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Abstract -

The attenuation of seismic waves propagated in a heterogeneous
medium is investigated. Heterogeneity of the medium is represented
by the velocity distribution alone and the structure under considera-
tion is expressed in Fourier cosine series. In this proplem the
differential equation is of Hill’s type, and conditions of instability
are discussed. Since the unstable solutions obtained are of the:
standing waves, some modification and reformation for discussing
the stability of the progressive waves are made. .

It is concluded that the wave amplitude with wave length An 18
affected by the structural component with wave length L,=1./2 and
is independent . of the other components, and that the function of
the apparent attenuation for the specified wave amplitude is of
hyperbolic secant but not of exponential. On the other hand, the
phase of this specific wave is shifted by every component of the
structure. In addition, the phase shift of waves passing through the
medium is negligibly small; the phase velocity is apparently fixed
for all frequencies.

A similar problem will arise in that of surface wave propaga-
tion along a rough surface.

In the appendix, Hill’s equation is solved in forms convenient
in discussing the stability of its solution.

1. Introduction

The attenuation of seismic waves has been studied by many authors

from various points of view, theoretically and experimentally. Although
we have not yet arrived at a satisfactory theory of attenuation, it is
probable that the attenuation depends on the frequency of waves
propagated. The specific dissipation function 1/Q seems to be independent
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of the frequency in many materials’ over wide-band frequencies, in
other words, the: attenuation coefficient: is proportional to frequency.
However, in: a- Voigt -solid it is- proportional to the square of the
frequency, whereas in a Maxwell solid it is independent of the frequency.
If the earth materials involve any model of combinations of the Voigt
and the Maxwell solids, the attenuation coefficient proportional to the
frequency cannot be explained. On the other hand if non-linear stress-
strain relations are assumed, the attenuation coefficient is expressed by
a rather complicated function”. L. Knopoff and G. J. F. MacDonald”
proposed a non-linear term in the wave equation resulting from the
stress and strain rate dependence of the rate of permanent deformation.

H. Jeffreys” suggested the dissipation of waves passmg through a
granular medium, by anangy with his_firmoviscous law; theory of a
Voigt . model The scattering of elastlc waves by a tightly packed
assembly of :spherical obstacles. was calculated by N. Yamakawa who
noticed that. the effect of scattering. should be taken into consideration
for the attenuation.: ST :

The attenuation -of waves passing- through the d1spers1ve medlum
was discussed by G.L. Lamb® and W.I. Futterman”, by analogy with
Kramer-Kronig d1spers1on relation in the electromagnetlc field.

Selsmlc waves are propavated in’ Varlous klnds of heterogeneous
media in the earth On the earth surface there are a lot of topographlc
irregularities ; mountams, rivers, oceans, and so on. Ina recent explosion
seismic: study®, .it -was obtained that even the velocity of the upper
mantle of the eéarth varies from region to region. ' If we consider the
propagation of ‘surface waves, the problem of wave ‘propagation in such
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205.

3) L. KnopPOFF and G.J.F. MACDONALD, loc. cit., 1).

4) H. JEFFREYS, The Earth, 4th ed., (Cambridge, 1959), pp. 107-109.

5) N. YAMAKAWA, « Scattermg and Attenuatlon of Elastic Waves,” Geophys Mag.,
31 (1962), 63-95 and 97-103. -

6)..G. L. LaMB, Jr., « The Attenuation of Waves ina. stperswe Medlum,” J Geophys
Res., 67 (1962), 5273- 5277,

o) W I. FUTTERMAN “Dlspersne Body Waves,” J. Geophys Res, 67 (1962), 5279~
5291,
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States,” J. Geophys. Res., 68 (1963), 5747-5756.
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topographlc 1rregular1t1es Wlll mathematlcally be-: equlvalent to. one
represented by heterogeneity of the medium. R. Yoshiyama® investigated
the problem from this point .of view, and suggested that .the wave with
a specified wave length is attenuated accordmg to the heterogenelty of
the medium. : e ‘

S Homma'” mvestlgated the propagatlon of elastlc plane waves
along the surface with topographic irregularities. He regarded the
irregularity as the additional mass loaded -on the horizontal plane, and
obtained the solution of the disturbance, the condition of resonance and
possibility of oscillatory seismograms. According to that treatment, R.
Sato™ developed the problem to the P or SV incident wave of the
unit function type in the displacement potential. F. Gilbert. and L.
Knopoff'™®  investigated it following an idea. similar to Homma’s and
gave an integral representation by superposition of the functions arising
in the theory of Lamb’s problem for isolated surface line sources.
~R. Yoshiyama® recently treated, in detail, the propagation in a
periodic structure with a sinusoidal fluctuation, and concluded that
the apparent attenuation resulting from heterogeneity of the medium
is not of the exponential function but of hyperbolic secant one. In
this paper, the author investigates propagation of elastic waves in
a heterogeneous medlum 1n Whlch heterogeneity is expressed in terms
of Fourier series.

