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Abstract '

It is well known that the water surface of a pond, reservior
and lake is disturbed on the occasion of an earthquake. In the
present purview, the problem of the water motion accompanied by
an earthquake is treated theoretically.  The used model is a one-
dimensional rectangular basin and the generator of water disturb--
ance is given only at the bottom in a form of periodic, propagated
waves. Then the following conclusions are obtained :—

(1) - When the period of the ground motion « the period of
the n-th mode of the eigen oscillations, i.e. wy>7s (w,: the angular
frequency of the ground motion; 7,:the angular frequency of the
n-th mode of the eigen oscillations), the generated water waves
move with the period of the earthquake at the time of the duration
of the ground motion and, after the termination of the earthquake,
with a period of the eigen oscillation.

(2) When ®,<7., the water waves produced by the ground
motion have, in the midst of the earthquake, two kinds of periods
‘which are relevant to that of the earthquake and those of the ‘eigen
oscillations of the lake water, and, after the earthquake, the former
disappears and the latter only remain.

(83) When w,~7,, the wave height of the n-th mode of the
waves is in proportion to a time duration of the earthquake.

-..(4 When kl—0 (k:the wave number of the earthquake wave;

1: the length of the lake), the whole surface of the water oscillates

~ uniformly with a period of an earthquake and no higher modes of
the waves are generated.

(5) When kl—n=z, the modes of the waves with a difference of
even numbers from the n-th one are not produced on the surface
of water. "At the beginning of the earthquake, the modes of the
waves on the lower side of the resonant mode (the n-th one) are
more excited by the ground motion than those on the upper side
(n: positive integers). When the lake is very shallow, a similar
phenomenon takes place, that is to say, the nearby modes of the
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waves on the lower side of the resonant one are more excited by
the earthquake than those on the upper side.

(6) When the ground motion lasts unlimitedly, even though the
amplitude of the earthquake is so small, the produced water waves
increase in height infinitely to the extent that the linear theory
used in this paper cannot be applied. Then the period of the water
waves is nearly equal to that of the earthquake. :

In the subsequent articles, other cases will be considered.

1. Introduction

It is a generally accepted fact that on the occasion of a great earth-
quake the motion of the water in a pond, reservoir and lake is caused
by movement of the ground accompanied by the earthquake. Among
these motions of the water, an eigen oscillation of the lake is a very
curious and ambiguous phenomenon. The most difficult point is that
when a period of an oscillation of the lake differs considerably from that
of the earthquake. Although it is known that a remarkable upheaval or
subsidence of the earth-crust produces a tsunami in the open sea, the
displacement of the ground on the occasion of an earthquake seems not
to be large, in amount, enough to generate the water motion of the
lake. In an attempt to explain such phenomena, the author takes up
the present problem in this and the subsequent papers. Firstly, in this
paper, the case of a rectangular basin (one-dimensional) is treated.

2. Theory

Let the fluid be ideal (no viscosity), incompressible and the motion
irrotational. When the co-ordinate axes are taken in the conventional
manner, with the (x, ¥) plane at the undisturbed surface of water (since

we are treating the case of a

z>0 ¢ Water one-dimensional phenomenon,
0 JSurfoce X<l the y-axis is perpendicular to
-~ N ~ the paper), the z-axis vertically
- ' upwards, and the wave of
7=-H Bottom ' small wave height is assumed,
> the governing equation and
Farthquake Wave boundary conditions are (refer
Fig. 1. to Fig. 1):

PP | 06 _

0w o (1)
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(¢ is the velocity potential) ;

(=2 (Brop) (2)

(¢ is the wave height, g the acceleration of gravity, ¢ a variable of time
and g the virtual viscosity) ;

ol _ (09 )

=), (3)
0

E—J] (4)

(7 is the velocity of the displacement of the bottom).
From (2) and (3), the relation

o'¢ 0 | 409 _ -
o gl =0 (e=0) (5)

is obtained. .
Let D be the displacement of the bottom. There exists a relation
between 7 and D, viz.

