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Abstract

Propagation of waves through various kinds of intervenient
boundaries is systematically investigated in some simple models,
namely the first and second order discontinuities and the perfectly
continuous medium. The moduli of transmitted and reflected
waves vary between maxima and minima with certain frequency
intervals for the first order discontinuity and tend from one value
to another for the second order discontinuity with increasing fre-
quency. For the perfectly continuous medium, those vary monotoni-
cally. It is necessary to observe the wide band spectrum of the
reflected waves to discuss the nature of the boundary.

The apparent phase velocity is determined from the phase of
the complex transmission coefficient. It is faster in long period
waves than in short ones.

1. Introduction

The seismic wave is a kind of progressive wave, and fields of their
propagation seem in general to be aeolotropic and heterogeneous. Many
wave phenomena, however, have satisfactorily been explained, even if
aeolotropy is not taken into account. On the other hand, if a homogeneous
medium is in contact with another homogeneous medium, a portion of
waves makes to be reflected from the boundary. The theory of reflec-
tion and refraction (or transmission) of elastic waves at discontinuities
has been studied by many researchers since the end of the last century?.
Most of them have discussed wave phenomena in structures consisting of
two media whose elastic properties vary discontinuously at the boundary,

1) C.G. KNOTT, ‘ Earthquake and Earthquake Sound; as Illustration of General
Theory of Elastic Vibrations,” Trans. Seism. Soc. Japan, 12 (1888), 115-136.
L. M. BREKHOVSKIKH, Waves in Layered Media (Academic Press, 1960).
And also many textbooks on the wave phenomena.
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and there are a few discussions on the difference of the transient nature
of discontinuity.

The distribution of the elasticity across the transition can be clas-
sified as in Table 1. A discontinuity at which elasticity is discontinuous
and its derivatives are continuous is here called a first order discontinuity,
and a discontinuity at which it is continuous and its derivatives are
discontinuous is called a second order discontinuity.

The resultant wave in a heterogeneous medium, in general, cannot
be separated into progressive and other components®, so that the wave
phenomena in such a medium ought to be treated in what manner a
heterogeneous medium with a finite thickness is inserted between two
homogeneous media, in one of which an original wave is incident. The
model in which the inserted medium is homogeneous corresponds to the
first order discontinuity, and the model, in which it varies linearly, to
the second order discontinuity.

The behaviour of waves in the case of the intermediate homogeneous
medium has been discussed by several authors®*, It in the case of the
transitional medium in which the velocity varies linearly has been dis-
cussed, too, and the comparison between them has been discussed little.
The solutions in the latter case were written in terms of some Bessel
functions® and of transcendental polynomials,” as well as the transi-
tional medium by an ensemble of a large number of very thin homogeneous
media.”

The behaviour of waves in such a medium where the property varies
as a perfectly gradual manner has exactly been investigated in the case
of electromagnetic field, using Kummer’s solutions of the hypergeometric

2) S. A. SCHELKUNOFF, ‘“Remarks Concerning Wave Propagation in Stratified

Media,”” Comm. Pure and Appl. Math., 4 (1951), 117-128.
L. M. BREKHOVSKIKH, loc. cit., p. 229,

3) K. SEzAWA and G. NISHIMURA, ‘‘ Dispersion of a Shock in Echoing- and Disper-
sive-Elastic Bodies,”” Bull. Earthq. Res. Inst., 8 (1930), 321-337.

4) K.SezAawaA and K. KANAIL “The Nature of Transverse Waves Transmitted through
a Discontinuity Layer,” Bull. Earthq. Res. Inst., 14 (1936), 157-163.

5) K. SEzawa and K. KaNa1, “The Effect of Sharpness of Discontinuities on the
Transmission and Reflection of Elastic Waves,”” Bull. Earthq. Res. Inst., 13 (1935),
750-756.

6) A. WOLF, ““ The Reflection of Elastic Waves from Transition Layers of Variable
Velocity,” Geophysics, 2 (1937), 357-363.