2. General solutions in a heterogeneous medium
with periodic structures

Solutions were obtained by R. YoshiYama“’ for the wave 'propagatiou
in a heterogeneous medium where the variation of the wave velocity
is' periodic. In that calculation, the independent variable, distance, is

9) R. YOSHIYAMA, “ Waves through a Heterogeneous Medium,” Zisin, 13 (1941), 363-

366, (in Japanese).
+ 10) S. HomMma, «On the Effect of Topography on the Surface Oscillation,” Quart. J.
Seism., 11, (1941), 349-364; 12 (1942), 17-23 and 24-36, (in Japanese).
S. HoMMma, «On the Effect of Surface Heterogenelty on the Surface Oscillation,”

Qua'rt J. Seism., 12 (1942), 37-51, (in Japanese).

*'11) R. SATO, “On Rayleigh" Waves generated at Rough Surfaces (1),” Z@sm, [u],
(1955), 121-137, (in Japanese). -

12) . F. GILBERT and L. KNOPOFF, Selsmxc Scattermg from Topographxc Irregularl-
ties,” J. Geo;ohys Res., 65 (1960), 3437-3444. .

13) R. YosHIYAMA, «Stability of Waves through a Heterogeneous Medlum and
Apparent Internal Friction,” Bull. Earthq. Res. Inst., 38 (1960), 467-478.

14) R. YOSHIYAMA, loc. cit., 13).
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changed into a variable equivalent to a travel time, and a new function
is introduced in a form of the product of the displacement and the
square root of the impedance. By doing so, conditions of the stability
of the wave are easily discussed in the stability chart of Mathieu’s
functions.

It will be covenient to give here a brief sketch of R. Yoshiyama’s
method. For brevity, it is assumed that the velocity of the medium
varies in @-dircetion only, and that a wave is propagated in the same
direction. The wave equation is given by the form

°u_ 9 ( 6u)
—=—1 =), 1
patz ox o (1)

where p and E are the density and the elastic parameter, respectively,
which in general are certain functions of z. - The velocity of propaga-
tion is

a v
c(e)=./L . (2)
v |
If the displacement u is substituted by a new function
p=u1c , (3)
and variable 7, which is equivalent to the travel time, is defined as
dx :
=|%T_ 4
¢ Sc(.’v) (4)

the wave equation is written in the form

Po_0¢_ . 5
ot o 77 (5)
where
e Jo d( od 1 ' 6
« l/?da,-<f"’dm/p7>' (6)

Here, o* is a function of space coordinate only but not of time.

Now, to study the behaviour of plane waves with a time factor
exp (twt), it is assumed that the density p is constant throughout the
whole medium, and that the velocity fluctuates slowly in the x-direction
with small magnitude. The velocity in such a medium may be ex-
pressed by the form




Propagation and Apparent Attenuation of Elastic Waves 431

c(x)=co(1+§. e, €08 277%) , - (7)
r=1

where z[r is the longest structural wave length involved in the medium
under consideration. The magnitude of velocity fluctuation e is assumed
as small. Neglecting all terms of the order ¢ and higher, the travel
time is expressed by the form

x sin 2ryx )
=0 (1-5 M0ETT ) 8
‘ co( 25 2ryx (8)

which will be approximated by x/c,, as (sin 27yrx)/(2rrx) is of the order
of magnitude of ¢ even at small z and is far smaller than unity with
the distance travelled. Then, putting z for ycsr, equation (5) is written
as the form

d_z‘fi.;.(yz—l-zzo,e,r?cosZrz)go:O . - (9)
az’ r=1

Z=7CT=TT,

since, by using relation (8),

i‘cos 2ryx—cos 21z | < Ze,ilsin 2s7x| < el , 10)

s S

where v denotes w[yc, which alone is dependent of the frequency in
this equation. This type of differential equation (9) is classified as Hill’s
equation. So long as 7, is not large, each coefficient in the summation
e,7* will remain within the order ¢, and the solution can be approximated

in the following form within the order ¢ (see Appendix in this paper);
when v is equal to an integer n,

=Auz<,x) B_uz (z’—”), |
o= Aey(z - )+ Be™y 1
where
1
/‘—Enfns (11)

and

2, i—”—)=s'n(nz"“> £n g (3 z—l)
y( 1 +4 +851n N +4

4
-{—lZe [’r sin{(n+27)2F=/4} _rsin {(’n——2fr)z$7r/4}]
2 rEu n+r n—r :
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Oﬁ the other hand, when v is no integer,
o a3 o 45)
p=Asn| vz i + 5 sin vz—l—4

| N g Zsr["” sin {(v+2r)z—n/d} 7 sin {(v~2r)z—gz/4}]

T y+7r y—7r
B . rsin {(y+2r)z+=/4}  rsin{(v—2r)z4n/4}
2 > r[ v+ y—r ] ’ (12)

It follows from these solutions that periods of the wave affected by
each component of heterogeneity are specified : this condition is given
by the form ' '

w, =Ny (13)
or, stated with respect to the wave length of the specified wave 4,
A, =2m[ny .