_oD ,
=" (e=—H). | (6)

Substituting the Fourier transforms

p= 1 r #'e~tdw

V21 J-w
— 1 = ! p—iwt
D= 7etdo (7)
— 1 . ! p—iwt
D= 1/2_55_“1)e do
into (1), (4), (56) and (6), we have:
g | ¢ —0 ’
ox: 0 ’ (1)
2y 7 gy o 09 'y
—(@0*+1-21w)¢ +QW— (z=0), (5"
0" . o oy /
e 1wD (r=—H). (6")

Boundary Condition: The boundary conditions for the case treated
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in this paper are

%o  (@=0,1 (8)
0x
and
D:Dée—iwoﬂrikac (0< t< to) ( 9 )

b

=0 (otherwise)

where the only real part has physical meaning (D, : real constant). Putting
the first expression of (7) into (8), (8) becomes

gi=0 (=0, I). (8')
xr

From the last expression of (7), the inverse Fourier transform of D is

o
D D—Hmr
= o etrivtdr,

Using (9), the above expression becomes as follows

D D 6—1mgt+1kx6+w1dr . (10)

1/27r S

Mode Solution: Using the boundary condition (8'), the solution of
(1’) is given by

i; = COS :nTﬂ-m (11)
A o (n
¢, a7 a=(7)- (12)
Then the boundary conditions (5’) and (6’) becomes
2 d¢n — —
—(@w*+1- Z#w)¢n+g =0 (2=0), (13)
A _ oD, (z=—H), (14)
dz

where

D= i D, cos nlrt ,
- (15)

D=—p_|" Diedo.

1/271'
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When =0, the solution of (12) is
¢/=Az+ B, | (16)

where A, and B, are arbitrary constants.
When n=1, the solution of (12) becomes

gy =A,6" +B,e~r, a7

where A, and B, are arbitrary contants.
Using the boundary conditions (13) and (14), the arbitrary constants
can be determined. Then the expressions (16) and (17) become as follows

r_ g Y 4 ) ’
1=+ g ) 0D, (16)
gl = (@*+1-2pw) sinh a,z+ga, cosh a,z | (—10wD,)

w*+1-2p1w—ga, tanh o, H a, cosh a, H
n=1,2,3, ). am)

From the first expression of (7) and (11), we have :—

o= S $,, COS ﬂx, (18)

“Var S g o (n=0,1,2,---). (19)

Substituting (18) and (19) into (2), the expression of the wave height
is as given below :

t= 3 L eos a, (20)
C=| —(—w+2m<¢) eida, (1)
1/27?.' n/z=0 |

Setting down z in (16’) and (17') equal to zero, (16’) and (17’) are
reduced to

no— _‘i'g Dr
#emo= 5 D (22)

: —i-gw D. |
(¢n)z=0 a)2+Z 2#0) ga tanha/ H cosha H (23)

(n=1,2,3, --).
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From the last expression of (7) and (15), D, is given by

D=1 EZD’cosﬂmdx (n=0,1,2, ---), (24)
Q, Jo l
where
Q;,ZSZ cos? 7;ﬂxdx
Putting (22) into (21), the zeroth mode of the wave height is .
L= 1/2 5 Die-'dwy  (p=0).

| By use of (24) and the bottom condition (10), the above expression
becomes

Co=D,- k_l {— 6—-zwot+1kl__*_e—twot}gtoa(f_t)dz-. (25):

. Taking a real part of (25), the zeroth mode of the wave height is

C":D"'kiz' {sin @,t —sin (a)ot—kl)}gtoé(z'—t)df. (5'):
0

Likewise, substltutmg (23) into (21), the hlgher modes of the wave:
height (n=1, 2,8, ---) are

1 1 r _
== — . Dn zwtdw
= Ver cosha,H J-- ¢
1 Yo o . S‘” D™ 40 o).
+1/27r cosha,H J-ww?+i-2u0—v2 ' (26)
where

Using (24) and the boundary condition (10), the first term of the right-
hand side of (26) becomes :—

the first term of (26) =Dy~ Ln gt S S(c—t)de, (28).
~ cosh a, H

where
- 2kl

TFW- [(—1)" sin'll+-{1—(~1)" cos k)], (29),



A Motion of Water Excited by an Earthquake [I] 117

and the second term is reduced to the following :—

the second term of (26) =D0-—L-7—i-§toe‘“’0’ V.dz, (30)
cosha,H 21 Jo
where .
o e—iw(t——r)
Vn:S _¢ @31)
—= @120 —7E
In order to calculate the integration
(31), the complex plane is used. Refer-
ring to Fig. 2, there exist the next
C relations
R
=0 32
Co ; Soo+§al ‘ (32)
R . and
@_ w4
c bt
0y Jo,
=2rmi-{Res (w.)+Res (w_)}, (33)
Fig. 2,

where @, and @_ are the roots of the
denominator of the integrand of (31), i.e.

Wy=—Tpu+V — (8472, (34)
‘When R tends to infinity,?

S —0  for t<z (35)
. 01
and
S —0  for t>z. (36)
Oy
From (31), (32) and (35),
V,=0  for t<z. 37
Since
e—-iw_(t—-r)
Res (w.)=
w_—w,
and . ) (38)
e—uo_,_(t—r)
Res(w_)==——
W, —w_

1) R. TAKAHASHI, Bull. Earthq. Res. Inst., 20 (1942), 375.




