BULLETIN OF THE JEARTHQUAKE
REesSEARCH INSTITUTE

Vol. 42 (1964), pp. 289-368

16. Statical Elastic Dislocations in an Infinite
and Semi-Infinite Medium.”*
By Takuo MARUYAMA,T

Graduate School, the University of Tokyo.
(Read January 22, 1963 and April 23, 1963.—Received March 29, 1964.)

Contents
Introduction. .....oiiiiii e 289
Chapter 1. Statical Elastic Dislocations in an Infinite Medium....292
1-1. General. .......... e 202
1-2. On Volterra Dlslocatlons cee....298
Chapter 2. Statical Elastic Dislocations in a Sem1 Inﬁmte
Meditum. .. oottt e e e .. .. 306
2-1. General. .. ........ .....306
2-2. Examples of Dlsplacement Fleld on the Free Surface
due to Finite Dislocations of Simple Forms.. .o....344
Appendixes......................................................357
Acknowledgments ....... .. ..o ... .. 306
REFOIOIICES .. o ot ot e e e e e e e e e ... 0T
Introduction

Crustal deformations associated with seismic activities have been
reported since old times. However, we have not yet fully succeeded in
explaining consistently in detail the deformation due to an earthquake
from concrete causes in the crust or the mantle. For the present, it
may be useful to have the stock of knowledge of deformation fields
which correspond to various deformation sources for more complete
knowledge of the mechanism of earthquake occurrence.

We make mention of some models considered in a semi-infinite
elastic body. The actual focus of an earthquake may not be considered
to be elastic, but if we limit ourselves to the outside region of the focus
and to the short time scale in the process, the use of the elasticity
theory should be justified.

The deformation of the surface of a semi-infinite elastic body due
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to internal nuclei of strain has been calculated by many authors, such
as K. Sezawa (1929), F. J. W. Whipple (1936), K. Soeda (1944) and
K. Yamakawa (1955). K. Sezawa’s theories should be mentioned first,
but his solutions are related to nuclei of somewhat special form. F.J.
W. Whipple (1936) presented formulae for the displacements of the
surface due to an internal nucleus, with the intention of improving the
investigation by H. Honda and T. Miura (1935) which was made for
external forces applied to the bounding plane. K. Soeda (1944) and
N. Yamakawa (1955) calculated the cases when certain stress distribu-
tions expressed in spherical harmonics were applied at the interior
sherical cavity.

As for the theoretical models of slip faults, those developed by
K. Kasahara (1957, 1859) and L. Knopoff (1958) should first be mentioned.
These models are two-dimensional. K. Kasahara (1957) calculated the
displacement fields around a vertical strike slip fault by assuming a
hypothetical stress distribution in depth, while L. Knopoff (1958) treated
a model of slip fault with the electric-elastic analogy. Kasahara (1959)
dealt with a model of strike-slip faults with dip angles not equal to 90°
and solved the problem by the relaxation method and with model
experiments based on the electric-elastic analogy.

Three-dimentional models of slip faults are first introduced by
J. A. Steketee (1958 a, b). Steketee suggested that Volterra’s theory
of dislocations might be the proper technique for a quantitative
description of fractures. The geophysical questions he had in mind
were (i) problems connected with fault-plane studies of earthquakes and
with such phenomena as the San Andreas faults, (ii) problems connected
with fracture zones in the crust and mantle which are believed to play
a significant role in the structure of island arecs and certain mountain
ranges.

According to the theory introduced by Steketee, the field around a
dislocation in a semi-infinite medium can be expressed by means of six
sets of Green’s functions. He calculated one set of Green’s function
which is necessary for the field corresponding to a vertical strike-slip
fault. This field is the same as that obtained before by Whipple (1936).
K. Sezawa, in his paper (1929), touched on his intention of considering
the field due to the sheet or the assemblage of nuclei in order to make
a comparison with the observational data of the actual deformation,
which intention does not seem to have been realized during his life-time.
In Steketee’s paper we see that the sheet of nueclei, if it is of some
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special form, corresponds to a dislocation surface.

As a mathematical model of a fault Steketee used a displacement
dislocation surface, i. e., a surface across which there is a discontinuity
in the displacement vector. M. A. Chinnery (1961, 1963) calculated the
displacement field around a vertical rectangular transcurrent fault by
integrating the nuclei over the surface.

In the field of the crystal dislocation theory, Burgers’ representation
is fundamental.

F. R. N. Nabarro (1951) interpreted the displacement field due to a
dislocation as resulting from a combination of double forces by applying
Burgers’ formula to an infinitesimal loop and by expressing the field as
a double integral over the dislocation surface. In the same paper
Nabarro obtained some expressions corresponding to a moving dislocation
by replacing the static double forces by dynamic double forces with
step function time dependence.

E. H. Yoffe (1961) calculated the stress field of a dislocation line
meeting a free surface of an elastic body for any angle of incidence
and any Burgers vector, by a method different from Steketee’s method.
She states that Steketee’s solution involves six sets of Green’s functions
and is not easy to apply in practice. = However, the concept of line
dislocation does not seem to have many applications in the theory of
the crustal deformation or in seismology.

The concept of elastic dislocation has also been employed in the
theory of earthquake mechanism.

A. V. Vvedenskaya (1956) found a system of forces which may be
equivalent to a rupture accompanied by slipping in the above-mentioned
Nabarro’s paper (1951). She has developed her method on the consideration
that a rupture accompanied by slipping is the most probable form of
movement in the earthquake foci under the conditions which occur in
the earth’s crust and in the upper part of the mantle, in which stresses
may be supposed to have a considerable duration.

Vvedenskaya (1959) obtained formulae corresponding to the case of
a sudden formation of general Volterra dislocations. However, she did
not work from the basis of the thory of general dynamic dislocations.

L. Knopoff and F. Gilbert (1959, 1960) considered the elasto-dynamic
radiation resulting from the sudden occurrence of an earthquake by
assuming a sudden occurrence of displacement discontinuity or of strain
discontinuity across a surface in an infinite medium. Starting from
formulae previously obtained by one of the authors (Knopoff 1956), they
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examined the first motions (the high-frequency solution) from the
impulsive excitation of the fault surface.

T. Maruyama (1963) presented fundamental formulae for general
dynamic dislocations, derived in a straight-forward manner from well-
known relations, and considered the force system equivalent to a dynamic
dislocation not neglecting low-frequency terms.

In Section 1 of Chapter 1 of this paper we discuss the general
theory in some detail while Section 2 deals with the problem of
representation of the displacement field due to a general Volterra
dislocation by means of a line integral along the dislocation line. We
also correct Steketee’s statement on this problem a little.  In the last
part of Section 2, we show the derivation of the displacement field due
to an edge or screw dislocation from the general surface integral
expression given in Section 1, which can seldom be found in ordinary
text books on the subject of crystal dislocations.

In Section 1 of Chapter 2, we calculate all the sets of Green’s
functions necessary for the displacement and stress fields around
dislocations in a semi-infinite medium. Though some of the results may
be easily obtained by an interchange of coordinates, we have arrived at
such expressions by independent computation, this serving the purpose
of avoiding errors in calculations. We find that the expressions of
displacement on the free surface can be written in remarkably simple
and refined forms. In Section 2 of Chapter 2, some examples of
displacement fields on the free surface due to rectangular dislocation
surfaces with constant discontinuity in displacement are given. As
Chinnery employed the rectangular dislocation surface intersecting the
free surface at right angles as the model of a strike slip fault, we may
employ our results as the model of a dip slip fault or as other slip
faults with various dip angles.