Since =/nr corresponds to the n-th structural wave length L,, 2, is equal
to 2L, ; ’

n=2L . (14

If » is specified, these relations agree with those deduced by R. Yoshi-
yama® who treated the medium with a periodic structure  that
fluctuates regularly. :

3. Propagation of waves in a heterogeneous medium .

The expressions of the displacement in-the heterogeneous medium
obtained in the preceding paragraph give that of a standing wave but
not of a progressive wave. Therefore, to study the wave propagation,
some modification and reformation seem to be necessary. Moreover to
study the stability of a progressive wave, the case in which v is equal
to a certain integer is discussed in detail.

It is assumed in this paragraph, that a heterogeneous medium with
width 2z, is inserted between two identically homogeneous media, and
that its heterogeneity is expressed by Fourier series.

The displacement % and stress S in a medium may be stated in
terms of the matrix equations, omitting the common time factor exp-

(twt), as follows:

15) R. YOSHIYAMA, loc. cit., 13).
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; exp(—@k x) . o ~exp (iklx)

(R U Y omeld),
! — 1wV pe; exp (—ik.), iwV/ pe; exp (ikw) o
- . for <0,
exp ()Y (z, z/4) exp (—p2)Y(z, —=/4)
(ug):. o Vipe, -V pe,

oV pe, exp (p2)F (z, ), wV/ pe; exp(— p2)F (z, 4)

x(‘éﬂ)—:-ﬂ@(x)@?), for 0<w<z,, (15)
:

e {—ilo—a) :
(“)=| Ve A=v,()4, for z,<a,
—iwV/ pe; exp { — ik (€ — )} - '

where k is the wave number in the homogenous medium, w/c, and p is
assumed as constant throughout the whole medium; z and y(z, *==/4)
are given by expressions (9) and (11) or (12) of the preceding paragraph
respectively, and F(z, =n/4) are expressed by the form

F(z,' = 4> Tio {dy(zdz e < - 210 Z;)y( %>} ) (16)

In these expressions (15) and (16), ¢ should be taken as zero for the
case in which v tends to no integer. In the first medium, A, and B,
are connected with amplitudes of incident and reflected waves, respec-
tively, and A, in the last medium gives the amplitude of the transmitted'
wave. ‘A4, and B, in the intermediate heterogeneous medium give the
amplitudes of the attenuated standlnd waves in the incident and reverse
directions, respectively. ‘

Equating the adjacent matrices at each boundary, we have equatlons

MM@ﬂm@jor@kaMN@,
and

mw@FWMam(@ﬂmmmm;

2




434 1. OxpaA

where M~ denotes the inverse of matrix M. Therefore, combining
them, the relation between the amplitudes of the incident and reflected
waves is expressed in terms of the amplitude of the transmitted wave,
as follows:

<A1>= TH0) M(0) M (o) vo() Ay = NA, .
B

1

Substituting the solutions (11) or (12) and (15) into these matrices, the
following expression is obtained ;

e 0.3)-r( Do -
N={ (a7

2D {6‘”’”’ ( “ —%)fm( 0, %) _eum( 2 %) f12<(), _@}

B

where

and
C=20,/cx(0), C2=C3/Co(,) .

Since heterogeneity of the medium is expressed in Fourier series, rz, or
approximately z, is equal to =, that is, r%,=z,==, and the velocity and
its gradient are continuous at each boundary. Thence, the solutions
Y(2,, n/4) and F(z, £n/4) are simply expressed as follows, remembering
exp (2inz,) as being equal to unity;

T . —7\(1, &, %,
| y< 24, iz):sm(nzo—i—z)ll—l—gﬂ-’%m_w} ,

and

- 2
(s )om(m iz
2, 1 cos| 72,5 1 8 TZ_,;W_TQ
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Therefore, the expression of the matrix N is given by the form

exp (112, { cosh /zzo—z( +23 Zﬂ = ) sinh ,uzo}
r¥#n N —’)"

(18)
—1 exp (%12,) sinh ftz,

Now, the complex transmission and reflection coefficients 7" and R, are
defined as the ratio of the amplitudes of waves passing through and
reflected from the heterogeneous medium to that of incident waves,
respectively, and are expressed by the formulae

T exp (— inzo)
cosh pz,—17 ( —1—22‘, ) sinh pz,
r#n n?—
— exp (—inz,) exp {i tan—l( +23 ) tanh 2, } ,
cosh pz, ~ r#n n2
and
R— —1sinh pzo
cosh pz,—1 ( +25— ) sinh pz,
rFER ’)'L

=tanhpzo-exp{—ii;—+itan”l< +23 e, )tanhpzo}.