118 T. MoMmor

we have the expression of V, by use of (31), (33), (34), (36) and (38) i.e.

Vnzzﬂ.ill’y_"(t_—ﬁ for t>T, : (39)
Tn

where 1=0.
Substituting (37) and (39) into (30),

to
' T, So } e s
the second t f (26) =Dgyo——2"" - .g—iooT — ‘
e second term of (26) 0" o 0 St e sin (t—7)yv,dz, (40)

0

where the integrations on the upper and lower sides correspond to the

cases for ¢>t, and ,>t>0 respectively.
Now putting (28) and (40) into (26), and after a few reductions, the

expression of the higher mode becomes :

cn:Da‘—c—o?}?:;—I{“ 7;" for t>t,, (41)
where
A= ﬁ . {g_i(w0+7n)t0+‘57nt — e+i'ynt}
0 n

Tn . fg-itoo—vnito=ivat _ g=itut},
Wy—Yp

Substituting (29) into (41) and taking the real part alone, the higher
modes of waves become

D, . K. o
= o o B (i) — () {TO+)HTOL @),

where

U @)= 20 sin 2(@rt7.)

0 n

X COS { 7nt+/€§—%(wo+'7n)}

_.__gl”__.sin E(wo—’Yﬂ)
(t)o—’)',, 2

X €oS { —7.t+ k’g'——tzi(wo—%)}-
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Setting down

Ayy= %(a’oi%)

1 ) (42)
=—(kl—nw
=5 (l—n)
the above expression becomes, after some reduction,
1 D, nrt+2B, sinpg,
é:n___. » . . "Ynto
2 cosha,H nw+B, B,
X {%-sin (Fub— sy +B)
A1C3)
48N i (v b, — Bn)}
(£ 13)
for t>t,. (43)

In 2 manner similar to the fore-going reduction, the higher mode of
the wave heights for the case 0<t<{, is as follows:—

¢ = D,  nwm+2B, sinp, -cos (Wt —AB,)
cosha,H nrw+p8, B.
_*__1_. D, .mr+20, sin B
2 cosha ,H nw+B, B,

. 'Ynto

% {_Sin Ten . sin (7 _Bn)—*—% .gin (T(+)—:8n)}v (44)

T T

where
r<i,=%<woim (44)

and the first term is derived from (28) and (29), and the second group
of terms is obtained by (30)-(39), the lower side of (40) and (29).

Dimensionless Form of Mode Solution : For convenience of later
discussion, the above obtained solutions are expressed, in dimensionless
form, as follows :

Cr=Ci+ 3 Creos a7, (45)

where
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CE=Dj+—L_.(sin wpt* —sin (0 t* — k%),

L
* D} w285 sin G} [ * ok *
= . . +| cos (wit*— B
cosha® nm+pB* B (@5t —5z)
+lo'y;kt* .{_%.sin (T?‘_)_B;f) ’ (46)
2 T
3 k
+S—12£)“’ -sin (T?l)—ﬁ,f)}], .
- for 0<E<t,
and
&r=o0,
gr=L. Db nw+2B% SinBE ...
2 cosha} am+p8: B 7
3 k%
<SR sin (it —ar, b8 b, (47)
Ay '
+ SO i o, — B,’;)},
218
for ¢, <t
and where the notation used in (45)-(47) is as given below :
¢r=C(/H, (3=C(,/H, o*=ug/H,
Di=Dy/H, wi=uw, g, t*=t]/%,
k*=kH, I*=I/H, ar=aq,H,
B =B, 'rj:zv,,]/ H t::to}/@ (48)
g H
Tl =Ty, A=
(m:O, 1,2, )

n=1,2,3, -

As shown in the above, the zeroth mode of waves (£7) is produced
only in the interval of the duration of an earthquake wave. After the
termination of a ground motion, the higher modes of waves excepting
the zeroth one remain alone,
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Unlimited Duration of Ground Motion : When the duration of an
earthquake wave is unlimited, i.e., t,—co, the expressions of (47) disappear.
and merely (46) is taken into consideration. -

For sufficiently large ¢,

sin 9t

~7o(n).
7 ‘7f(77)

In the above expression, provided that 7 is non-zero, the value of the
left-hand member of the above equation is considered actually to zero.
Therefore, the higher modes of waves of (46) becomes

D  wr+2B; sin B

= cosha} mnm+pBF BF .{COS (@5t™—67)
+ 2 a(ws — ) sin (728 —87)). (49)

As shown in the above equation, as ¢, and ¢ (£,>t) become large, the
only mode for wf=7} remains and this mode is eventually infinite in
magnitude, unless B¥=mnr (m=1,2,3,+--), of which the case will be
discussed afterwards.

