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1. Introduction

The analysis of mechanical properties of porous media will take an
important part in the field of rock mechanics which has been rapidly
developed in recent years resulting from the increased interest in rock
deformation in civil engineering, structural geology and physies of the
earth crust. The existence of pores in rocks is the main cause for
making the behaviour of rock deformation quite different from that of
other materials. The theory of rock deformation is different from the
simple elasticity or plasticity problem because of the existence of pores.
Rock mechanics should have in future therefore a unique system of
mathematical theory which will compete with the theory of elasticity or
plasticity. Even though the models of porous media which have been
developed by Biot’—®, Gassmann®’”, and Geertsma™® are not always a
satisfactory equivalent for material of the earth crust, they will certainly
be better models for analyzing the mechanical phenomena which take
place in the earth’s crust. The purpose of this study is to extend the
theory of porous media so as to account for the role of pores which seem
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to characterize the behaviour of rock deformation.

Biot™ has presented a theory of porous media for the consolidation
of liquid-filled surface soil. Later, he has developed the theory to a
more elegant form by using 7-7 matrix representation for stress and
strain relationship'’. His treatment of porous media seems to desecribe
the system of mechanics of porous media by using adequate descriptive
quantities which correspond to elastic constants in elastic medium.
For the determination of these descriptive quantities, he gives the method
of measurement™. Recently he reformulated the theory in a more
systematic form of representation, and has shown that the theory of
porous media is another complete mechanical system'. He has also shown

the application of the theory for the wave propagation™, consolidation®,
and structural geology'® etc.

On the other hand, Gassmann® presented independently a theory of
porous media and has shown that the bulk modulus at liquid-filled state
is expressed as functions of bulk modulus of framework, solid material,
liquid and porosity. He successfully explained the increase of compres-
sional wave velocity due to water saturation.

These two theories, Biot’s and Gassmann’s theories of porous media,
seem to be independent at first sight. However, Geertsma®® and De
Witte and Warren™ have shown that these two theories are equivalent.
By the work of Geertsma and De Witte and Warren, the descriptive
coefficients of deformation in Biot’s theory were able to be expressed
by the elastic constants of constituents of porous media.

In the above theory of porous media, the compressibility of the
medium at dry condition remains still as a given quantity. The theory
does not say anything about the compressibility of the framework. The
elasticity of framework, however, the decrease of elastic constant of
framework from that of constituent material is also another important
problem for weathering and fracturing of rock mass. Therefore, it will
be necessary to extend the theory so as to account for the framework
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elasticity by the factors of constituents. In this paper, this will be done
by introducing the concepts of pore compressibility and pore shear rigidity
which will express deformation of pore.

As a natural consequence of introducing pore compressibility and
pore shear rigidity, the effect of pore for the failure condition is studied.
Because the failure condition of porous media is supposed to be controlled
by the failure of pore.

In 2, terminology and basic concepts which represent the stdte of
stress and strain in porous media are described.

In 3, stress-strain relationship in volumetric deformation is derived.
Therein, pore compressibility is defined and introduced as an explicit
quantity. The stress-strain relationship in shape deformation is also
derived in 7, where pore shear rigidity is defined. From these stress-
strain relationships, several physical quantities which express character-
istics of deformation are derived. In 4, framework bulk compressibility
is expressed as a function of porosity, pore compressibility, and material
compressibility. In 5, partition of total mean stress into framework and
liquid is derived. In 6, expression of total compressibility as functions of
constituents is derived. In 8, the values of pore compressibility and pore
shear rigidity are estimated by comparing the theory of porous media to
the theory of deformation of elastic medium with dry holes. In 9, the
failure of porous media is examined by assuming that the elastic limit
is controlled by the limit of pore deformation.