Chapter 1. Statical Elastic Dislocations in an Infinite Medium.
1-1. General.

In the elasticity theory of dislocations we consider a situation in
which an infinite or finite elastic body, which may be unstrained and
at rest, has the following largely imaginary process performed upon
it. Imagine an open surface X which may be situated entirely in the
interior of the body, being cut and the two faces of the cut deformed
in different ways by applying some force distributions to them. If these
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force distributions are in static equilibrium the deformed state will also
be in equilibrium. A situation created in such a manner we call a
dislocation over . We call the surface X the dislocation surface and
the edge o of ¥ the dislocation line.

If the body is already strained to begin with, - the process here
described has to be extended in such a way that, while the cut is being
made, forces equal to the original forces acting across Y have to be
introduced on the two faces of the cut to maintain the original equilibrium
state (Steketee 1958 b).

For the sake of a definite description we first choose the positive
direction of the dislocation line . If once we have chosen (arbitrarily)
the positive direction of o, then the positive sense of a closed curve
linking the dislocation line, the positive sense of the outward normal »
to ¥ and the front and reverse sides of X are determined by the right-
handed screw relation: the positive
sense of a linking curve is the direction
of rotation of a right-handed screw
advancing the dislocation line ¢ and
the positive sense of the normal to 2,
which goes from the reverse side of
3 to the front side, is the positive
sense of the linking curve passing at
the point on Z'.(Flg. 1. CorreSpondl.ng Fig. 1. Dislocation surface X with
to the front side and the reverse side normal p, dislocation line ¢ and a link-
of ¥, the two faces of the cut made ing curve s.
over Y are specified as X* and 2~ respectively.

We denote the components of the elastic displacement vector by
(k=1, 2, 3) and the components of the stress tensor by 7,, where

T =20k W+ 21Uy + Ui 1) (1.1)

2and g are Lamé constants, 6, is the Kronecker delta, and u, ,=0u,[d¢,
where ¢, (I=1,2, 3) is a Cartesian coordinate.

The dislocation is then determined by the shape of the surface I
and by the discontinuity 4du, in the components of the displacement
vector across the cut, that is

A, =ui—uy, (1.2)

where u; is the displacement vector for a point P+, originally being at
P on 2 but now situated on 2%, and u; is the displacement vector for
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the corresponding point P~, which is now on Y-. It is clear that the
edge o of 3 will be a singularity in general; 4u, is not necessarily zero
on the edge, and in that case the displacement components are not
uniquely determined there.

We shall, following J. A. Steketee and others, distinguish between
two types of dislocations:

(i) Volterra dislocations

(also called dislocations of Volterra-Weingarten),

(ii) Somigliana dislocations.

In the first case the discontinuity in the displacement components is
prescribed to be

dup=ui —uy =b,+Q,,8; ,

1.3
Qw: —ij ) ( )

where b, and ©Q,; are constants and &; is the coordinate of Pon Y. The
relation (1.3), which is the well-known Weingarten relation, states that
the discontinuity 4w, across 2 should be of a rigid body displacement
type. In solid state physics one usually considers the case £,,=0, and
b, is then called the Burgers vector.

In the case of a Somigliana dislocation 4u, can have any form,
provided the forces which maintain the dislocation do not violate the
relation

i o =0, (1.4)

where superscripts + and — correspond to the values at P+ and P-
respectively ; v} is a component of the outward normal to the surface
element dX* at P* and »; a component to the surface element dX— at
P~. Accordingly zf»i and ;7 in equation (1.4) are the forces per unit
area on the surface elements dX* at P* and dX~ at P~ respectively.
It is natural that the coordinate system of reference should be taken
as the body-fixed coordinate system which may be fixed in the body
before the dislocation is made. Therefore »j and »i are equal and
opposite to each other and are connected with the above-defined », by

the relation

—vf =1 =2, (1.5)

so that we may write in place of equation (1.4)

Ti—Tru=0. (1.6)
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For a Volterra dislocation, the relation (1.4) or (1.6) is automatically
satisfied since a rigid body displacement does not generate any strains
and stresses.

In case the body was unstrained to begin with, it will be strained
once the dislocation is made, as there is a force distribution acting upon
Y+ and 3~ to keep the faces in their deformed position.

V. Volterra (1907) obtained the following theorem concerning the
displacement field due to a dislocation of type (1.3) in an infinite medium :
the m-component of displacement vector at an arbitrary point Q (¥, %, %),
%©,.(Q), is determined by the formula

uAQp{&MAHTmPJwMsz, (1.7)

<

where P is a point on Y over which the integral is taken and T7(P, Q)
is the (kl)-component of the stress tensor at P due to a unit body force
in the m-direction located at @. In -Appendix 1, following Steketee
(1958 a, b) and others, we will show that equation (1.7) is a relation
valid to a general Somigliana dislocation.

A body force in the m-direction at Q generates a displacement field
at P, the k-component of which is determined by the well-known
formula

1

U;cn(P; Q): - (O“km’rmn—‘a’r)mk) ’ (1.8)
where
=21 (1.9)
I+2p

r is the distance from P(£,, &, &) to Q(x,, &,, %), 7., =07/[08,, T, =07[05,08,
and the summation convention applies. From the definition

T=1/(m1—51)2+(:v2—€2)2+(m3—53)2
we easily arrive at
/r.mz __,r'm , (1.10)

where r™=ar[ox,,.
The expression (1.8) dose not change if k¥ and m are interchanged :
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hence equation (1.8) may be considered as the m-component of displacement
at P due to a unit body force at Q. Further in view of equation
(1.10) we have

UrP, Q)=Ur@, P), (1.12)

which shows that equation (1.8) may also be considered as the displacement
field at @ due to a unit body force located at P.

If we write simply Up in place of UMP, Q) in equation (1.8),
above-defined T7(P, Q) is expressed as

Tu(P, Q=20 Uy, +m(Ur,+ U, (1.13)
which may be written in view of equations (1.8), (1.10) and (1.11) as
Ti(P, Q= —20, Uy —p(U 4+ ULH) . (1.14)

By means of equation (1.11) and (1.12) the right-hand side of (1.14) can
be interpreted as a linear combination of the first derivatives with
respect to the coordinates of @ of the m-components of displacement
fields at @ caused by unit body forces at P in the x,-, x,-, -, ¥,- and
x,~-directions. For instance U;;! is by definition

U= tin {0 U@t o) = Un, )}

dz1-0 \ A1, ©,

This means the m-component of displacement at Q@ generated by a
singularity which is obtained by passing to the limit by supposing that
dx, is diminished indefinitely while two opposite forces in the - and
(—w,)-directions of equal magnitude (dx,)™ at a distance of 4z, are
acting in the neighborhood of P, and which is called a nucleus of strain
or a double force by Love. If k=I, U%' is referred to as a double force
without moment and for k=1 it is a double force with moment. Hence
Tr(P, Q) may be considered as m-component of the displacement vector
at @ generated by a combination of strain nuclei at P; in the case k=1
this is a combination of a center of dilatation and an additional double
force without moment, A-nucleus after Steketee; in the case k=1 it is
a combination of twe coplanar, mutually perpendicular double forces
with moment, B-nucleus after Steketece. If we denote by a sphere a
center of dilatation which is a combination of three equal, mutually
perpendicular double forces without moment, the two combinations may
be schematically represented as in Fig. 2. It follows that the displace-
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3 3 3
. }
[
——m—— 2 4—@——*“ 2 — 2
/ ///
() (22) (33)
3 3 3