4 r¥#n ’)’I,2

As the argument of arctangent in phases is of the small order, these
are approximated by the forms;

T— exp (—’l:nzo) exp { ( +2Z > tanh MRy } ’
cosh pz, i PP —
and 19)
R=tanh pz, exp{— it z( +o5 T )tanhﬂzo} ,
2 rFN ’)?,2
where -
p=—;—nen :

If all the ¢,’s for r besides an integer n vanish, these formulae
agree with those obtained by R. Yoshiyama®.

The formulae (19) are interpreted as follows: the modulus of them

16) R. YosHIYAMA, loc. cit., 13).
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depends only on the n-th component of the s tructure, whereas the phase
angle of them depends on all its components. This:dependence of the
modulus is important in the interpretation of wave propagation. If
heterogenelty of the medium is expressed 'in Fourier series, each
component of the structure makes the amplitude of the specified wave
alone attenuate, the wave length of which is associated with twice the
structural wave length under conSIderatlon As to the phase, every
component of the structure Whlch is of the order of the fluctuation
should be taken into account as corrections. The result on the modulus
of them agrees with those deduced by R. Yoshlyama, while one on the
phase is slightly different from that deduction.

In particular, when the factor g is negligibly small or zero, these
coefficients are easily obtained as follows;

T= exp( wzo), and R=0.

Therefore, the ‘waves are transmltted in the medium without any
modification and no reflection of waves appears.

In every case, the conservation of energy flux holds Wlthln the
incident, transmitted and reflected waves, since

T2+ [R|2=sech2 p2,+tanh? pz,=1.

4. Stability of progressive waves and some
‘remarks upon them :

It is noticeable that the transmission and reflection coefficients
representing the effect of heterogeneity of the medium depend on the
wave length, and that this dependence is a function of the fluctuation
of each component whose structural wave length is equal to half a
wave length of the wave. The maximum apparent attenuation to the
n-th component may be written as sech (#z,). The value pz, is equal to
(e,/2)7.%,, Where 7, is my, and may also be written as (e,/2)(%o/Co)w,
from relation (13). As a consequence of Fourier analysis of the struc-
ture, the thickness of the heterogeneous medium w, is taken as equal to
half a wave length of the wave with the frequency w, which is regarded
as the fundamental one. Therefore, the frequency w, corresponds to
that of the n-th higher mode

The case in which v is' nearly equal to = 'is con51dered - From

equatlon (9) and relations (A-8), we see that
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v:n(l—}—% €, cos:2<r> ,

and |

y’:—;—nsn sin20-,.. .

where the prime is added in order to avoid confusion. Referring that
y is ofre, and multiplying 2, in the lower expression, the following
relations are derived, respectively,

=w,,(1+—;~ €, COS 20‘\) ;

and y o . o (20)

‘ p’zf,zlsﬂ Yow, sin 20= P2, 81in 26 .
2. ¢ :
Waves with frequencies between w,,(1+e,,/2) are made to attenuate,
and in these frequency ranges the transmission and reflection coefficients
(19) should be written in the forms

tanh ,u’zo}

exp{ —in2,+1(2e—cos 2¢) )
g

o

. 2, 2
cosh ,u’zo{l — 08 20(4de—cos 20)%1}1%2:9}

and
. l . v tanh ,u'zo}
_ (1—2¢cos 2) sinh pz, exp{ Ty

cosh ¢z, sin2¢° {1 ¢08 20(4e—cos 26)tan}1 Zp Zo} :
[0

where e denotes e,/8+ >, r*/(n*—7?), for brevity. If the order of (x'z))
is neglected, these formulae are approximated by the forms

__€Xp (—”’@zo) exp {ipz,(2e —cos 24)}, .
cosh (¢z, sin 20) '
and ‘ ) ' : ” @)
L (1—2¢cos25)

. 7T .
= - . M2, eXpq —1—+147(2e—cos 2 }
cosh (2, sin 20) #o p{ 2 'a_O( : . GT) .