2. Stress and Strain

The stress state of deformed porous media will be expressed by the
total stress component, framework stress component, and liquid stress
component as is described by Gassmann®. The total stress component
is the one which represents the stress field of porous media as a whole.
Framework stress component is a part of the total stress and is dis-
tributed in the framework. Liquid stress component is also a part of the
total stress and is in liquid which fills the pore space. Thus the total
stress component is composed of framework stress component and liquid
stress component. Therefore, the total stress component is a function
of framework stress and liquid stress. Often, the total stress component
is supposed to be the sum of framework stress and liquid stress. This
is, however, not always necessary for the formulation of the theory of

23) F. GASSMANN, loc. cit., 9).
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porous media. In the following treatment, the formulation starts with
the general condition that the total stress is only a function of frame-
work stress and liquid stress.

The total stress field will be devided into the mean stress field and
deviatoric. stress field as in the case of elastic media.

The strain field of deformed porous media will be expressed by the
total bulk strain component, framework bulk strain component, material
strain component, pore strain component, and liquid strain component.
The total bulk strain component is the one which represents the strain
field of the porous media as a whole. The framework bulk strain compo-
nent is the one which represents the strain field of the solid framework
as a whole. In the case of the closed system, that is, when the liquid
does not flow in or out from the pore during deformation, these two
strain components come into the same one. However, in the case of the
open system, that is, when the liquid is allowed to flow in or out during
deformation, these two strain components are unequal.

The material strain component represents the strain field of the solid
material of the porous media. The pore strain component represents the
strain field of the pore. The liquid strain component represents the
strain field of liquid which fills the pore space in the porous media.

The total bulk strain component is a function of framework strain
and liquid strain. The framework bulk strain component is a function
of material strain and pore strain components.

The total strain field will be devided into mean strain field and
deviatoric strain field as in the case of elastic media.

For simplicity, let us suppose in the following treatment that the
medium is isotropic ; the solid framework is elastic; rigidity of liquid is
zero; liquid is sufficiently innert; there is no chemical reaction between
solid part and liquid; deformation is differential. These restrictions are
not essential in the theory of porous media. Both Biot and Gassmann
have treated anisotropic, viscoelastic porous media. We will put the
above restrictions only for the eclarity of the representation of pore
effect.

The assumption of isotropy enables us to make the separate for-
mulation for the volumetric deformation and shape deformation. First,
the volume change due to mean stress is considered. In a later section,
shape deformation due to deviatoric stress is considered.
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3. Stress-Strain Relation for Volumetric
Deformation

First, let us consider the volumetric deformation of porous media
saturated with liquid. Let us denote the bulk volume, volume of material,
pore space, and liquid by V,, V,, V,, and V, respectively. Since the
bulk volume of porous media is the sum of material volume and pore
space volume, we have the relation

Vi=V,+V,. (1)
Porosity 7 is defined by

n=V,IV,. (2)
In order to obtain the stress strain relation for volumetric deformation,
we will follow the line used by Geertsma?'.

The differential volume changes of bulk, material, and pore volume
are related to the differential total stress change. Since the total stress
is a function of framework stress and liquid stress,

do=f(ds, d3) , (3)
the total differential of volume change is given by the following equations,

av,=20 s + 2V as

OVS oV, ..
av,= do + Pl (4)

av,— an a5+ 2V,

As is clearly stated by Geertsma, the problem of deriving stress-
strain relation in porous media is the determination of the values of these
partial derivatives in the above formula (4).

Let us denote compressibility of framework, material, and pore by
€, €5, and ¢, respectively, and define them by the relations

1 av,
Cb_—
Vv, o5
_ 1 @8V,
“=V % (5)
oo 1 0,
V, 05

24) J. GEERTSMA, loc. cit., 11).
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Namely, we define ¢, and ¢, by the change of volume due to framework
stress where liquid stress & is kept constant. The material compressi-
bility ¢, is defined by the change of material volume due to liquid stress
d5 where framework stress ¢ is kept constant. Neither Gassmann nor
Geertsma explicitly defined pore compressibility as an independent defor-
mation constant. However, the resistance of pore for the deformation
of its shape will be different from those of solid material and framework.
Pore compressibility should, therefore, be considered as an independent
quantity. This will vary according to the geometrical shape, properties
of the solid material within which the pore exists, the weathering of pore
surface, contact mechanism of crack, and many other factors. Therefore,
the introduction of pore compressibility will be essential to evaluate the
effect of pore in the deformation and failure of porous media. The
effect of pore will be expressed not only by porosity but also by pore
compressibility. It will be shown in 4, that ¢, is expressed as a function
of ¢,.