7y T. MATUZAWA, ‘‘Reflexion und Refraktion der seismischen Wellen durch eine
kontinuierlich verindernde Schicht: 1, SH Welle,” Bull. Earthq. Res. Inst., 33 (1955),
533-548. )
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Table 1. Classification of the boundary.

e derivatives of nature of
stieit, v . oo
elasticity elasticity discontinuity
continuous continuous continuous
continuous discontinuous the second order
discontinuous
discontinuous continuous the first order
. discontinuous
discontinuous discontinuous discontinuous

equation.” The effect on the continuous medium agrees approximately
with that on a stratification of a lot of layers with weak reflections.®

In addition, the effect under which the movement is able to slide at
the boundary surface has been discussed in detail by some authors.™

In this paper, propagation of waves through various kinds of inter-
venient boundaries is systematically discussed in some simple models. In
sections 2, 3 and 4, the formulations for the reflection and transmission
coefficients are expressed through the first and second discontinuities and
continuously varying medium, respectively. In section 5, these for each
discontinuity are compared with each other, and the apparent phase
velocity through the intervenient medium is also discussed. In section
6, the concluding remarks and summary are stated.

2. First order discontinuity

Amplitudes of waves reflected from and passing through a contact
plane of two different media are determined by the characters of each
medium, and are independent of the wave length of incident waves. If
velocities in the left- and right-hand side medium of the discontinuity
are denoted by c,=ci(1+¢) and c,=c4(1—¢), respectively, as schematically
shown in Fig. 1, and if the incident waves advance in the left-hand side
medium, the reflection and transmission coefficients, R, and 7,, are given
by the following formulae, respectively,

8) P.S. EpsTEIN, ‘‘Reflection of Waves in an Inhomogeneous Absorbing Medium,"”
Proc. Natl. Acad. Sci., 16 (1930), 627-637.

9) T. MATUZAWA, loc. cit., T).

10) H. JEFFREYS, ‘‘Elastic Waves in a Continuously Stratified Medium,’”” Mon. Not.
Roy. Astr. Soc., Geophys. Suppl., 7 (1957), 332-337.

11) G. NIsHIMURA and K. KANAIL “On the Effects of Discontinuity Surfaces upon
the Propagation of Elastic Waves,”” Bull. Earthq. Res. Inst., 11 (1933) 123-186, 595-
631, 12 (1934) 277-316, 317-330, 331-367, 13 (1935) 519-539 and 540-554.
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Roz(l_cal)/(1+031):€ ’ (1 )
and T=2/1+¢,)=1+¢,
where cii=c;le; .

The velocity deviation e is related to the velocity ratio ¢, of each medium;
ca=(1—¢)/(1+¢), (2)

and since ¢, is always positive, ¢ is confined between —1 and 1.

C,=Cylire) G =Gyll+e)
Cz:“CO
C3=Cdl-¢) ’ Ca=Coll-<)
— ey
Fig. 1. Velocity distribution of Fig. 2. Velocity distribution with
sudden change. an intermediate homogeneous medium.

Next, waves reflected from and passing through the first order dis--
continuity are discussed. The simplest model of this case shall be taken
such that an intermediate homogeneous medium with velocity ¢, and
thickness @, is inserted between both media, as schematically shown in
Fig. 2, for the sake of comparison with the other cases. The reflection
and transmission coefficients, R, and T, are defined as ratios of the ampli--
tudes of waves reflected from and passing through the intermediate medium
respectively to those of incident waves,

_ (I—cy) cos k@ +1i(cs—cy) sin by,
(14 ¢3,) cos k2t 1(Cs -+ Coy) Sin kg,
R / 1— sin® b {1—(1—&—a®)/(2a)’}

V1 sin? ka1 —(1—e&+ a?)/(2a)}

1

exp {{(&1— 2},

3.
. ) (3)
! A+ ¢.,y) cos k,x,+i(cyn+Coy) sin k2,
-7 exp (—1?,) .
V' 1—sin® bwfl—(1—& -+ a?)/(2a)})
tan (Dlzgzﬁi@ tan k.a,= 1-e+a on k., ,
+ ¢y 2a
where . 2 o (4)
tan @{:c“—c“ tan k.a,= 1—-&—a tan k.x, ,
—Cy 2a

and ko= wx/c, C;=QcC »
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As the thickness or the frequency tends to zero, that is, the wave
length becomes much larger than the thickness, R, and T, approach R,
and T, respectively.

From formulae (3), the reflected wave is minimum for k.x, equal to
a half of odd times 7, whereas the phemomena agree with those of very
sharp discontinuity for k., equal to integral times z. Particularly, the

velocity ¢, that makes the reflection coefficient the largest is given by
the relation

c,=cV' 1—¢,

.and R,= R, cos k.x,

= exp (—19,) ,
11— sin? k,, p(—10)
T, exp (—19,)
T =—0=2r v, 5
YTV 1—¢ sin? kg, (5)
where &,= tan~' (V' 1—¢ tan k) ,
.and kzxozﬁ—zo— , Wy=Co/ %y «

3. Second order discountinuity

In this section, it is assumed that a heterogeneous medium in which
the velocity increases or decreases linearly with distance w, is inserted
between two media, velocities of which are ¢,=c,(1+¢) and ¢,=c¢,(1—¢)
respectively, and that the velocity is con-

C,7C,lI+e) . . ..
Gl e-2XKo) tl.nuous' everywhere but its derivatives are
6,eC,0- o discontinuous at each boundary, as schema-
Lo N tically shown in Fig. 3. Such a layered
Fig. 3. Velocity distribution model has been classified transition layers in
with a transient layer. the geophysical exploration.