Now the expression (49) denotes that a long duration of the seismic
waves, even though the amplitude is so small, is sufficient to produce
an oscillation of the lake water.

Finite Duration of Ground Motion: The actual situation of the
earthquake waves may differ from the model (9) and a gradual transition
of the motion of the ground to a quiet state, instead of a sudden one
as shown in (9), is seen in the actual earthquake, but the model (9), as
the first approximation, is used to explain the behavior of the motion
of the lake water on the occassion of an earthquake.

(i) When wf >}, the approximation

1

Thy @it

2

is possible. Using this relation, the second expression of (46) becomes

x__ Dg  nw+2B8F sinBF
" cosha} nm+pB: B

{eos (@it*—87)

+ 7% .gin B.sin ﬁt*} for t0’>t>0.

%
0
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In the above expression, the contribution of the second term is very
small owing to wf>~v¥. Hence, it turns out that the water waves excited
by an earthquake have the same period as those of an earthquake in
the madst of the upheaval. On the contrary, for t>t, the generated
water waves oscillate with a period of an eigen oscillation of the lake,
as shown in the expression (47).

(ii) When w§ <7k, the approximation

L 1 * ok
T = i;’)’ 2t
is valid, which makes the following reduction possible.

From (46), the higher mode of the waves for ¢, >t>0 is reduced,

after a few reductions, to the form

D} nr+26F  sin BF %
= ‘. n_. 2_.{cos (wyt* — G
cosha? nrw+pB% B {cos (@; £)

+sin wft*-sin BF —2 cos B} -sin ¢}, +sin 7§ )}

From the above equation and (47), we find that, when wi<v¥, the
water waves produced by the ground motion have, in the midst of the
earthquake, two kinds of periods which are relevant to the earthquake
wave and the eigen oscillations of the lake water and, after the earth-
quake, the former disappears and the latter only remain.

(iii) When wi—¥, the following approximations can be made :

sin 7§ sin w}it* sinti .
T SIMAGL 2=1 (¢* : finite),
T4 W;t* T

sinat, _sinofts  sinat, g g goive)
afy, Wity aly,
By use of the above expressions, (46) and (47) become as follows :
For t,>t>0 (from (46)),

Di  wmr+2B5 sin By
coshar nmr+B* B

+%-sin Wkt* - sin B +%-’72‘t;“ - sin (wit* —Bi'i)}

= {cos (@Ft*—B2)

and for t>t, (from (47)),

rr= Df  wm+42B6F sinBy 1
" coshar wm+pBr BF 2
+ Wity -sin (0Ft*— B},

-{sin wit¥ -sin (WFt* —wity +BF)
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The above two expressions denote that, as the period of the earth-
quake wave s equal to that of the eigen oscillation of the lake water,
the wave height of the corresponding mode of the lake water is in
proportion to a time duration of the earthquake.

(iv) When k*1*—0, which denotes that the length of an earthquake
wave is sufficiently large as compared with that of a lake, the higher
modes of the waves are reduced to zero, which are derived readily from
(42), (46) and (47).

On the other hand, the expressions of the zeroth mode are described
as follows :

for t,>t>0 (from (46)),

C&—Dj§ cos wit*,
for t>to (from (47))7
g=0.

From the above result, it is found that, when k*1*—0, the whole
surface of the water oscillates uniformly with the period of an earth-
quake and the motion of water is limited to the zeroth mode alone.

In the actual earthquake, the water of a bottle, reservoir and lake
is excited by the vibrations of the both wall and bottom. When k*1*—0,
in general, the energy contribution from the wall to cause the disturbance
of water is not so small compared to that from the bottom, so that the
model of the bottom vibration used in the present paper may be considered
to be inappropriate. But if the depth is so small as compared with the
length of the bottom, the result obtained in the above is interpreted as
still applicable.

(v) When k*l*—nm or 21*=n) (A is the wave length of an earth-
quake wave), the n-th mode of the waves becomes as follows :

for t,>t>0 (from (46)),

r=—Ds

gk ) P
=—"¢ _Jdecoswit*+2.-—*L___sinty,sincl, ¢;
cosh a}

(0§ —(3)
for t>t¢, (from (47)),

s Di | { Ta

" cosha} loF+v:

vy

wF—"5

sin afy, sin (Vit* —ak,)

sin af, sin (v t* + az“_,)}.



