the standing waves is also augmented. Along the coast (6=0), the
value of ¢ for k*=1.0 amounts to 70 percent of the height of the
incident waves at a point #*=1.0 and about 25 percent at r*=10.0. As
azimuthal component @ increases (a line tracing the variation of the wave
height is directed in a sense perpendicular to the coast facing the open
sea), the heights of the damping reflected waves are upheaved. In the
direction leading to the canal, these magnitudes are most conspicuous
such that the contribution of ¢/ amounts to almost one hundred percent
of the amplitude of the surging waves at r*=1.0 and about 45 percent
r*=10.0.

As far as the variations of the heights of the damping reflected
waves versus a parameter k* is concerned, another outstanding feature
is found such that the curves showing the variations of the wave
heights seem to tend to certain asymptotic curves as k* increases. In
other words, when a wave length of the incident waves becomes large
as compared with a width of the canal, the surface made by the damping
reflected waves (instead of reflected waves) is likely to tend to a certain
asymptotic surface.

As far as the damping rate of || is concerned, when a wave
length of the incident waves is long as compared with a width of the
canal, the rate of the damping is very gentle, while, as k* increases, the
damping rate of [£] also increases, especially in the nearby part of the
mouth of the canal. The damping rate considered here is that against
a dimensionless value r* (=7/d), but it might be preferred to discuss
a rate of damping for a variation of positions r/2, which is made
dimensionless with respect to a wave length of the incident waves
instead of a width of the canal. The last treatment will be made in
future.

In the next paper, a theory will be developed up to the second
approximation.
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Table 3a. The wave heights of the damping

N’”*' 0.02 0.1 0.2 0.3 0.4
1.0 0.12842x10° 0.41009 x10° | 0.59752x10° | 0.70186x10° | 0.75853x10°
2.0 0.96015x10-* | 0.27385x10° | 0.37676X10° | 0.42964x10° | 0.45903x10°
3.0 0.84422x10~1| 0.22986x10° | 0.30941x10° | 0.34959%10° | 0.37247 <100
4.0 0.77419x10-!| 0.20367x10° | 0.27038x10° | 0.30386X10° | 0.32324 X100
5.0 0.72352x10~1| 0.18527x10° | 0.24356X10° | 0.27275%10° | 0.28986%10°
6.0 0.68399x10-1| 0.17128x10° | 0.22352X10° | 0.24967x10° | 0.26518x10°
7.0 0.65178x10~-1| 0.16011x10° | 0.20776x10° | 0.23165x10° | 0.24593 x10°
8.0 0.62476x10~1 | 0.15089%10° | 0.19492x10° | 0.21705Xx10° | 0.23036%<10°
9.0 0.60163x10-1 | 0.14312x100 | 0.18420x10° | 0.20489x100 | 0.21748 X100
10.0 0.58151x10-1| 0.13643x10° | 0.17507x10° | 0.19458%10° | 0.20645 %100

Table 8b. The wave heights of the damping
e .
T e 0.1 0.2 0.3 0.4
1.0 0.10930x10° | 0.31544x10° | 0.45197x10° | 0.54147x10° | 0.61130x10°
2.0 0.91559x10-1 | 0.25924%10° | 0.36029x10° | 0.42091x10° | 0.46521 %100
3.0 0.82637x10-1| 0.22465x10° | 0.30595x10° | 0.35334x10° | 0.38753 x10°
4.0 0.76361x10-1| 0.20129x10° | 0.27040x10° | 0.31013x10° | 0.33873x10°
5.0 0.71573 10~ | 0.18407x10° | 0.24483%10° | 0.27953x10° | 0.30453 X100
6.0 0.67726x10-1 | 0.17067x10° | 0.22530X10° | 0.25641%10° | 0.27886%10°
7.0 0.64527x10-1| 0.15982x10° | 0.20975x10° | 0.23815%10° | 0.25871 x10°
8.0 0.61798x10-1| 0.15081x10° | 0.19700x10° | 0.22328x10° | 0.24234 x10°
9.0 0.59427x10-1| 0.14315x10° | 0.18629x10° | 0.21085%10° | 0.22871x10°
10.0 0.57337x10-1| 0.13655X10° | 0.17714x10° | 0.20028X10° | 0.21714x10°

Table 3c. The wave heights of the damping
o i
x 0.02 0.1 0.2 0.3 0.4
1.0 0.94196x10-1 | 0.27572x10° | 0.40546x10° | 0.50317x10° | 0.59751 100
2.0 0.87940x10-1| 0.24793x10° i 0.34919x10° | 0.41845x10° | 0.47720x10°
3.0 0.81099x10-1 | 0.22008x10° | 0.30353x10° | 0.35821x10° | 0.40340%10°
4.0 0.75500<10-1 | 0.19911x10° | 0.27075x10° | 0.31673x10° | 0.35437x10°
5.0 0.71031 10— | 0.18296X10° | 0.24624Xx10° | 0.28643x10° | 0.31921x10°
6.0 0.67357%10-1 | 0.17011x10° | 0.22715%10° | 0.26319x10° | 0.29254 x10°
7.0 0.64262x10~1 | 0.15957x10° | 0.21179%x10° | 0.24468x10° | 0.27147 x10°
8.0 0.61599x10-1| 0.15074x10° | 0.19911x10° | 0.22953x10° | 0.25432x10°
9.0 0.59274x10-1 | 0.14320x10° | 0.18840x10° | 0.21682x10° | 0.24000 % 10°
10.0 0.57216x10-1 | 0.13667x10° | 0.17922%10° | 0.20599 x10° 0.22784 x10°