2 2 %——2
/ ,/ \
(23) (31 (12)
Fig. 2. (k) is a combination of double forces at P which generates the

displacement field T7; at Q. (11), (22) and (33) are A-nuclei; (23), (31) and
(12) are B-unclei.

ment component %,(Q) in (1.7) may be considered as the resultant effect
of a distribution of A- and B-nuclei over 3. The magnitude of the
contribution of a particular combination of nuclei at a point P on X to
the displacement components at @ depends both on the local values of
du, and the orientation of the surface element dX with respect to @
and the direction considered at Q. If we consider a surface element
dS of ¥ with normal in the z,-direction, its contribution to the displace-
ment at @ is

dum(Q):(A1L1T1’§+Au2T2’§+Au3 MdS .

It is clear that 4u, and Au,, which are in directions perpendicular to
the normal may be called the slip, while 4u, represents the discontinuity
in displacement of the two faces dX¥* and dX~ in the direction of
normal. The effect of the slip can be described by nuclei of type B
while the effect of the normal discontinuity is described by a nucleus A.

Once the displacement field u,(Q) has been obtained as in equation
(1.7), the stresses at the point Q(x,) can be found by differentiating
with respect to «, similar to (1.1). If the point Q(z,) is not on 2,
these differentiations can be performed in general under the integration
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sign where the variables x,—¢, appear in T". We then obtain for
points not on X
@ = || 40PYGE @, QuPiz, (1.15)

where
(P, Q) =20y, Ti*+ (T + Ti™) (1.16)

We can work out T7(P, @) and G*(P, Q) from (1.8), (1.14) and (1. 16)
in explicit expressions. They can be written as follows

kit

{(1 a)(—omr—+6mk—+6m )+3 LATE } (1.14)’
7’ i

G (P, Q) ———{ 2(2—8) 840, ;l
+2(1~a) (5kmo“zn+6,makn)_:_
+6(1— ) (O mTn+ 3?"”7.“,’)%
—3(1—=2a)(6in? 7+ O +3"n"'l’"m+5zn7'km)%

— 30 (1,77t

; } , | (1.16)'

where
'rk:xk—fk (kzl, 2, 3)

fOI' P(Elv 527 53) and Q(xly .'1?2, x3)°

1-2. On Volterra Dislocations.

As we have seen above in equations (1.3) a Volterra dislocation is
characterized by a simple type of discontinuity in displacement on the
dislocation surface . Owing to the simplicity it can easily be handled
and possesses some prominent properties which might offer aid in the
comprehension of the singularity of a dislocation in general.

Now we show that the displacement field due to a Volterra disloca-
tion (1.3) does not depend on the actual shape of 5 but only on the
shape of the edge o of 2*.

* Steketee remarks that this theorem is valid if the 82x;’s in (1.3) vanish, however,
it is valid in general.
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In equation (1.7) T7 is the (kl)-component of the stress tensor on
the surface element d¥ containing the point P due to a unit body force
e, in the m-direction located at Q.

Let S be an arbitrarily closed surface supposed in an infinite medium,
where we assume that no body forces are acting in the region D which
is surrounded by the surface S, and that a unit body force e, in the
m-direction is acting at a point Q outside S. We define a vector 7™ of
which %-component can be written as

(T™)=T"= Tive, 1.17)

where T is the (kl)-component of the stress tensor at the point on the
surface element dS due to the body force e, at @. From the definition
of the stress tensor, T™ may then be considered as the force per unit
area exerted from the front side to the reverse side across the surface
element dS. According to the equilibrium condition,

(i) the resultant force exerted on S vanishes;

(ii) the resultant moment of the force exerted on S vanishes.
Let b and o be two arbitrary constant vectors. Using the above-defined
T™ the two conditions may be written as

Sgb . T"dS=0, (1.18)

SSw . €x T")dS=0, (1.19)
where ¢ (&, &, &) is the position vector of the point P on dS. The inte-
grand of (1.18) becomes

b- Tm:ka]:n:kak";V; . (1.20)
If we introduce 2,; defined as

wy=—0,=0s

0==%=% | o e L0en, (1.21)
wy=—0,=02,, 2
2,,=0
where
e;;s=1 when 1, j, k is an even permutation of the number
1, 2, 3;

=0 when any two of the indices are equal;
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= —1 when ¢, j, k£ is an odd permutation of the number
1, 2,3, (1.22)

from the definition of vector product we have .
(0 X&), =wies

= *‘E €ijk€ihz9hzfj

=04, (1.23)
where we employed the following relation ,
SiieEine = 05300 — D100 - (1.24)
Using (1.23) the integrand of (1.19) becomes

w:EXT)=(0Xx§) - T"
=(wx &), T
=2 Ty, . (1.25)

It follows that for an arbitrary constant vector b, and an arbitrary
constant anti-symmetric tensor 2,; we have the relation

H(b,ﬂr.ok,-s,-) Tpv=0. (1.26)

If the closed suface S is divided into two open surfaces S, and S, by
a closed curve s on S and if the positive direction of the normal to S,
and S, are taken consistently according to the positive direction of s,
we get the following formula

|| @t 2 Tivas= [0t 2ue) Tvds . (1.27)
S

Sy

Fixing the closed curve s, the constant vector b, and the constant anti-
symmetric tensor 2,; and repeating the above derivation for an arbitrary
close surface S including s, we can obtain the above formula. Accord-
ingly in view of the definition of a Volterra dislocation and equation
(1.7) we arrive at the conclusion that the displacement field due to a
Volterra dislocation does not depend on the actual shape of S, but only
on the shape of the edge s of S,.

So far we have assumed that Q is outside S. If Q is within S,
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according to the equilibrium condition with respect to the portion, in
place of (1.18) and (1.19), we have

Sgb - T"dS+b - en,=0, (1.28)

Sgw (X T™dS+w - (xXen)=0, (1.29)

where x(x,, x., #;) is the position vector of the point €. Using these
equations we can examine the discontinuity in displacement supposed
on the dislocation surface .

For an open surface X in an o
infinite medium by adding another Z/z—-—"\—;,\
open surface X', we suppose a L7 @ h
closed surface (F+3) (Fig. 3), ./ Y
and consider two points close to '
¥: Q outsidle (F423) and Q- \ /
inside (F+2)'. If a unit body AN e
force in the m-direction e, is acting T~ -7 v
at @, from equations (1.18) and Fig. 3. An open surface ~ and another
(1.19), we have surface 3’ make a closed surface (F+2).