In order to evaluate the other three partial derivatives in formula
(4), let us suppose the special cases of deformation under the condition
of d5=0 or do=0. First, let us take the case d5=0. The case of
d5=0 is called the open system, where liquid is allowed to flow out or
in freely during deformation. This is also the case of dry state.

From equations (1) and (2), we have the relations

av,=dVv,+dVv,, (6)
AV, |V,=Q—n)dV [V,+ndV,|V,. (7)
By substituting equations (4) and (5) in equation (7), we get

% %?==ainﬁ%_”%) (dz=0). (8)

Next, let us take the case do=0, where the only stress working in
the media is liquid stress. In equation (4) under this condition, there
are two unknown partial derivatives, 0V,/65 and 8V ,/85. In order to
determine these values we must have one more relation among volume
changes in addition to the relation (7). Here we take the assumption
of similarity for the deformation due to liquid stress. Namely, we
assume that the relation

dv, _dV._dV, -, 9
78 e 2 (d5=0) (9)
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holds for the deformation due to liquid stress where the frame stress is
kept constant. Then we have from equations (4) and (9),

1 8V,_ 1 aV,_ 1 8V, _
V, %V, 95 V, 05

Cs (10)

Since the middle term is defined as ¢, in formula (5), the values
(1/V,)aV,[05 and (1/V,)aV,/65 are equal to ¢,. Thus we have determined
all values of partial derivatives in equation (4).

Therefore, from equation (4), we finally get the stress-strain relation
for the volumetric change in porous media,

0,=dV,|V,=c,d5+c,d5
0,=dV,|V,= (_1%) (s —nc,)d5 +¢,dF (11)
0,=dV,/V,=c,d+c,d5 .

From this stress-strain relationship for volumetric deformation,
several interesting physical properties of porous media will be derived.
Let us consider them in the following sections.

4. Framework Bulk Compressibility

In equation (11), the volumetric deformation of porous media is
described by four independent quantities, ¢,, ¢,, ¢,, and n. It will be
natural, however, to expeet that there is some relation between frame-
work bulk compressibility ¢, and other quantities. Experimental results
of ultrasonic wave velocity measurement show that the values of velocity
of the rock sample have a wide range even though the rock samples
belong to the same classification of rock kind such as granite, sandstone
and etc. There seems to be some relations between value of velocity
and their degree of weathering, lithification, cementation, and many other
factors. Now let us see how this relation will be derived in the theory
of porous media. ;

Gassmann has taken up the special case of deformation under the
condition of d5=0, namely the deformation of dry specimen. He set
up an independent relation for volumetric change of solid material by
assuming that the integral law of elasticity® holds for this kind of
deformation. The volumetric change of material solid due to framework

25) H. LoVE, Mathematical theory of Elasticity, section 128~ 125, (1944).
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stress is given by the integral law in the form of

dV,=V,c,do (d5=0). (12)
Since V,=(1—n)V,, we get the relation
av 1 — '
8 = d . o
T aog P =0, (13)

under the condition of d5=0. Therefore, by comparing equations (13)
and (11-2), we get the relation

Cr=C,+MC, . (14)

This is the relation which expresses the framework bulk compressibility
as a function of ¢,, ¢,, and 7.

Instead of using the assumption of integral law for the deforma-
tion of dry porous media, Geertsma has assumed a reciprocity theorem
to hold for framework bulk volume change due to total stress and pore
volume change due to framework stress. This assumption also leads to
the same relation (14). Both Gassmann and Geertsma have used the
relation (14) during their derivation of stress-strain relationship without
defining the pore compressibility ¢,. The relation (14), however, will be
very important for considering the effect of pore in the deformation of
porous media.