The wave motion in this medium has been obtained by several re-
searchers. In this paper, the following solution is adopted™:

the wave equation (%-}—w?—sza)?,)(V oc, w)=0,

T

travel time =1 log (&) ,
2ew, c,

(6)

12) R. YosHIYAMA, ‘‘Stability of Waves through a Heterogeneous Medium and
Apparent Internal Friction,”” Bull. Farthq. Res. Inst., 38 (1960), 467-478.
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displacement Uoc 1 exp {-%_-i]/ <i)2—a’ wor}
1/ pcz (!)0 ’

for 0<a <, ,
where Wy=C,f, .

The average velocity defined as x,/t(x,) is determined by (6),
— 1+4¢
7,204/ log (175 . (1)

The reflection and transmission coefficients R, and T, are given as in the:
preceding section by the formulae

R,=—R, sinc,:) exp (—1@,) 2 ’
L e i A
=T, exp (—19,) ,
Vi-¢ ]/1—1*62 sin® @/{(%)2—82}
where @:2%5 /(%)2-52 log (i%z) ,
and @,= tan—* ¢ tan ¢

V(@] —¢

Though @ is imaginary for w/w, smaller than |e|, both sinp/p and cos @
remain real. If the displacement in the linearly varying medium could be ex-
plicitly stated by the exact solution (6): (0c.) ™ ?exp {iwt—1V (w/w,) — w7},
waves advancing to 4+« direction would disappear for frequencies lower
than ew,. This is unacceptable from the physical point of view. There-
fore, the stability of the propagation of long period waves should be:
discussed in the transmission coefficient defined above, and this treatment.
is one of the practical proofs of Schelkunoff’s remarks.

Such waves approach R, and T, respectively, as the thickness or
wave frequency tends to zero, whereas are transmitted without reflection
for short period incident waves. The greatest of the reflection maxima.
appears for the very long incident wave, and the subsequent maxima.
decrease with the wave length of incident waves. For frequencies

wn:aa)q/l+ (257@/ log iii)z (9)
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corresponding to the cut-off frequencies of Wolf when 7 is unity, the
transmission modulus is equivalent to that of maxima in the intermediate -
medium, and reflection disappears.

4. Continuous transition

The differential equation with respect to the stress S can be written
as

as o
G e S0 (10)

where ¢ is the velocity, @ the frequency, and the density p is assumed
to be constant throughout the whole medium. The elasticity is proportional
to the square of velocity, and the stress to the elasticity, wave number
and displacement in a homogeneous medium; i.e., the displacement is
proportional to the product of the stress and the inverse of the velocity.
The reflection and transmission coefficients, therefore, are written as
follows: If A, and B, are moduli of the
stress of progressive and retrogressive
o . : T, waves at = —oo respectively, and A4, is
- = ° 2 one of the progressive waves at x=co,

[ A}

Fm—ee T ey - CsGoli-¢)
Fig. 4. Velocity distribution of R,=B,/A, ’
continuous transition for ¢=0.5: and Ts=(c,4)/(c;A) (11)
1_ 1
e ol where ¢, and ¢, are velocities at = —oo
exp (zx/x0)

(ﬁ——;;) and x= -+ oo, respectively.

If the velocity varies continuously from
¢, at a position distant from a transition to ¢, at another distant position,
the velocity distribution can be expressed as

{1+ exp (zx/xo)}

¢ & {I4+exp(va)i\ci ¢

1_1+ exp (vx) 1_1>’ (12)

for which Equation (10) becomes the same form as that which Epstein
obtained.