Therefore, ‘the resultant relation of transmitted waves between amplitudes
and frequencies forms sequences of trough shape compared with the
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incident wave spectrum, whose mean frequencies are w,, depths
(e./2)(%o/co)w,, and widths e,w,: the higher the frequency, the wider and
deeper becomes the apparent attenuation. If a wave with a certain
spectrum is incident, the magnitude of this incident one is reduced
in the resultant spectrum of the transmitted wave by the amount

sech(i e, % o, sin 20), 22)
2 e y

at frequencies w=wn(1+—;— €, COS 2o—>, for each n, where o ranges from

0 to n/2. As to the reflected waves, the disturbance gives rise to the
same frequencies as the transmitted ones, but their mangitudes are
smaller than ¢'z,. At a frequency off that to the maximum attenuation,
the reflection coefficient is dependent upon the fluctuation of every
component of the structure.

Next, the following phase relation is discussed ;-

—nzo{l—(Ze—cos 95) x tanN/ fiﬁ}. 23)
2 pz,

The second term in the brackets is of the same order as the square of
the fluctuation, because (tanh 'z))/(¢'z,) takes the maximum unity, at
?2,=0 (or sin2s=0), and with increase of gz, it vanishes rapidly.
From these discussions, it is concluded that the phase is transmitted
approximately with the wvelocity ¢,, and that the dispersion due to
heterogeneity will be undetectable. However, the phase %z, equal to
nmr, Will not be detectable, so that the phase shift

2 : ,
(%—1-27% njfwz —cos 200)—82&'15—:% (24)
cannot be neglected though small. As r¥/(n*—#?) becomes large only
when 7 approaches to #, it is sufficient to take a few components close
to the n-th into account.

In the assumption, 7, is not large; in other words, heterogeneity
of the medium includes no components with steep variation. However,
the dissipation of the wave with a certain frequency depends on the
specified component of the structure, so that the wave affected by the
components of the large » will be of the high frequencies. Substituting
me, for the frequency o, where w, is the fundamental frequency, the
differential equation is written in the form :
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%—F( m? ;2‘: ~+2m*3, ef;');—:cos 27'z)q>=0 . (25)
0 r

If m is large, e(7*/m?) cos 2rz is significant only for large . Substituting
e, for e.(r*/m?), ¢, may be regaded as of the order equivalent to e,, and
the unstable condition for the above equation is given, referring to o,
equal to y¢,, by the relations

= o2}
and ‘ (26)
m*= n2{1 + (%)40 (sn’z)} .

From the latter condition, m should be taken as equal to %, and then
p is written as me,/2, which is the same expression as that obtained
under the restriction that +, is not large. As to the phase shift, the
above-stated discussions are described in the same way, but its magnitude
is greater.

If two periodicities of heterogeneity are predominant, the structural
wave numbers corresponding to them are given by 7, and 7., respectively,
and any linear combinations of them

r=mritny  (m,n=0, £1, £2,---)

also are the structural wave numbers of heterogeneity. As a consequence
of Fourier analysis of the structure, 7./r; is confined to that which is
real and rational, so that it can be taken as being equal to ¢/p, where
p and ¢ are any mutually prime integers. In this case, there is a pair
of integers m and n which satisfy the condition that mp+mng=1 and
then the wave number 7, combined by the relation

To:'fl(m‘*"n ‘%‘):T—IZE 27

is regarded as the fundamental one, from which two wave numbers 7,
and 7, can be determined.

Developing these discussions, we can ascertain the behaviour of the
transmitted and reflected waves in a heterogeneous medium.

Since hyperbolic secant functions are approximated as
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sechw=exp(—a*/2){1+O0("} for small z
and (28)
sech x=2¢=*{14+0(e*)} - for large =z,

the apparent attenuation resulting from heterogeneity of the medium
seems to be proportional to the frequency for the high frequency and
to the square of the frequency for the low frequency

5. Summary

In a previous paper'”, the wave propagation in a heterogeneous
medium with the alternately stratified structures consisting of a homo-
geneous and a heterogeneous media was investigated, and it was suggested
that the total effect of the apparent attenuation is approximately additive.
In this paper, the heterogeneity is expressed by Fourier cosine series.
The wave equation in such a medium is given by Hill’s equation after
some substitution. It follows from the condition of the most unstable
solution that the wave amplitude with the wave length 2, is affected by
the structural component with the wave length 4,/2 and is independent
of the other components.

The expressions of these solutions obtained are of the standing
waves, so that some modification and reformation are taken in order to
obtain one of the progressive waves—the transmission coefficient. The
modulus of the transmission coefficient is of hyperbolic secant function
but not of exponential, and that of the reflection coefficient is of hyper-
bolic tangent. This type of wave reflection follows from the apparent
attenuation of waves passing through a heterogeneous medium.