8) These values were computed by the series

‘d’/(o=1:Z;J:((3‘2"’/£o)-cos 2n0- HO (kr) ,

re

where N is taken as 11. Then the omitted first term (¢@¥ /¢o)-cos 2nNO- Hin(kr) is of
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reflected waves in the direction ¢=0.%

315

0.5

0.6

0.7

0.8

0.9

1.0

0.78779x10°
0.47576 %100
0.38655 %100
0.33566 %100
0.30112x10°

0.27556 x 10°
0.25563 x 10°
0.23949 x 100
0.22608 % 10°
0.21471 %100

0.79550 < 10°
0.48511 x10°
0.39577 <100
0.34437x10°
0.30931 x10°

0.28328 %100
0.26295 x 10°
0.24646 x10°
0.23275x10°
0.22110x10°

0.78851x10°
0.48993 x 10°
0.40222x10°
0.35099 x10°
0.31578 x10°

0.28953 x10°
0.26895 x10°
0.25224 x10°
0.23831 x10°
0.22647 x10°

0.77019x10°
0.49193 x10°
0.40711 x10°
0.35637 x10°
0.32125 x10°

0.29494 % 10°
0.27421 x10°
0.25733 x10°
0.24325 x10°
0.23125 x10°

0.74303 x10°
0.49224 x10°
0.41085 %100
0.36110x10°
0.32619 <100

0.29985 x 100
0.27901 x10°
0.26201 x10°
0.24779 x10°
0.23567 x10°

0.70880x10°
0.49153 x 100
0.41420x10°
0.36550 <100
0.33071 x10°

0.30443 x10°
0.28353 x10°
0.26642 <100
0.25207 x10°
0.23981 x10°

reflected waves in the direction 0==r/4."

0.5

0.6

0.7

0.8

0.9

1.0

0.67221 x10°
0.50206 < 10°
0.41586 x10°
0.36249x10°
0.32536 % 10°

0.29765 <100
0.27594 X 10°
0.25836x10°
0.24375 x10°
0.23135 x10°

0.72761 X 10°
0.53498 X100
0.44119x10°
0.38381 x10°
0.34413 %100

0.31460x 10°
0.29154 x10°
0.27288 % 10°
0.25739x10°
0.24427 % 10°

0.77953 x10°
0.56531 x10°
0.46458 x10°
0.40356 x10°
0.36156 x10°

0.33039x10°
0.30608<10°
0.28644 x10°
0.27014 x10°
0.25634 X100

0.82822x10°
0.59341 x10°
0.48629 x10°
0.42194 x10°
0.37781 x10°

0.34513x10°
0.31967 x10°
0.29912x10°
0.28208 X 10°
0.26765x10°

0.87340x10°
0.61920x10°
0.50622 x10°
0.43885 x10°
0.39278 X100

0.35872x10°
0.33222x10°
0.31083 x 100
0.29311 x10°
0.27810x10°

0.91457 x10°
0.64240x10°
0.52415 x10°
0.45407 x10°
0.40628 x 100

0.37098 x 100
0.34354 x10°
1 0.32140x 100
0.30306 < 10°
0.28754 x10°

reflected waves in the direction 0=7/2.®

0.5

0.6

0.7

0.8

0.9

1.0

0.68670x10°
0.53215 x10°
0.44521 x10°
0.38910x10°
0.34944 %100

0.31962x10°
0.29622 x10°
0.27723 X 10°
0.26144 %100
0.24805x10°

0.77409 %100
0.58524 < 100
0.48552 %100
0.42259 x 10°
0.37863 x10°

0.34581 < 10°
0.32015 X 10°
0.29941 x10°
0.28221 X100
0.26764 x10°

0.86721 x10°
0.63664 %100
0.52457x10°
0.45511 x10°
0.40701 x10°

0.37130x10°
0.34348 x10°
0.32105 x10°
0.30247 x 100
0.28676 x10°

0.94942x10°
0.68578x10°
0.56205x10°
0.48641 x10°
0.43428 100

0.39585 % 10°
0.36592 x10°
0.34191 x10°
0.32202x10°
0.30522x10°

0.10139x10+*
0.73191 %100
0.59733 x 10°
0.51585 x10°
0.46010x10°

0.41905 <100
0.38717x10°
0.36166 X100
0.34044 x10°
0.32265 x10°

0.10831x10+1
0.77433x10°
0.62984 x10°
0.54305x10°
0.48394 x 100

0.44057 x10°
0.40694 < 10°
0.38000x10°
0.35763 x 100
0.33882x10°

the order of about 10-3, according to numerical experiments.
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