The introduction of the concept of pore compressibility ¢, shows
explicitly that the ¢, is a funection of porosity #. In the treatment of
porous media by Biot, Gassmann, and Geertsma, framework bulk com-
pressibility ¢, seems to be thought of as a given quantity. However,
in fact, ¢, is a function of =, ¢, and c¢,, as is seen in the formula (14).
The framework bulk compressibility ¢, is a linear function of porosity
n, if pore compressibility ¢,, material compressibility ¢, are kept constant. -
However, pore compressibility ¢, may also be a function of porosity.
Generally speaking, both pore compressibility and porosity seem to be '
closely related to the degree of weathering, lithification, and cementation.
Therefore, the explict introduction of ¢, will give a place where such
factors are quantitatively taken into consideration.

For a special geometrical shape of pore, the pore compressibility ¢,
will be caleculated. This will be examined in 8.
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5. Partition of Stress in Closed System

When a liquid-filled porous medium is deformed, the total stress is
partitioned to framework stress and liquid stress. Let us consider the
ratio of this partition. For simplicity, first, we take the case of closed
system for the estimation of the maximum amount of liquid pressure
which will be caused by the deformation of porous medium. The closed
system is defined by the case where liquid is not able to flow in or out
from the pore space. Therefore, the pore volume change is equal to the
liquid volume change. Let us denote the liquid compressibility by c;.
Then, by the definition of ¢,, we have

av, _dv,

— d~,
7 7 ¢, d5 (15)

where V, denotes the liquid volume. From the equations (15) and (11-3)
we have the relation in the closed system

av, =¢d=c,do+c,d5 . (16)

b4

From this equation and formula (14), we have

ds _ ¢,—c¢, _ me,—¢,)

ds Cp (c,—¢,)

amn

This is the relation which gives the partition ratio of stress into frame-
work and liquid.

If the total stress is given by the sum of the framework stress and
the liquid stress, "
do=do+d7 , (18)

the partition of total stress into the framework and liquid is given by
the relation

dé=pds
de=(1—p)do , 19)
where

f= Cp _ Cy—C, ) (20)

¢,—e,+e, nle,—c,)+(c,—c,)

B may be called the coefficient of partition to liquid stress in the closed
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system.

The relations (19), and (20) will be used for the evaluation of
the effect of liquid pressure in the porous medium during deformation.
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Fig. 1. An example of coefficient 8 of stress partition - .
into liquid in the closed system as a function of porosity n.

vp: elastic wave velocity of the framework

vs=6.0 km/sec, elastic wave velocity of solid material

ps=2.7T gr/em3, density of solid material

As a numerical example of partition of stress, the value of the
coefficient of partition 8 is computed and illustrated in Fig. 1 as a
function of porosity. The values ¢, ¢,, ¢, and their corresponding
physical constants are tabulated in Table 1.

Table 1. Elastic constants of solid material, framework
and liquid in porous media.
Velocity Density : ) . |Compressibility | Bulk Modulus
(km/sec) (gr/ecm?) Poisson’s Ratio (em2/dyne) (dyne/em?)
1.40 2.10 0.25 4.36x10-1 0.229x10—-11
1.60 2.10 4 3.34 0.299
1.80 2.10 ” 2.64 ” 0.379
2.00 2.10 ” 2.13 » 0.469 «» .
ve 2.50 2.30 ” 1.81 » 0.763 »
3.00 2.30 ” 0.902 ~ 1.11 ”
4.00 2.40 14 0.469 ~ 2.13 ” -
5.00 2.40 ” 0.300 ~ 3.33
Vs 6.00 2.70 ” 0.185 » 5.40 ”
n 1.48 1.00 0.50 - 4.57 ” 0.219 «
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6. Total Compressibility in Closed System

The total compressibility ¢ of porous medium in closed system is
defined by the bulk volume change due to the total stress change,

Vo _ e @1)

b

Then, from equations (11-1) and (21), we have the relation
cdo=c,da+c.d5 . (22)

We also have the other equation for ¢ds from equations (7), (11-2), and
(21),

cdo=(c,—nc,)de+{(1—n)c,+nc,}ds . o (23)