From the phase transmission it is concluded that the dependence
of the frequency on the velocity is negligibly small, i. e., the dispersion
with respeet to the velocity is hardly anticipated. However, the phase
shift cannot be neglected though small. In addition, the phase of
reflected waves is shifted by —=/2. The same phase shift has been
found in the internal reflection of elastic waves by H. Jeffreys'™, and
others.

If »n is specified, the modulus of transmitted and reflected waves

17) 1. ONDa, «Effect of the Intermediate Dissipative Medium on the Transmission
of Elastic Waves through a Heterogeneous Medium having Periodic Structures,” Bull
FEarthq. Res. Inst., 42 (1964), 11-18.

18) H. JEFFREYS, “Elastic Waves in a Continuously Stratified Medium,” Mon. Not.
Roy. Astr. Soe., Geophys. Suppl., 7 (1957), 332-337.




Propagation and Apparent Attenuation of Elastic Waves 441

and the constant phase shift of reflected waves agree with Yoshiyama’s
deductions™ from solutions on a medium with a sinusoidal fluctuation,
while the phase shift resulting from heterogeneity is slightly different
from that. These agreements are suggested by the superposition of
Yoshiyama’s solution because the treated equations are both linear.

Since the thickness of the heterogeneous medium is taken as equal
to half a wave length of the frequency which can be regarded as the
fundamental one, the quantities connected with the %-th term correspond
to those of the n-th higher mode. The wave equation in this problem
becomes inaccurate with the increase of the mode number. Under the
assumption that the short wave lengths of the structure affect waves
with higher modes only, the conclusions stated-above are established
except for the magnitude of the phase shift: the short waves are more
complicated in the phase spectrum.

Dependence of the apparent attenuation on the frequency and the
distance travelled is proportional to those for the short waves and to
the square of those for the long waves, as a consequence of behaviour
of hyperbolic secant functions.
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Appendix; General Solutions of Hill’s Equation

Hill’s equation is written in the form

%Jr(aﬁzz 0. cos 212)p=0, (A-1)

solutions of which have been obtained in the various forms. According
to Floquet’s theorem, one solution is written in the form

g=cty, (A-2)

where p¢ is a constant and y is a periodic function.
Strictly speaking, the factor p is obtained by solving an infinite

19) R. YOSHIYAMA, loc. cit., 13).
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determinant. E.T. Whittaker”, however, introduced the expression in
terms of the series expansion convenient to the numerical calculation
of Mathieu’s equation, and E.L. Ince® who was interested in the
problems of the lunar perigee, generalized this method to Hill’s equation,
in which quantity 6, approaches values 0, 1 and 4 but not the others.
In our investigation, quantity 6, can approach any values particularly
squares of any integers, and it is not confined that ¢,>6,>..->8,>
0,,.>++-. The solutions of Hill’s equation in which ¢, approaches an
arbitrary value are obtained in this Appendix, according to their method.

Substituting expression (A-2) into equation (A-1), we have the
differential equation

g—} +2p %?zi (B 1242520, cos 2r2)y =0 . (A-3)

Now, let the factor # and the solution y be expanded, respectively,
in the series of 0,’s, using a new parameter o;

F:Zkokpk(o')’i‘ kZl‘. 0,.0,0.(c) +HZ| 00,00 Dm(a)+ -+ (A-4)
and .
y=sin (vz~0)+2k,0kAk(z, o)+ % 00,45z, 0’)+k; 0,000 Apn(z, 0)+ -,
(A-5)

o being determined by the relation
0021’2“‘2:01;(11:(0)‘{‘ kZl. okotth(O‘)'f"k%okﬂlom(Iktm(G')+ Tt (A-6)

Substituting these relations into equation (A-3), it is expressed by a
form of power series of 0, and the condition under which this solution
must identically satisfy all the values of # is given by equating coef-
ficients of each term to zero. In addition, the solution % and therefore
Az, o), Au(z, o), etc. must be periodic functions, respectively.

As a result, the following expressions are obtained :

Terms in 0, ;
d*A,
dz?
1) E.T. WHITTAKER, “On the General Solution of Mathieu’s Equation,” Proc. Edin.

Math. Soc., 32 (1914), 75-80.

2) E.L. INCE, «On a General Solution of Hill’s Equation,” Mon. Not. Roy. Astr. Soc.,
75 (1915), 436-446; 76 (1916), 431-442 and 78 (1917), 141-147.