SS (b+oxT""dE=0,

S

while if e, is acting at Q-, from equations (1.28) and (1.29), we have

Sg (b+ X &T"dS+ (b+wx x) - en=0,

S

where supersceripts + and — correspond to @ and @~ respectively.
From these equations,

gg(ber XET " dy— SS(bﬂmg YT~ dXY

p3

— (b+w X x)en+ [ SS(b+w>/£)T’” dZ’—I—SS(b—%w%é)T’”‘dZ]. (1.30)

By equation (1.7) the left-hand side in (1.30) represents the difference
in the m-component of the displacements at @* and at @, that is
(@) —u,(Q7), caused by a Volterra dislocation specified by b and o
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on 2. If we pass to the limit so that @t and @ come to a point @
on Y, on the right-hand side in (1.80) x~ bocomes x, the position vector
of @, and the expressions in square brackets vanish, hence the relative
displacement 4u(Q) of neighboring points on either side of ¥ is given
by an expression of the form

du(@)=b+oxx. (1.31)

As we have seen above, the displacement field due to a Volterra
dislocation (1.3) does not depend on the actual shape of ¥ but only on
the edge o of X, hence, though the discontinuity in displacement (1.3)
is first defined on Y, there appears no singularity except on the edge
o. This corresponds to the displacement field which is many-valued and
continuous in the region, then in order to make the displacement field
single-valued, if we suppose an arbitrary surface 3" which possesses ¢
for the edge, the discontinuity in diplacement across 3’ can be expres-
sed by equation (1.81). It follows that the surface integral along ¥ in
equation (1.7) can be replaced by a line integral along ¢ in the case of
a Volterra dislocation.

Here we recall Weingarten theorem related to the displacement in
an elastic body occupying a multiply-connected region, where the dis-
placement may be regarded as many-valued and continuous in the region,
or as single-valued and discontinuous at the barriers:

Let the multiply-connected region occupied by the body be reduced
to a simply-connected region by means of a system of barriers, physically
by means of a system of cuts in the body. If the strains in the body
are everywhere finite and continuously differentiable for twice, the
disturbance of the cut faces cannot be arbitrary but their relative dis-
placement must be of one type which is a possible displacement for a

rigid body as in equations (1.3).

Q (=) We can apply this theorem to

Py T the case easily. If we remove the
material inside a closed thin tude

dB surrounding the dislocation line o,

the region becomes doubly-con-
nected. Then we observe that if
the dislocation 4u, on the surface
Y is in any form which does not
reduce to a rigid displacement, that
is if it is not a Volterra dislocation,

i3
Fig. 4. Line element d¢ of dislocation
line and line element ds of a linking
curve s.




Statical Elastic Dislocations in an Infinite and Semi-Infinite Medium 303

the strains are not everywhere finite and continuously differentiable for
twice in the region. Accordingly in the case of a general Somigliana
dislocation the singularity will remain over 3 and the strains will not
be continuously differentiable for twice over 3.

For a Volterra dislocation du=b+wx¢, the formula (1.7) can be
written by means of line integrals along the loop & in Fig. 4. (the
derivation is given in Appendix 2) as

1

uw(@Q)= y

(b+wxx)2

+—1—Sl(b+w><€)><d5
4= ) r

+-& gradQSl[(b-l-wxf)Xr] - d¢
4 T

1

T

+

Siw X (rx dé)

r

_&gi(w X1y % dE, (1.82)
dz)r

where dé(d¢,, dé,, d¢;) is an element of the line & and the integrals are
taken once round the dislocation line in the positive sense and 2 is the
solid angle subtended by the loop & at the point @ and the suffix @
means the derivative with respect to the coordinates of Q.

In equation (1.32) we observe that the multi-valued character of the
displacement components is expressed by the first term of the right-
hand member. If the point @ is not on the loop o, the second term
and those that follow are finite and single-valued functions which depend
on the shape of the loop o. Further we observe that, in order to
exclude multi-valued character of the displacement, if we suppose an
open surface bounded by the loop o, the discontinuity of the displace-
ment across the surface is

du=b+wxx,

where x is the position vector of the point through which we suppose
the barrier surface.

We can also obtain this discontinuity by the line integration along
a linking curve s in the positive direction as

btoxXx= —X—a—lids ,
0s
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where the integral is taken once round the linking curve. When =0,
this relation is often used to define the Burgers vector.

Since the derivatives of solid angle are single-valued we observe
that the stress field due to a Volterra dislocation is single-valued
everywhere except on the dislocation line o.

As for a special case in which w=0, equation (1.82) can be written
as

1

1
—1 po __be
w@Q) =00+

QS [bxr]-de,  (1.33)

which is the formula obtained by Burgers (1939).

According to Nabarro (1952), the first application of dislocations to
the theory of plastic deformation was made by Prandtl in a lecture
course in 1921-2, in which he developed a model to explain the plastic
properties of crystals by assuming that in regions of imperfection there
were molecules which could change their allegiance from one relatively
perfect lattice to another. Prandtl (1928), however, did not indicate
the connection of these imperfections with the dislocations of the theory
of elasticity. The foundations of the modern theory of crystal disloca-
tion were laid by Taylor, Orowan and Polanyi in 1934.

Taylor (1934) investigated the characteristic properties of an elemen-
tary, two-dimensional type of dislocation which is now called ‘edge’
dislocation. He pointed out the connection of this dislocation with the
elastic dislocation of Volterra.

The two-dimensional type of dlslocatlon must extend in a straight
line through the lattice from one boundary surface of a crystal to the
opposite boundary. J. M. Burgers (1939) considered that dislocations
characterized by disturbances of a more general, three-dimensional type,
which may be confined to a region of finite extent, might lead to a
more adequate picture of what is to be found in an actual crystal.
Burgers presented the formula (1.33) with ingenious interpretations of
each term and was led to consider a so-called ‘screw’ dislocation.
Concerning the application of the elasticity theory to the problem of
crystal, Burgers affirms that although the components of the displacement
in reality are defined only for the (enumerable) set of lattice points
where atoms are to be found, they can be considered as being
determined by functions of the coordinates which in general are everywhere
continuous and finite. ‘

F. R. N. Nabarro (1951), contrary to our derivation, by applying
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Burgers’ formula to an infinitessimal loop and by expressing the field
as a double integral over the dislocation surface, interpreted the dislocation
field due to a dislocation as resulting from a combination of double forces.

Here we shall show some examples of the employment of equation
(1.14) to obtain the displacement field due to an edge and a screw
dislocation. Consider a dislocation surface of plane in (z,2;)-plane. If
the dislocation surface is extended to a half-plane and the singularity
is left along a straight line, which we take here as x,-axis or wx,-axis,
we arrive at two simple cases of slip dislocation. The Burgers vector
b is taken to be parallel to «x,-axis; if the dislocation line is «,-axis, the
case is edge dislocation ; if the dislocation line is x,-axis, the case is
screw dislocation. This type of computation is after F. R. N. Nabarro
(1951).

In equations (2.7) and (2.8), puting

(bn bzs bs):(oy 0; b) ’

(Vl, Yoy V3)=(0’ 1; 0) ’
we have
w,=b| d&|"_Trde,,

—co

for an edge dislocation lying along x,-axis and

um=b§” dg Tpde, ,

0

for a screw dislocation lying along x,-axis, where

Té?’:% (m1—'$1)ﬂ72(x3—53) ,
4z e
73 =1=q) (&) | 3awie,—&)

4z 7 4z ad

_(1—a) x, |, 3a xfx,—&,)*
T3 _( Ly OQ T\ 5s)
® 4 + 4= r®

We obtain the displacement field due to the edge dislocation along
x-axis as

u, =0,

:b{ﬁ 4 _(1_a) log (a2 -+ 2} ,
s 2r wi--a3 4= 0g (@ + )
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Uy= b{ﬁ L S L arctan (%—2>} ,
27 3+ 2=x 24

and that due to the screw dislocation along x,-axis as

u; =0,

uz':o )

u3:b{— 1 arctan i} .
7 o

Chapter 2. Statical Elastic Dislocations in a Semi-Infinite Medium.