When the total stress is given by the sum of the framework stress and
liquid stress, the equations (22) and (23) are seen as simultaneous equa-
tions for ds and ds. In order that the solution of do and ds exists,
the determinant of the coefficients of these equations should be zero.
By this condition, we have the relation

o= ne,(e,—e,)+c,—ne, , (24)
ne,+n(c,—¢,)

or, by using the relation of ¢,=c¢,+nc,,

e=T0Fe0 5 GO (25)
n+0 ¢, —¢,

These are the relations which show that total bulk compressibility of

liquid-filled porous medium is a function of porosity, liquid, material,

pore and framework bulk compressibility. The formula (25) is the same

one as obtained by Gassmann®. A nomograph is prepared by the writer®”

in an early paper for computing ¢ from ¢, for various values of porosity n.

7. Stress-Strain Relation in Shape Deformation .

So far, we have treated the volumetric deformation of porous medium,
and examined the compressibility of the medium as functions of pore
compressibility and porosity. There is another independent elastic modulus,

26) F. GASSMANN, loc. cit., 9).
27) S. NAGUMO, Bull. Geological Survey of Japan, 8 (1957), 505 and 523.
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rigidity, for describing the deformation of the isotropic porous medium.
Let us see now how the rigidity of the medium is controlled by the
existence of pore.

We will take up the pure shear deformation. Let us denote the
deviatoric strain component of framework, material, and pore by e;, e;,
and e?;(ij=wy, Yz, 2x) respectively. Also let us denote the deviatoric
stress component of bulk volume and framework by dr;; and d7;, respec-
tively. Since liquid does not bear shearing stress in the shape defor-
mation, the framework bulk deviatoric stress is equal to the total bulk
deviatoric stress,

dTi :d%ij . (26)

Then bulk shear compliance 7, and pore shear compliance 7, are defined
by the relation

ij = de%ij (27)
€5 =7,0T;

This is the similar relation as eq. (5:-1) (5:2) in the volumetric defor-
mation. Shear compliance of the material solid 7, is not defined by the
similar relation of (5-8). It is given by the elastic constant of its own
substance. The relation between material deviatoric strain ef; and the
framework deviatoric stress d7;, is obtained as follows. Since the shear
strain component is generally expressed by the variation of angle due
to deformation, it will be supposed that the addition law weighted by
porosity holds for the framework, material, and pore deviatoric strain
component. Namely, we suppose that the relation

el;=(1—mn)ei;+mne; , (28)
holds in shape deformation. Then, from equations (27) and (28), we have

\
€= a _'%‘_‘n)’ (Tb - nrp)diii . (29)

L J—

In order to find the relation among 7,, 7, and y,, We assume that
the integral law of elastic deformation also holds for the pure shear
deformation as in the case of volumetric deformation. Namely, we assume

(1—n)es;=7.d7; . (30)

Then, from equations (29) and (30), we have the relation
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To=7: TN p (81)

This is the relation which expresses framework shear compliance as
functions of porosity, pore, material shear compliance. The dependence
of shear compliance to the porosity, material, and pore 1s the same as
in the case of volumetric deformation.

The introduction of pore shear compliance will play an important Tole
in the failure of porous medium, which will be discussed in §9.

8. Value of Pore Compressibility and
Pore Shear Compliance

The pore compressibility ¢, and pore shear compliance y, were
introduced as independent deformation coefficients in the porous medium.
However, since these deformation coefficients depend upon the way of
pore deformation, it will be supposed that the values of ¢, and 7, should
be calculated if the deformation of pore is controlled only by the special
geometrical conditions.