4124, +2vp, cos (12 —c)+q, sin (v2—a)+ 2 cos 2kz sin (2 —a)=0 .
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< —k. _ sin 20
i) v o ok

, @r=cos 2c,

_sin(8kz—¢)
A=

i) v#k. p=g¢,=0,
A= sin{(v+2k)z—o}__sin{(v—2k)z—o}

Ak(v+k) 4ke(v—k)
Terms in 6,%;
PAu +12A,+ 2Dy, cos (12 —o) + 2P, a4,
dz? dz
+ (D2 sin vz — o) + (g, + 2 cos 2kz) A, =0 .
. _ _ _cosdo—2
i) v=k. p,=0, Qkk—T ’
A, = sin (5kz—o) n 3 sin 20 cos (Bkz—o) y.cos 20 sin (8kz—o)
H 192k 64lc* 641! ’
" _ _ sin2¢s __2—3cos2¢
i) v=2k. py=-— 165 ° Qkk—w— ’
A _ 5in (6kz—q) .
H 384
1
*k, 2k. =0, =
ii) v yu Qi SGi—I)

A = sin{(v+4k)z—a} | sin{(v—4k)z—o}
BT 82k v+ k) (v+2k) | 82K (v—k)(v—2k)

Terms in 6,0;;

2
d—A—"—’+v’Au+2umz cos (vz—o)+2p, dA, +2p, dA,
dz? dz dz

+(qn+2p,,) sin (vz—o)+q A, +q A, +2 cos 2kz A, +2 cos 21zA, =0 .

i) v=k, I=2k. pu= Slgkga— ’ K= cO:k%O' ’
_sin (Tkz—o) £ sin 20 cos (5kz—o) _ cos 20 sin (5kz—a)
o 288k 288)* 288lc*

__sin 4o cos (3kz—o) n (2—3 cos 40) sin (8kz—a) .
32k 96k* )
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i) v=k, l+2k. D,=¢.=0,
_ 2k 4-kl4- 1) sin {(3k+2l)z—0'}+ (k*+kl—1") sin 20 cos {(k+21)z—o}

A, =
“ 32k (ko + 1y*(2k+1) 8(Fk— L)k12(Je+ 1)
ke cos 2 sin {(b+2)z—o} | (ke — Kkl —1%) sin 20 cos {(k—2l)z— o}
8(k—)1(k+1) 8(k —1)hel?(le+1)
+lc cos 2¢ sin {(k—20)z—c} (2K*—kl4-1*) sin {(8k —21)z—o}
8(k— 1) (k+1) 321Uk —1)*(2k —1) )
i) kI, vtk l. pa=_—S02 . _c0S2s

AR (=1 T 2kl

_sin {(k+1)z—o} | sin{(k+38l)z+0o}

16K+ 1)(2k—1) 16K+ 1)(k—21)
(B*—kl+1?) sin {3(k—1)z— o}
16kl(k—20)(2k—)(k—1)*

A

. _ 1. po— sin 20 ’ ‘:cos2o-

W) vkl Pu=gaat W e

A _(F+kl+D) sin {8(k+)z—0o}
M 16Kk + Do+ 20) 2k +- 1)

sin {(=k+38l)z—0c} _sin{(8k—1)z—a}

16kl(k—1)(k+21)  16kl(k—1)(2k-+1)

’

V) Viksl’ k‘{"l’ k—1. pkl:qkl:Oy
A — {ple+ 1)+ + ¥} sin{(v+2k+20)z—a}
L6k + Do+ ) o+ D o+ e+ 1)
=) — @+ 1)} sin {(v—2k+20)z— o}
16610k — 1) (v—k) v+ D) (v —k~+1)
_ {uk=D)+ (k4 1)} sin {(v+ 2k —21)z — 0o}
1651 —) v+ k) — D) v+ —1)
(ol + 1) — (2 + 13} sin {(v— 2k —20)z — o}
16k1(k+1)(v—k)(v—1)(r—k—1) )

+

Terms in 6;

a4, + 2pde"k + q,;kk sin (vz—o)
dz dz

+ 20D Sin (V2 —0) +(q1 + PR As F QA +2 cos 2kzA =0 .

d—i;l—’ff”'—k-l- VAt 2Vpkkk 08 (22 —0) -+ 2P
2
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. 38in 20 cos 20
i) v=k. Dr=— y Qerr=— ’