2-1. General.

Let the surface S of the semi-infinite elastic medium be the plane
;=0 where the positive wx;-axis penetrates the medium. The boundary
conditions we have to satisfy are those for each point @ in the plane
:U3:Oy

731(Q) = T:m(Q) =75(Q)=0, 2.1)

while we shall in general also require the stresses and displacements to
be continuous and differentiable everywhere, with the possible exception
of Y, and moreover to vanish at infinity.

In order to obtain the displacement field due to a dislocation in a semi-
infinite medium we may employ the solution to the infinite medium.

As we have already seen stresses due to a dislocation in an infinite
medium are constructed by integration of a function including G¥*(P, Q)
along the dislocation surface and for fixed k¥ and I G'(P, @) in itself
may be considered as a stress component (mmn) at @ due to a combina-
tion of double forces at P.

In equation (1.16) we observe that in case Gi: and G} are odd (even)
in r,=x,—§&,, the function G} is even (odd) in 7,. Then if we put the
same (opposite) combinations of double forces at the image point
P, &, —&) of P with respect to the plane 2,=0, we obtain by
superposition of the original and the image fields a stress field which
satisfies the relation

wp, QxGUP, Q=0
Gi(P, Q) =GP, @)=0,
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at each point @ on the plane x,=0. Since the normal stress is doubled
for #,=0, we have to consider the solution to the normal load as equal
and opposite to the ones obtained from the double forces at P and P'.

Thus for the displacement field due to a dislocation in a semi-infinite
medium, we have to superpose three displacement fields, which may be
cited for fixed k and [ as

(i) double force (kl) at P,
(ii) double force (kl)’ at P,

(ili) normal load (—2G3}) on the plane x,=0.

It is clear that the resultant displacement field satisfies the boundary
condition (2.1) and that it vanishes at infinity if proper solutions to (iii)
are selected. By the force systems of (ii) and (iii) no singularities are
added in the half-space where the dislocation is situated, and we shall
have almost the same field as in an infinite medium in the neighborhood
of the dislocation where the effect of the boundary can be neglected.
Hence we arrive at the solution : if we denote by W7 the m-component
of the resultant displacement due to (i), (ii) and (iii) for fixed % and I,
we get the displacement field due to an arbitrary dislocation in a semi-
infinite medium by employing W7 in place of T3 in the infinite case.

To obtain the displacement field due to (iii) is often called the
Boussinesq problem. Here we shall solve the problem by making use
of Galerkin vectors after Steketee.

When there are no body forces the equation of equilibrium in
terms of displacements is

(A+p) graddivu+priu=0,
or (2.2)
A+ + e ui =0 .

The Galerkin vector I'(I",, I",, I';) is defined as a vector from which a
displacement field u(x,, x,, ), satisfying equation (2.2), is obtained by
differentiation according to a linear second-order operator, that is

u=(*—« grad div)I" ,
or 2.3)
W= Fi;"” _ al",nnk ,

where a=(+#)/(2+24) as before. If the Galerkin vector is known
for a problem, the problem is solved.
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By substituting (2.3) in equation (2.2) we can show that each
component of the Galerkin vector is biharmonic,

rir=o,
or (2.4)
Ficmmnnzo .

As for the displacement field at @, U%, due to a point body force
at P in the xz,-direction, we can write it as follows,

U7’§L=———1 —6mk7""”—ar'm"]
8mpl
S F(amkr)'nn_a(akz”‘)’lm ] . (2.5)
8rp L

Hence the m-component of the Galerkin vector which leads the
displacement field U% may be considered as

1

It =
" 8y

Ol (2.6)

Using (2.6) we can easily obtain the Galerkin vector I'7, which gives
the displacement field 77 with k& and ! fixed. Corresponding to

Tl:nt = — 0y U:i”“‘/’{ U’f;{l + Uink} ’
we have
By I'fy = —204(Omn?) ™ — LL(Omi?) "t + (6 a)¥]

= =20, —p [0 48,1 . 2.7

The solution to the Boussinesq problem is given by a Galerkin
vector of the form (Steketee 1958 a, b)

r=@©,0,7). (2.8)

Let the double Fourier transform of /7° be denoted as 77, then by definition
(%, ©,, ws)zzlggf(ku by, @5)e! ritbd d e dk,
T
- 2.9)

o

F(ku k,, xs)zzlggr(xn ,, v)e " Bt il d da, |
T
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Concerning the ‘Fourier transforms of the derivatives of a function
o(x,, ,, ©3), under proper conditions of derivatives of ¢ when «,, ¥,—+ o,
we get

(ar‘”):(ikl)’g‘o, <%>:(ik2)r¢. (2.10)

oxr oxs

Operating p*=(0%/0x}+0%/0x3+0%/0x5)* to the first equation of (2.9), we
have from (2.4)

(dia;—k2>2f=0 , 2.11)

with the general solution

" =(A+ Bka,)e "2+ (C + Dkx,)e*s
where

k=V'E+E . (2.12)

Since we have chosen the positive #,-axXis to penetrate the medium,
owing to the boundary conditions at infinity C=D=0 and we are left with

T(Fe,, ke, w3) = (A + Bleay) 2 . (2.13)

From equation (2.3) and (2.8) the displacement field and stress field
derived from I" are expressed as

W, =6y " — %,
Tkz=5kz)~(1_a)F'nM"‘F(aakF'mn+531P'knn)_2a/lr'376l .
Using (2.10), we have

d
dx,

= —a(ik,) r ’

— . d =1
= —alik, ,
U, a(ik,) 31'

_ d? ]:
= l—a)——k* |I",
" [( a)dxi

= pdi%[ (2a— 1)((%:g ke ) +2ak§]F ,

d2
dx:

- yd%[ @a— 1)( e ) +2ak§]f , 2.14)




310 . T. MARUYAMA

- d [ d: . :|~
e —(+20)k* |,
o ”dxa dx;’ (1+2a)

Zu=pi(ik,) [(1—2a) d‘%-k? ]F ,
3

_ . 42 _
fa= i) 1200 L—ie |1,
3

Tp=2apu klkzﬁl—‘ .
3

Substituting (2.13) in these equations we obtain
7y, =201k )k’ —a A+ (2a—1)B—aBkx,Je " ,
Ty =2p(th,) ' — A+ (2aa— 1) B— aBkx,]e s,
T =2pk [0 A+ (1 —a)B+aBky,]Je " .

Since the shearing stress and their transforms have to vanish at x,=0,
we have

a=(2-1)s,
«
which yields
Tu=2paBE (1 +kx)e™ s |
Hence, if the normal load distribution on x,=0 is denoted as p(z,, x.),
753, @y 0)=D(), @), (2.15)
and the Fourier transforms of p as P, B is determined by the relation

1 19,k
B(ku kz)zmm—pl .