Elastic constants of media with small holes are calculated by
Y. Sat6®, following the methods of Machenzie* and Frohlich and Sack®.
In their results, the elastic constants of equivalent elastic media are
expressed by the relation

Lo L 3020 gy
B kp dpop 32)
B F 51— ko +4p 1+ 0[(1—p)*.
#O (1—p) okt 811 [(1—p)]
where
k,k, : bulk modulus of actual material and real material
u, 1 ¢ rigidity of actual material and real material
P : relative density
(1—p): porosity.
From the equation (32), we have other expressions,
3
1 lia-n(ttis)
Ek ky Apop (33)
_L:_]; +(1—p) 5(3%,+44) Y
? W 16(9k,+8) -

28) Y. Sor6, Bull. Earthq. Res. Inst., 30 (1952), 179.
29) J.K. MACKENZIE, Proc. Phys. Soc., B63 (1950), 2.
30) FROHLICH and SACK, Proc. Roy. Soc., A, 185 (1946), 415.
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By comparing this equation (33) with equations (14) and (31), we have

_ 3
Cp_cs+ 4(1_n)Ts
3r5+4cs>
97.,+8c,/ .

(34)
n=5rs<

These are the expressions of pore compressibility and pore shear com-
pliance of elastic medium with small holes as functions of elasticities
of material solid.

As stated in 3 the way of pore deformation seems to be controlled
not only by geometrical shape but also the weathering condition at the
pore surface, contacting mechanism of crack, and many other factors.
Therefore the value of ¢, and 7, will not be a simple function of
constituents in a general porous medium.

9. Failure Criteria

Now let us consider the failure of porous media. It is well known
that strength of volecanic rocks decreases as the weathering process
proceeds, and that the strength of sedimentary rocks increases as the
degree of lithification and compaction increases. There should be some
certain correlation between strength of rocks and some physical para-
meters of rocks. However, we do not know yet the quantitative relation
for the dependence of strength to such macroscopic elements as porosity,
weathering of material solid, elastic wave velocity, non-linearity of
stress-strain curve, and amount of hysteresis strain, etc. In order to
look for such relationships, and also to design the experimental procedure
which would describe the mechanism of the failure of rock, it will be
worthwhile to examine the failure criteria which will be derived or
expected in the theory of porous media. Since the behaviour of failure
of natural rock is very complex, agreement will not be’ expected. Instead,
it will give a preliminary viewpoint for further consideration as a2
thought experiment.

Terzaghi® has pointed out in soil mechanics that the consolidation
of soil is controlled by effective stress, that is, total stress minus liquid
stress. Hubbert and Rubey®® have also presented a view that Coulomb-

31) K. TERZAGHI, Theoretical Soil Mechanics (John Wiley, 1943).
32) M.K. HUBBERT and W.W. RUBEY, Bull. Geol. Soc. Amer., 70 (1959), 115.
33) J. HANDIN, Bull. Amer. Assoc. Petrolcum Geologist, 47 (1963), T17.
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Mohr’s internal friction criterion with respect to effective stress is useful
for the failure of porous material. This view is confirmed by Handin’s*®
laboratory experiments.

Since the effective stress which has been used by Terzaghi, and
Hubbert and Rubey is nothing but the framework bulk stress in the
theory of porous media, it will be natural to suppose that the failure of
porous media is controlled by framework. Since the elastic constant of
framework is expressed as functions of elastic constants of pore and
solid materials, as is shown in the preceeding sections, let us first suppose
that (1) the elastic limit of porous media will be controlled by the elastic
limit of pore deformation. Next, let us assume further, for simplicity,
that (2) the failure of media occurs when the failure of pore takes place.
As regards the second assumption, there will be much room for modi-
fication which will be left for further consideration.

As for the elastic limit of pore deformation, let us take up the
following criteria for the failure of rock which have been examined by
Robertson®”. They are (1) Maximum principal stress criterion, (2)
Maximum shear stress criterion, (3) Maximum strain criterion, (4)
Coulomb-Mohr’s internal friction ecriterion, (5) Griffith’s criterion. Using
these criteria for the elastic limit of pore deformation, let us examine
how the critical value of total stress is controlled by the elements of
porous media, To make the argument simple, we will take the case of
open system or dry state. Namely, we consider the case where liquid
pressure is kept constant or zero. A simple method of estimating the
effect of liquid will be reported in a coming paper. Let us start with
the maximum principal stress criterion.