. 128k° 64r*
_ sin (7 kz—-o-)/ * 7 sin 20 cos (5kz—o) , cos 20 sin (5kz—o)
kR 9216k° 2304k » 1152k°
3 sin 4o cos (8kz—0) n (15 cos 4o —14) sin (8kz —o) )
' 512k° = ' 1536k°

ha

i) »=2k. Du=q=0, » .
A sin (8kz—o) _ sin 2¢ cos (4kz—o)
Kkl —

23040F° 288k°
i (19—24 cos 20) sin (4kz—o) (2—38cos20)sings
13824k° 192k°
Akkk . sin (9kz—a)+7 sin (5kz a‘) sin (kz o)
46080%° 20480 &° - 1024k°
iv) v#k, 2k, 8k Du=0=0,
A= sin {(v+6k)z—a} . (V+ 4ok 47k sin {(v+2k)z — o}
38413 (v+ k) (v+ 2k} (v +8K) 1281 (v + k)*(v— k) (v+2k)
_ (P—4k 4Tk sin {(v—2k)z—o} sin {(v—6k)z—o}

12816(v+ k) (v — k) (v—2k) 384K (v— ) (v— 2k)(v—3k)

The other and higher terms can be obtained in the same way, if
necessary, though laborious, without great difficulty. '

Summarizing these results, the characteristic value and the sclution
are obtained as follows:

0,=n*+0, cos 20 + 025 é‘;’z + b, 2_33;‘33 2., B (nfE =
— cgi 2147 ol /3816055420 40,62, 48 —64 coz g;;-}— 9 cos 4o
_3 (9,‘02,c 02,0, 48 200 cos 2o+0(04) ,

4 vt (00 =) —4K7) 15m
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: 0 0z 0.0, 30 816
=Sln2 {_n_ n/2 EVin—k| —_ n 7n/3
# “Lan “ 2n®  wEnandnkin—k|  128n° ta 128n°
2003»/40»4/2 f2n—3kl0?ﬁ|n—m| }
ta In® +k¢n.n/z 16k (n—2k)(n—k)n

—0.0 16 sin 20 —9 sindo 620, sin 20 43 sin 40+0(0‘) .

36n° 384n°
i _ sin 3nz—o) sin{(n+2k)z—q}
y=sin (nz2—ao)+ 0,,—————8n2 + ,;,, 0k[ oe(n 1 F)
__sin{(n—2k)z—o} .
2k(n—Fk) ] ’ (A-T)

where « is unity if the suffix is an integer and zero if other, and the
notations O and o are due to Landau®. In the stable regions, as o is
imaginary and cos mo and sin mo are involved in the coefficient of 4™, the
n should be selected to take the modulus of 25 as small as possible to
avoid any divergence of solutions. The most unstable conditions of these
solutions are given by taking n/4 for o, similarly to those of Mathieu’s
equation within the assumed approximation.

The fundamental system of solutions of Hill’s equation is written,
as is well known, in the form

¢(2)=Ae"y(z, o)+ Bery(z, —o) . (A-8)

The conditions #=0 or =0 and 7/2 in (A-7) are used to determine
the boundaries between the stable and unstable regions as a function
of the value 6, in terms of the given values of 6,, 6,,-++,0,,+++.?

3) e.g., E.T. WHITTAKER and G.N. WATSON, 4 Course of Modern Analysis, 4th ed.,

(Cambridge, 1935), p. 11.
4) For Mathieu’s equations, see J.J. STOKER, Nonlinear Vibrations in Mechanical

and Electrical Systems, (Interscience Publishers, 1950), pp. 208-213.
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2. & A JHIAKEE 2T A RIEBIEE 2150 5 ik
wEFRR T H Ih

WEDAHH oo(l+ .ZL’; e cos 2r7a) THb S NATHRA HEb s RMOERE T~k BR

BEOTREELE 7 — ) =FFT 5L 20X ) hEESTCBEN L Z LHBARTHS 5. Ei,
R R & Ty IS 2B A REBE OB E HUoTELS L3 TES, 0kl
BRI BT 2 BB ERIZ e LOFBRRTHNN, FOMOREEZTERT 5 72dic Whittaker
Ince Biz L oTEL bRE@ELL—BELTHGAE., UL, FORIEFRORATH LD
T, HEREE L CEOBEETE D &0 REREE 2 RIZHRA T, FHASE—KREED
— BN SARTAREELT, FOBEBRIOCEROBORBLZHE L. o, TNHHEHED
EXOEHDESELOWERNFOERY & ARET e bIE, BBEDOARZ T ARBEO LR
IZHAT, 1 ]RE— FOEEROMET sech (erkro/2) 5L DTS, & 2T ke 132 7 ROW
¥, v BREEREOEITHS, 0T, BBEOAS PARBRRGRCOEGREbDhS L
AHEIRDS, REEBROMMELRDE, ThiEbTrRASThrE TR, TORIHE
D% L DRSS DERE (o) WEKFELTWS, EBW L ARBEOMADO TR, SLEEED S #IZ
BT LI ERICAI WL (@ 0ARER) o eailivhie, —F, REEORBIHEOENREOKE S
(er) THY, FOAAEIZIX /2 OThIZEbh 5,