Thus, the Boussinesq problem is solved by the Galerkin vector I'(0, 0, I'),
where the transform of I is given as

F:Lﬁ{ @—Ly—a mgk‘z}e"“s . (2.16)
20 p «

Now we compute the displacement field W72 and the stress field
F* which corresponds to G7* in the infinite case.

We verify from equation (1.16) that G} and G¥ are even functions




Statical Elastic Dislocations in an Infinite and Semi-Infinite Medium 311

of r, and G is an odd function of 7, when
(Case I): (kl)=(11), (22), (33), (12),

while G& and G% are odd functions of 7, and G}, is an even function
of r, when

(Case II): (kl)=(23), (31).

For the sake of simplicity we replace r, and 7, by 2z, and =,
respectively for the present, or we may say that we compute for a
point P with the coordinate (0, 0, {;). For an arbitrary point P, 6, &),
we can get the corresponding results by replacing «, and @, by r,=(x,—¢)
and 7,=(x,—£,) respectively in the final expressions. Then if we put
x,=0 in equation (1.16)" for P(0, 0, &), we see that G and G are even
functions of & in Case I, while they are odd functions of ¢ in Case II.
Therefore we have to put the same combination of double forces at the
image point P’ of P with respect to the plane 2,=0 in Case I, while
the opposite combination of double forces in Case II, in order to cancel
the tangential stresses on the boundary 2;=0 due to the force systems
at P and P'.

Using equation (2.7), we can easily make a list of the components
of Galerkin vectors which give the fields due to force systems at P and
P’. They are as shown concretely in equations (2.17), though they are
not always indispensable for the following calculations.

Case I:—
ril—“é(ifﬁx%%) ’ My=— {24 ),
rﬂ__L(LX&Lx_E) 8z\R S
1 “8z\p/\R S/’ Fi2=—-81;<%+&>,
e T
o))

| r L (E255)
ng:—%(%X%_*—k%) ’ 2.17)




312

T. MARUYAMA

and R=QP=Vai+ai+(w,—&), S=QP =V ol i+ (%, 1 &) .

force systems for the boundary condition on the plane 2,=0 is
D@y, Bo)= —2G3(2,, ,, 0)

for each combination of (k). From equation (1.16) we have

— 5 7
? = P
L 1%23m——m1aﬂﬁ@+w ol
Y T o o
&:l{ —al _gafiy 15“5_3} ,
P T 0 o o
P :i{ga% 15&%} ,
P T o 0
Pa :l{3ax153 150 g} ,
7 . 0 o
yor :L{ —3(l—a) 2 15 %xz‘fg} ,
7 % o

where
=V ai+ai+g

= AN( &
= _( )(R S),
2 1 (2) Ty | Xy
ra=—-21
81 (R S)
s 1 (22m\(w—&  wt
e 8n<ﬂ><R+S)’
Case IT:—
=0, = _L(L—Es_-’vﬁés
I :__('33*53_“73'!'53) 8=\ R S
TV E S mo,
= 1<x2 x2> 2 1(001 ac)
Iy=——A\Z2—% ’ I B (et Bt T
23 8-\R S 31 RS

),

In (2.17), I'}i is the m-component of Galerkin vector which gives the
field at Q(z,, »,, x;) due to force systems at P(0, 0, &) and P’(0,

0; _ES)

The normal load which must further be added to the above-mentioned

(2.18)
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The first step in solving the Boussinesq problems for these normal
stresses is to calculate their Fourier transforms.
Let us now consider the Fourier transform f(k,, k) of a simple

function f(x,, x,)=1V"a+xi+c*,

1

gmitmvlmy) (g doe,
=1/ 22 i+ e

Tty 1) ="

If in this integral we make the substitutions
x,=rcosl, x,=rsinf, k=kcose¢, k,=ksing, (2.19)

then, by means of Hansen’s integral representation of Bessel function
k),

Ty = D" [ereme cos ma as (2.20)

T

we find that f(k,, k,) is a function of k¥ and may be written

- 1
= SO Yo Jo(kr)yrdr .
From the equation
S o= ], (v dk = w) . (e>0) @.21)
0 7»"1/

which is found in textbooks (e.g. Watson 1922) or may be easily
established if we replace J,(kr) by (2.20) and then change the order
of integrations, we can evaluate f by making use of the Hankel inver-
sion theorem in the case n=0. Thus we have

LSS” 1 —i(kyzy+kore )d d __1_ —ck k 2
—wV—‘-_ﬁxi+w§+ce wda, =0, E=VEFE). (2.22)

If we differentiate equation (2.22) with respect to %, k,, or ¢, taking
the derivative on the left side under the integral sign, we find Fourier

transforms for various functions necessary for P, as shown in
Table 1.
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Table 1. Fourler transforms.

1 _ - .
fas, x2)=ESS T, k)eitbarst koo dleudke Tk, k2)=~2755_ F@r, wa)eitkimr sz da day

1 1,

o

1 | i TN

o i ¢’

1 i —ck

pS i

1 B (8+43ck-+c2k2e—ck
o7 15 S

2y . ky ek

o ¢

1 .1

7 —i g, kie—ck

T
7 15 3(1+ck)k1e“°’“
212

3 ~ okt
X122 o _ 1 klkze—ck
0° 3 k

X1X2 1 Jp

pe ——lgklkze ok

2 1

,,Z (2= (L) FuZl e o%
2,2 I 1 g 1 ek
pe 3c(k ckl)ke'J
9312 -
,0—7 T5c 3[(l—i-ck) c2k,2]e—ck

(p= x/xl trarter, k=vVEkZtks, ¢>0)

Using Table 1, we obtain Fourier transforms p,, as follows.

Dy _ 1{ kL (o
ak-i-(

T

7 —ac‘ski}e“gsk ,

Ty

&:l{(z —1) 1.|. k_ -kz} etk
YR 4 k

Pu

1 N
B k-i—;"k' e 3k ,
R ( (2.23)
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Pu L g o et
72

P L iz e fjet
M T

=t
H
Substitution of (2.23) into (2.17) gives
o Ao Do Lo 2ol

1

o2l 2 (- -2

Lo ki

— atkek } bt

Tu=o|(2 %) +{(2- 53+m} e 2.24)
Ty ( 1) b2y 253.%] v
ST N

T :L[
12 2

b (L

g R e,

where
P=&+%;.

Now we have to calculate the inversions of /7,,. Substitutions (2.19)
reduce two-dimensional Fourier transforms to zero-order Hankel trans-

forms. By equation (2.21) we have re“”‘Jn(k'r)dk, from which we can
0
evaluate gme“”"Jn(kr)kdk by differentiating with respect to ¢, and
0

Swe—”"Jg(kr)k“dk with the help of a recurrence formula of Bessel func-
0
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tions. In some inversions of 17, we encounter an integral, S e~ Jy(kr)k—dk,
0

where the integrand tends to infinity at £=0 and this improper integral
has no limit. In these cases we can not get the inversion I” of I.

Here we look back upon the process of solving the Boussinesq
problem. If there exist displacement components (u,, u,, u,) and their
two-dimensional Fourier transforms (&,, %, @), then from equation (2.2)
we have the following relation in terms of (i, @,, ),

a(ikl){(ik,)ﬁl+(ik2)a2+ d‘fa @73}+(1—a)( d‘i I ) =0,

3

3

i) { @)+ i)+ L+ (1) 4 Ya=o0,
3 3
d forne o d g AN
a %{(zkl)ul+(zk2)u2+ ot o i ), .