9.1 Maximum Principal Stress Criterion

This criterion states that the failure of porous medium takes place
when the maximum principal stress reaches a certain value. In order
to apply this criterion to pore stress, we have to define pore stress.
The framework bulk stress is supposed to be partitioned into material
solid and pore framework. When the porous medium is deformed, the
microscopic stress distribution in framework will be very complex and
heterogeneous as is expected from the photo-elastic experiment for
material with holes. However, as a macroscopic effect of this heter-
ogeneous stress distribution, the stress field would be equated by the

34) E.‘ C. ROBERTSON, Bull. Geol. Soc. Amer., 66 (1955), 1275.
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superposition of two homogeneous stress fields of total solid stress do,
and total pore stress do,. The partition of the mean stress will be
defined by the partition of bulk dilatation into solid dilatation and pore
dilatation. Then, from equations (11) and (7), we get the relations

di=1g,= cl{(1—n)@3+n@p} , (35)
Cy b

do=ds,+d5, , (36)
where do, and dg, are defined by

ds,= L (1-n)6,
C
’ (37)
ds,=20,.
Cy

Then, by substituting the stress-strain relation (11-1) and (11-2) at dry
condition into (87), we have the relations

ds,= =" g5
c
o (38)
ds,=n-2d5 .
Cp
Now, let us apply maximum principal stress criterion for pore stress.
Let us denote the value of ecritical stress by K,. Then

K,=ds,.=n - °2ds,, (39)
Cy
where suffix ¢ denotes the critical value. Then we have
ds,=K,-L.% (40)
n p

If we use the relation ¢,=c¢,+mnc,, we have another expression of

d5,=K,-— % =K, {1+ G } (41)

Cy—C, ne,f .
When ¢, and ¢, are expressed by the elastic wave velocities and densities,
(41) becomes

1

. ; ; (42)
1-— (as[)b'va/abps’vs) ’

do. =K,
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where v, and v, are compressional wave velocity of framework and
material solid respectively, and are given by

Vy = 29 ?)s:]/ & 43
’ \/ pbcb Pscs ( )

? ’

where «,, a, are constants given by Poisson’s ratio. The equations (40),
(41) and (42) are the expressions of critical framework stress. From
these equations, it is clearly seen that if ¢,/c, were kept constant during
the process of weathering or lithification, critical stress would be inversely
proportional to the porosity.

9.2 Maximum Shear Stress Criterion

This criterion states that the failure takes place when the maximum
shear stress reaches a certain value. In order to apply this criterion to
pore stress, we have to define the partition of shear stress as is the
case of mean stress. The framework shear stress is supposed to be
partitioned according to the partition of shear strain. From equations
(27) and (28), we have

b
dzt,=2 = L {(1—n)es;+met} (a4)
T Ty
dzt;=d7,;+d7y , (45)

where pore shear stress d7?; and material shear stress d7j; are defined
by

dzt,=L(1—n)e;
7o

(46)
d?i’J:l‘?’Lefj .
7o
By substituting eq. (27), (29) into (46), we have
dzs,= T~ " gz,
g} (47)

dz2,=mn- T—”d-??j .
T

Now applying the maximum shear stress criterion for the pore
framework, the critical pore shear stress is given by
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dz* =K,,=nl2dz, , (48)
v

where dz?, dz., and K,, denote the critical value of pore shear stress,
framework shear stress and constant of critical value respectively.
Therefore we have expressions for critical framework stress in various
forms of

dz,=-2* K, ,
T, nr, II (49)
d%czKu‘—“‘i— ’ (50)
l—Ts/rb
= _ 1
=Ky —————e (51)

1—(p, Vifp,V2) ’

where V,, V, denote the shear wave velocity of framework and material
solid respectively. These relations also show that critical framework
stress is inversely proportional to porosity. The dependency of critical
value is the same as in the case of the first criterion. :

9.3 Maximum Shear Strain Criterion

The partition of strain into solid material and pore frame is given
in equations (7) and (28). The mean and deviatoric strains of pore are
70, and nef; respectively. The maximum strain criterion for pore states
that failure of the whole medium occurs as either ne?; or n0, reaches
a certain value, L. From the relations of @,=c,d5,, and L==0,, the
critical framework stress, ds,., is given by

1
ne,

do,=

L. (52)

If we use the relation ¢,=c,+nc,, it becomes
1

Cp—Cs

ds, =L (53)
9.4 Strain Energy Criterion

The strain energy W, of pore deformation is defined by the produect
of total pore strain and total pore stress, i.e.