124 T. Moxmor

As shown in the above, if ®; =7}, the n-th mode of the waves has
always a finite value. In derivation of the above two equations, the
reductions of the factor with respect to B*

n71'+26::,3in‘8:_)1 *__,() 50
2 (820 NG

is used. Let the left-hand side of the above be equal to Q,, viz.

:mr+2,8;f.sin B* . (51)
Y omm+Br B

As Ek*1* tends to nw (m=£mn),

.
sin = (m—mn
Q. = 2n | 2( :
" m4n

52
%(m_n) (52)

When k*l*—nr, Q, factor (the expression (51) is called in such a
way in the following) tends to 1 (from (50)) and @, factor for m
(m=#n) is proved, in absolute value, smaller than a unit (Q, value for
a resonant mode) in the following way :—

Q,, factor is, at first, separated into partial fractions, i.e.

= 2gin T (n— { 1 1 }
Q. nsmz(n m) m+n+n-—m .

Taking the absolute value of the above equation,

2, . T | { 1 1
<% lsin T (n— .
IQ'”l—n s1n2('n m) m+n+|n—m!}

_3{ L, 1 } | (53)

Tlm+n |[n—m|

A

Since m and n are positive integers different from each other, the
inequalities ‘

|m—n|=1 and m+n=3
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are valid. Substituting these relations into the inequality (53), the value
of @, factor, when k*l*—nm, is verified to take a maximum (a unit), i.e.,

| Q. lé%-(%ﬂ)

-8
3

<1 (=@, for a resonant mode).

Here, we consider on which side (the lower or upper side) of the
resonant mode more energy is transferred by the motion of a ground

with a wave length x:-zi (k*1*=nm).
n
When k*l*—nr, let p be a positive integer such that #>p. Then
the @ factors on both sides of the resonant mode are expressed from

(62) as follows:
for the lower side,

Q ,=2._ 2 . 2n . (54)

for the upper side,

sinlp
Quuy=2. 2 . 20 (55)
T D 2n+p

If » is an even number, the above two equations vanish, that is to
say,

when k*l*—nm, the modes of the waves with a difference of even
numbers to the n-th one are not produced on the surface of water.

If p is an odd integer, we have from (54) and (55)

| Qus |>] Quis | (56)

Since the expressions of the higher mode of the waves (46) have
the factor 1/cosha} with respect to m excepting the @ factor, the
dependence of the amplitude of the waves on % is considered to be
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expressed by the factor®

R,= L (57)

cosha®’
if ¢* is not so large, and there exists an inequality
cosh a}_,<cosha;,, (58)

for n>p>0.
Now from (56)- (58), the followmg is obtained :

|Qn pl >> lQ,ﬁp‘ ) . (59)

coshaj, ~ coshal, h

Now, from (59), the modes of the waves on the lower side of the
resonnant mode are more excited by the ground motion than those on
the upper side at the initial stage of th earthquake. :

If the depth of the lake is very shallow as compared with the length,
i.e. I*>1, the variations of cosh a} and v#(=Va} tanh'a}) versus » can
be regarded nearly zero by virtue of the smallness of the variation of

a*( 7;:) Then the dependence of the amplitude of the n-th mode of

the waves on 7 might be described by @, (refer to the footnote 2)).
Now, from (56) and the fact mentioned above, it is concluded that,

2) Ry, the amplitude factor relevant to m, seems to have to include one more
factor ¥, but the existences of ¢f, ( (wo ESos )) in the denominators suppress the

contribution of 7 on R, such that: when wy>7¥, the expression of the wave height
is, from section (i),
49 =D*Rn cos (of t5—gF),
which does not depend on 7¥; :
when o} <7¥, the wave height is descrlbed from sectlon (ii), as
C¥ =D} Rn-{cos (o t* —B})+sin oy t*-sin fF—2cos B -sin ", -sin «{_}

in which the amplitude factor does not have r};
finally, when w;kzr: , from section (iii), we have

1 . . 1
(f:D("; “Rn- {cos (w;‘t*—ﬁ;f)—*—? sin w:t* sin (9: Ern *$*.sin (w*t*—ﬁ:)}.

The last expression denotes that the amplitude factor is almost independent of 7,

unless t* is very large.
Thus, from the result discussed in the above, in the midst of the duration of the

earthquake, the dependence of the amplitude of the waves on n may be con51dered
to be described by the expression (57).
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when the lake is very shallow, the nearby modes of the waves on the
lower side of the resonant mode are more excited by the earthquake
than those on the upper side.

The above conclusion is valid only for the nearby modes of the
resonant one, because the property of a constant of the factors cosh a;
and v* cannot be held for large variation of n.

In the present paper, the ground motion is given only at the bottom
and other cases will be treated in the future.
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