A solution converging at x—-+c with a factor exp(—ik,x) is
combined with solutions converging at x——oo with factors exp (*ik.x)
as follows;
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e F(i(Ky—15,), 1(ky+ £,); 2ik,4+1; —e77)
= A(i(Ey— £, Tk £)e™ M7 F(—i(ky+ ), 1(5y—y); —2k,+1; —er®)

+ A((ts+ £y, Uk —K))eT M F(i(k,~— £y, 1(ks+ Ky); 2ik5+1; —e™®) ,  (13)

where ki=w/c; , k;=k;/v, j_l 3,
 Ia+B+1)Ir(B—a)
A a, ,8 = ’
@O= @

and F(a, b; c; 2) is a hypergeometric function which tends to unity as z

vanishes. From the relation (13), the reflection and transmission coeffi-
cients can be determined by means of Equation (11),

— (Ics+f61)l“(,-—27l/£1) r F('L(’fs—}“’cl)) 2iky7q
= (f£s— ) (2ik) L T(i(k,— k) ] at ©(<0),

T — % gty [Lks+e))T g—iksestikiey at 2,(>0),
e, 2k, I(2ik)(2ik,) {(>0)

and (14)

where both positions @, and «, are remote from the transient zone; these
moduli are simplified as
sinh (k,— ),

! R, |: T
sinh (Ic +k)x,
and v (15)
| Ty I— 1-[R,[",

which tend respectively to R, and T, as the period of waves becomes
very long.

If v is @/, @, can regarded as equivalent to the effective thickness
of velocity variation, as shown in Fig. 4.

5. Comparison of reflected and transmission coefficients and
the apparent phase velocity through intervenient media

Reflection and transmission coefficients for various kinds of discon-
tinuity are obtained in the preceding sections. Those for the first
order discontinuity R, and T, seem to be undulating with respect to the
wave frequency, and undulations of those for the second order 'discon-
tinuity R, and 7, diminish with increasing frequency. Those for the
perfectly continuous medium R; and 7, vary monotonically. The larger the
velocity contrast, the more remarkable are the characters of those coeffi-
cients. Fig. 5 shows moduli of these coefficients for a very sharp discon-
tinuity of |e|=0.5, for which the velocity contrast is thrice or one-third.
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w/uy

Fig. 5. Moduli of transmission and reflection coefficients
(a) and (b), respectively: wo=co/xo.

Next, the phases are discussed. The phase of a complex transmission
coefficient may be interpreted due to propagation of waves in distance
2, with an apparent phase velocity ¢*. No phase shift exists in the very
sharp discontinuity. In the first order discontinuity, the phase expres-
sion can be expanded as

7 ] in 2k,x sin 4k,%
—_— {1 2 St 270 2 2 20 .o .} y
1= g 2k, e 4k, (16)

(1—04)2—52<1-—1/ 1-¢

where =
=" dfay—e 11V 1-¢

The apparent velocity cf, as the phase @, can be written by wx/ck, is
approximated by the form

s—c 142 sin 2k, 2}.
e c{-+q—5@g—+0@) an

This relation shows that the apparent phase velocity is dispersive at the
low frequency, if & is not neglected, that is, the velocity contrast is
large, and it tends apparently from velocity c,(1+¢)/(1—q) to the average
veloeity ¢, with increasing frequency.

In the second order discontinuity the phase angle can be expressed
as follows:
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2 2 4
¢=ﬂ{1 L(i 0 } fop @ T
o U 15 wo)+0<e a);) ’ S a (18)
and ¢2:@{1‘|‘2QIM+ 0((]’2)} , for _C_l)_>_71'-
2 w,” 2
where q'=4(5&)2{1_l(5 @ > +0<€4 o} )} .
® 2\ o w*

Therefore, the apparent phase velocity cf is given, since @, is taken equal
to wx,/cy, by the form

o1 (2 Vo)) o _7
| Cy —Co{l 15 ( w0> +O(€ a)é) , for o, < 5
and : _ .
cz*=2e{log 1+5} l-co{1+l(eﬂ) +O(a4i3>},
1—¢ 2\ w w*

for £>%. (19)

0

The factor of this expression is expanded as

2log T2} =1 0@, (20)

so that the apparent velocity at low frequencies is larger than that at
higher frequencies, and its variation is monotonic similarly as in the first
order discontinuity. In addition, it is noticeable that this dispersion is
independent of the sign of e.

In each relation, the apparent phase velocity for high frequencies
tends to the average velocity, (distance)/(travel time).