W= net;-ds; . 7
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By substituting equations (27) and (46) into (54), it becomes
W,=n* . 125 (d7,,)° . (55)
7o

If we denote the ecritical value of pore strain energy by S,
W,.=S, (56)

the critical strain energy of bulk framework 7, > (d7;,)* is given by the
relation

7o S (dFyy =105 . NG
ny

r4

Therefore, the critical strain energy of bulk framework is proportional
to 1/n* if 73/7% is kept constant.
If we define the generalized shear stress dr, by the relation

dTn:V Z (dfij)z ’ (58)
the relation (57) becomes
dr,=Y 121/S | (59)
nrp

9.5 Coulomb-Mohr’s Internal Friction Criterion

The internal friction criterion for pore deformation will be expressed
by

drt =c¢-+do? tan @, (60)

where do? is the mean pore stress and dr% is the tangential pore stress.
These are given by the equations

do =(1/3) X, doli, (61)
dez =V 3 (dr ) . (62)

Therefore, by expressing dz} and do} with framework stress, we get
the relation

dz,=c'+dstan b, (63)

where
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¢ =cTv_

n
T'» (64)

tan 0'= %1t tan ¢ ,
Colp
¢’ and 0’ are cohesive force and angle of internal friction of framework.
Equations (63) and (64) show that ¢ and ¢ change as functions of
Ny Cpy Cpy 7oy a0d 7.

So far we have examined several criteria, and seen how the limit
of elastic deformation is controlled by porosity and constants of constitu-
ents of porous media. The condition of failure seems to be independent
of elastic constant as far as perfect elastic media is concerned. The
condition of failure is not derived in the theory of elasticity. Instead,
the criterion comes into the theory as an assumption so as to account for
the experimental results.

On the other hand, there are interesting experimental phenomena which
show close correlation between elastic constant and strength of
materials. As Nadai® pointed out, the derivation of failure criterion
from the theory of deformation is one of the basic problems of the
mechanics of failure. As is seen in the above treatment, the ecritical
stress is expressed as functions of porosity and elastic constants of
constituents of porous media. This result will provide a certain key to
further development to find the relation between strength and deformation
coefficient of porous rock.

10. Summary and Conclusions

The theory of porous media which has been developed by Biot,
Gassmann, and Geertsma is extended so as to clarify the effect of pore
for the deformation and failure of porous media. Pore compressibility
and pore shear compliance, the reciprocal of pore shear rigidity, are
introduced as independent deformation coefficients. Stress-strain relation-
ships expressed by porosity and elastic constants of constituents are
derived both for volumetric deformation and shape deformation.

Elastic constant of porous medium at dry condition is controlled not.
only by porosity but also by the elastic constants of constituents. The
dependency is expressed by the equations, ¢,=c,+mn¢c,, and 7,=7.+n7,.
This relation will relate to increase of elasticity due to lithification of

35) A. NADAL, Theory of Flow and Fracture of Solid Vol. I, (McGraw-Hill, 1950).
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sedimentary rock, and decrease of elasticity due to weathering.

The partition of total stress into framework stress and liquid stress
is controlled by the compressibility of liquid, pore, and solid material.

The relation between the limit of elastic deformation and porosity,
elastic constants of constituents, are derived for various failure criteria,
under the assumption of elastic limit being controlled by the limit of
pore deformation. As a general tendency, the critical stress seems to
be proportional to the reciprocal of porosity. ,

Analysis of pore effect in stress field of porous media will be reported
in another paper.
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Table of Notations

Stress* Strain Volume | Elastic Coefficient
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