These equations are satisfied by (@,, %,, @,) in equation (2.14) provided
that equation (2.11) holds. In the Boussinesq problem I" is determined
in equation (2.16) such that equation (2.11) and boundary conditions at
infinity and those on the plane x,=0 are satisfied. Therefore we ecan
conclude that if there exist the inversions of #,, #,, @,, 7y, *++, 7y, in (2.14)
with /7 in (2.16), they satisfy the equation of motion and boundary
conditions, and form the solution. Thus we do not always require I”
oI o’
amlaxs’ 02,02,
and p*" are derived from it in the same forms as the inversions of

T T 2
(ikl)-gx%, (ilcz);l—i; and ( dfcg
convenience, we define a function f(r, p) which corresponds to
SS” etk g, dl, as

—oco

itself. As for I, we may take any form for it provided that

—kz)f respectively. In this way, for

0 :_LSS‘» a4 —pk Jp=2) gittyzrkazy) J o e
asf(r,p) o _wdxs(e )e 1k,

— E:Jo(kr)e—p"dk ,
7iflr, p) = igg(_d_z __]{;2)(e—zzkk—-:)ei<klx1+k2z2)dkldkz (2.25)
27 da?
=0,
where
r=1a{+a}, S=V ai+ai+r", k=VE+E, p=5+6>0.
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Using f(r, p), the inversions of functions necessary‘ for I',, are

shown in Table 2.

Table 2 Fourier transforms.

oo — ) - 7! V — oo ) . V B
Sy, x2)=-217“ Sy, ko)eiterz1tkgzddlydle | f(ky, kz)z—an_—SS Slay, xo)e~tk1z1+ker) dopydice

- S
Sr, p) e’
@ (S—p) - ke
s e
1p (L1 styGopressn) R
2 S8 T\2p2 w) g3 k2
ll+(ll_ @, )09_—122 2
28 2 r2 ot S k?
1 1(11 o ke
0+ (5 e )S- e
@125 (S—p)*2S+p) kiky
T R [
w__—(s_p)z - I&ﬂ —pk
Tt S 73 ¢
12z o kik . B

(r=vrl+z2, S=vValital+p:, k=vVk2+kZ, p>0)

With the aid of Table 2 we obtain 77, as follows.

e - He-Dpes
D
(-2 D E-Se-n

oD (-2 -2
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1 _x_?>§:12)1(&9i@}] ,

rtort S?
(3=L)> s,
o o-D)fi 4

L1 _@\lg
F>2(S 2

D

]

= (e 2 ffo-Lesefecnt]

rede[ (Dl D)
e e L)
1z
2

) A (G

(1= L)L g @S0,

(2.26)

Thus for each combination of (kl), the displacement field and the
stress field may be derived from the resultant Galerkin vector, the x,-
and %,- components of which are given in equation (2.17), while the x,-

component is the sum of the value in (2.17) and in (2.26).

In order to simplify our further calculations we make the assump-
tion 2=p, which is not unusual in applications of elasticity to geophysics.

It follows that «=2/3. Then I;,’s in (2.26) are given as follows.

r,= _1_[_3_]”(7-, D) +ilq(82+14Sp-—7p?—88"1p3)
47 8 r?

ixl( S*—2Sp+Tp*—4S~'p)

8BS0+ 20157)
+ss{2 (1—S~p)+24 (—24+35p+0— S-w}]
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Iy= i[if(r, D) +l%(82+14Sp—7p2—88“p3)
4zl 4 8 72

1% 5 o8pt7p—4S1pY)

4
+6,(—3S1+0+2x357?)

2 1 -1 x; -1 — 393
+ss{2—2(1—s p)+ 2% (—2+357p+0-S-p)} |,

Iy=— ™ L fr, p)+2S~p+&,(— S+ 0-+28p?) + &(—25-°p)] ,
[o=—t e 2[——(1—3'12))—2:038’3] ,
4z r?
Fy=_t¢ {—i(l—s—lp)—zxss-s] ,
47': r?
1 mx[ 1 1 7 5 _
ra= Lol Le Lo, Ty gy
47:0”4(4 g PP 4P P)

+26,(S+0—-2S1p* 40+ S—*p)
+25(~2+35p+0-Sp) | .
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2.27)

The displacement field is calculated by means of the general relation

(2.3) from Galerkin vector.

The displacement components for each (kl) derived from equation
(2.17), which we denote as wj;, may also be obtained without differen-
tiation from equation (1.14) considering the contribution from the image

point. They are given as follows.
b= s (e (et s)H]
va= o s\m s/ A et )M
17 1/1 .1 1
Lot g)mre(grg) oa ]
s _ 1 1fw,—&  w+¢ —& | &N 0
wi= | 5 (Bt g ra(Bpt e ) )
L1 1/1,1 1.1
L §<ﬁ+s> ’+2<R5+S> 1”2]’
C1T1/1, 1), 1.1
o= (mrg)m (s s
3:_1__—_1< —& ”1/3“}‘53) 2(1173—{3 x3+£3) 2]
wa= ol 3UE e ST TR T )%
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om 2[R g
| e E e o))
e L A 0190
ut= L[y(@=8)_@48),,],
7L
| wm Lo ega- g
e LG B 5]
- H3eE- o8- )]
| e Logt-29)e].
= LB g2
wh= | 3(re)e s ]
| wh= 21; l(;ﬁ-‘sl,) 1+2(}135+Sl)x xz] ,
Wi = —741;{2( (xsl_e—fa) + (xs‘stfs) > mla@] .

The displacement components for each (kl) derived from equations
(2.27), which we denote as ]}, are given as follows.

1

wn =

4S—18p+

(

_S+8p—122
+8p—l2°g

[
47 L 3
ol -
7s

+ 253901(7% -

+ 4éix, ( L

10222

5)

!

3— + b}
RS

S®

13’:g +7§3—6§5>
+7§ 2%)
Ik
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ohv= 4| 5 (25 -6p- Lo
_’_fz:;iv( —S+8p— 12%-*—723 2,2)
220,32, 1005 S)+4 o ~ g0tz |
+253<Sla+3g 4m;§ 10x%g—2,>+4£3( §5+5xs)]

1 [1 &y 11p Gp_s
: Lo (28 6p— S+ = Sﬁ>
oF’

T (- S+8p—12 2 472 20)
e (TP g T e s

+ 26, <3§ 10522 )+ dei (—é + 5xsl)] ,

T

. 1[1 %( P apt D
wh = | T &(4s-18p 18 B 47l 685>

+ 2 ~S+8p—12E 470~ 2L)

o . 1
+ 253%2(7% — 10?85827) =+ 4@%%(— 3% £ By?

)]

8 :L[_l_<_1_p_3 2?’:> oc_%(z__g 30’ +2p>
St s TP T T s A

+253( 3P —4»c— 10wg— +452< p+5’cs>]
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The resultant displacement field, W, for each (kl) is expressed by
Wn=wp+tof. (2.28)

As for the stress components at Q(x,, @, @;), we can obtain them
by differentiating with respect to x,’s as in equation (1.1). The (mn)-
component of stress tensor for each (kl) can be written as

Him=hir+o3r (2.29)

where k" and 77" are computed from w}; and w}; respectively. The
_ stress components A" may also be found by means of equation (1.16)
considering the contribution from the image point. They may be written
as follows.
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After replacing @, and %, by x,—¢, and wx,—¢, respectively in the
foregoing expressions, using Wy in (2.28) and Hp in (2.29), we have
the displacement components and stress components at Q(x,, x., x,) as

21n(Q) = ﬂzmk(P) Wi (P, , (2.30)

(@) = SSAm(P)HW(P)dZ. , 2.31)

where the integrations are taken over the coordinates of variable point
P(,, &, &) on the dislocation surface.