A similar dispersion is also found in the medium varying continuously:
From (14) and the definition of apparent phase velocity cff,

@, W [0) I (ta) (1)
—arg Ty=——0y=—0;——&,— arg —— & ,
BT T e T(i(a+B)I (i(a—B))
' 2 w
where Te=T3—y , Of:‘—lfa.—}—h‘l:m)—a ,
and B=k,—K,= 2e @

T(l—€) w,
If a virtual velocity ¢ is defined as

/T = wy/c;—ax /e, ,
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and by means of the infinite product formula of gamma functions, the
apparent velocity is written as

ca"‘:ﬁ/[l-%- e itan‘1 dnaf” )],

wx(’) n=1 (n2+a2)2_|_62(n2__a2

I T R -

a)oxg 71'3(1 —82)3 60- n=1 (n2+a2)2+/82(n2—a2)

Therefore, it tends to ¢ in a limit of zero frequency, and becomes slower
with increasing frequency. On the other hand, 4naS*/{(n*+ a®)*+ B (n*—a?)}
is smaller than 613 /{(8+¢)1/ 1—¢ }, and its maximum is for the inte-
ger n nearest to V' (&’ —5%)/3 or (2/7)(w/w){3(1—¢€*)} " at which the sum-
mation term can be approximated by integration. The result is

i tan™! dnap’
n=1 (n2+ a2)2+82(n2_a2)

2 2
16—81/2 €
O] 2¢ +2+ +4

- log
W, T(1—€e)V' 24+¢*/4 148 _ofor €
R

which is proportional to the frequency. Therefore, it tends to a constant,
for high frequency,

s—zl1 ¢ 4¢e? ]
=7 [ o Td—e)drez) )’

which is smaller than ¢ and is independent of the frequency.
This dispersion corresponds to such as surface waves, so that it is
suggested that the transmitted pulse becomes blunt.

6. Concluding Remarks

Propagation of elastic waves in a heterogeneous medium with periodic
structures was previouly investigated.”™ In that study, distribution of
the velocity and its derivative was continuous everywhere. In this paper,
the effect of an intervenient transition layer is discussed in connection

13) 1. ONDa, “Propagationy and Apparent Attenuation of Elastic Waves in a
Heterogeneous Medium with Certain Periodic Structures,” Bull. Earthq. Res. Inst., 42
(1964), 427-447.
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with the stability to transmitted waves. Schelkunoff’s remarks™ are
ascertained in propagation of long period wave through the medium
varying linearly. .

If a medium is in contact with another, amplitudes of the transmitted
waves are deduced from the theory of reflection and refraction (or transmis-
sion), which are independent of the frequency. If a medium is inserted
between these two media, the reflected and transmitted waves depend
upon the frequency. Then, to compare a type of transition medium be-
tween these two media with another, a very simple model is considered:
an inserted medium with a finite thickness is taken into account. If it
is homogeneous, the model corresponds to the first order discontinuity,
and if the velocity in the inserted medium varies linearly, the model
.corresponds to the second order discontinuity. The transmission and re-
flection coefficients T and R are defined as ratios of the amplitudes of
the transmitted and reflected waves to those of the incident wave, re-
spectively. In this paper, the transmission and reflection coefficients are
discussed by taking their ratios to the coefficients for the model of sudden
change without an intervenient layer. By doing so, it is possible to
discuss, by means of the same expression, the case for the given velocity
ratio ¢,/c, between the right- and left-hand side media and another case for
the velocity ratio to be equal to ¢;/c,: for example, the relative coefficients
for 01/03':2 are equal to those for c¢,/e,=2.

In addition, the apparent velocity is obtained from phases of the com-
plex transmission coefficient.

Amplitude of transmitted waves: For the first order discontinuity,
it varies between T, and T,/V 1—¢&® with some frequency intervals. For
the second order discontinuity, it increases from T, to T,/1” 1—e&' and
after slightly diminishing, converges to T,/V' 1—¢ with increasing fre-
quency. On the other hand, it increases monotonically from T, to
T,/\VI—¢ , in the model with a perfectly continuous variation. At low
frequencies, its gradient to the frequency for the second order discon-
tinuity is smaller than for the first order discontinuity and larger than
for the perfectly continuous medium. This behaviour is shown in
Fig. 5, as an example. '

Amplitude of reflected waves: As the conservation of energy flux
holds within the incident, reflected and transmitted waves, it has the
property similar to that of the transmitted waves. When their discrimina-
tion is marked, the spectrum of reflected waves should be used to determine

14) S. A. SCHELKUNOFF, loc, cit., 2).
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the nature of the boundary.

Apparent phase velocity: The apparent phase velocity in the very
short period waves agrees with the average phase velocity, while it is
faster in the long period waves than in the short period waves. This
dispersion is qualitatively similar to it of surface waves. The amount
of this dispersion is of the order of magnitude &), but it cannot be
neglected in the case where the velocity deviation & is not small in the
path of the wave propagation.
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