The displacement field on the surface

If we put 2,=0 in the expressions of w;: and o}, we get a system
of Wi’s in equation (2.28) for the displacement field on the surface,
which are surprisingly simplified and in refined forms and may be
written for a point P(0, 0, ¢{,) and a point Q(x,, ., 0) as follows.

W= -28{c+8r), O
4= 7‘4 7 pﬁ
1« x . 1 22
Wi= gD o= o5
11 Hi 1 .83
W= BB o= 05T
1 2 x2 1 :l:f‘
Wa=7 ?1”{ +7F} =4 {—6 ,023}’
9 1 9
gz:%% {C—F&F} , W§1:4_~{_6x12553} ,
W, = LL{ +&E} , W3, = L{Gﬂé_z} ,
2 ,r2 4: 5




where
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v o), ik sefasdr).
v 28]
r=v"al+ai,

p=V ai+2i+8,

and 4, B, C, D, E and F are polynomials in {=¢&/p és

A)y=1-27+¢%,
B()=-—-1+2;-¢,
C(()=2—6L+br2—¢*,

D)= —20+3—'=C(0)—2A() ,
E@)=2-9+135°—62°,
F(¢)=3+8;—242 41924 —62°.

Here we investigate further the field due to a single nucleus. As

to the nueclei,

the cases when (kl)=11, 33, 23 and 12 are sufficient to

be taken up because of the property of symmetry. We substitute polar
coordinates x,=7cos¢, x,=rsin¢ and obtain the radial and tangential
displacement components Wi, and W in the plane x,=0. We find

wi= 1 Q{(C+D+F)+(C—D+F) cos 290} ,

8
W= ,81,, (—C+D)sin2¢ ,
1

b= %{(2B—.—E)-'~Ecos2¢},
3 é&r
Wr — Y >3
33 277: 105
Wg&=0,
wi=—2 58
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PR 7
Wih=— 271_ ;? sing,
< WgE=0,
We — 3 &r .
BT 5 Ty Sln‘p ’
7 P
;2_'—'_ ~8];7;AT—FZ(2A+F) Sin2§9 ’
- Lop
J g= 8—;;‘;(214) cos 2¢ ,
szs_l_lquin&o .
8z r*

\

The displacement fields W,,, W,, W, and W, are shown in Fig.
6~17, where the depth of nuclei is taken to be unit (§,=1) and the

X

b4
<

Fig. 5. Direction of horizontal displacements is
measured clockwise from z;-axis toward x:-axis.

interval of the lattice is equal to unit. The values in the figures of
resultant horizontal or downward displacements must be multiplied by
10~ if true values are required. The direction of horizontal displace-
ments are measured clockwise from the direction of x,~axis toward the
direction of wx.-axis, as shown in Fig. 5.

The displacement field of W, is somewhat complicated in the
neighborhood of the origin and enlargements of that portion are shown
in Fig. 18~20, where the depth of the nucleus is 10 times the lattice
interval.
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2-2. Examples of Displacement Field on the Free Surface due to
Finite Dislocations of Simple Forms.

In integral representations of the displacement field due to a
dislocation in the medium, if the surface ¥ is perpendicular or parallel
to the free surface and its form is rectangular and if the displacement
discontinuity 4u is constant on the dislocation surface X, the integration
can be represented by elementary functions.

(a) When 2 is perpendicular to the free surface, we consider the
following cases in the order shown.

(i) When only u, is discontinuous on %, Case (1-1),
(ii) When only u, is discontinuous on ¥, Case (2-1),
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(iii) When only u, is discontinuous on %,
If we put %, B t‘lv i
X =z _E (E.,B.C)‘ (E"b‘C):-—<‘C
1— 1 1
X,=x,—§,, D__A‘c
(5.8.C)  (£,bC)
p=VXi+X;+8, X,

and we use the notation
|| as

Fig. 21. Rectangular dis-
location surface X perpen-
dicular to the free surface.

345
Case (3-1).
X,
al__(ADBS)  (ABE)
‘ __:(°\b1§3) 1(a.B.&)
I
b B Xq

Fig. 22. Rectangular dis-
location surface X parallel
to the free surface.

f(Ezr é:3)” =f(b7 G) —f(b’ C) —f(B’ C) +f(B? C) [}
following Chinnery, where (b, ¢), (B, ¢), (B, C) and (b, C) are apices of

2, then the expressions are as follows.

(@)

S _ {_ X XE(p+25) o XX
Au, plp+&)(p—§&) (Xi+&)p
U, 1/ ¢, X (p+ 2, 1
Tdu, {?( p+és >+ p(p+g;2(p—)53) e
Uy { X, ., XX, }
du, Lpte " (Xi+g)pll
(ii)
Xi&(p+28) 1

ﬁ:{i & )_|_
ﬂAuz 2<p-i—$3
ot [ EXLp428)

“du, plp+-£)(p—E&)
et (X2

1P

du, U plp+8)
(iif)

W g XX )

o= T A (|
Au, (XI'*—SS)IO !

4z ={2ng

‘Aus P ’

Y :{ o0 XiXeby oo ctan <2%)}H )
Au, (Xi+8)p X.p

plp+&)'(p—6;) i °g<%§>}
—2 arctan (%)}

1P

13

s(6re))

s

?

—2arctan (%)}“ ,
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(b) When 2 is parallel to the surface, the cases we are to consider
are:

(iv) When only u, is discontinuous on ¥, Case (1-3),
(v) When only u, is discontinuous on ¥, Case (2-3),
(vi) When only u, is discontinuous on ¥, Case (3-3).

If we use the notation || as
S, )|=f(a, b)—f(a, B)—f(4, b)+f(4, B) ,

where (a,b), (@, B), (4, B) and (4, b) are apices of the rectangular ¥,
then the expressions are as follows.

(iv)
4;-2-1’,(',1, :{ 2 X, X4, —92 arctan (X1X2 )}) ’
A, (Xi+&)p &p
4zt :{—2§} ,
Adu, o
4:71' ’I/L3 :{—2___._;){2.5?‘_} ,
A, (Xi+&)p
(v)

’

4n i —{ g5
Au, 0

st {5 XXE g qpopqn (X))

s

" du, (X:+&)p &p
471L3:{_2 X8 }
du, (X;+8)p
(vi)

4nﬂL={h X6 }
Adu, (Xi+&)p

_ Uy :{_2 X }
A, (X4’

4 s :{_2 X;wa; —2 )&_f‘x"i"' —Z2arctan (ﬁ»“ )
Au, (Xi+&p (X3 o 1

For cases (a), when X intersects the surface of the medium, the
results of calculations for various points on the free surface are shown
in Fig. 23~34, where the depths C of the dislocation surface ¥ are
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Fig. 25. Resultant horizontal displacements for Case (1-1), C=0.1. Contour

values in units of 10~34u;.
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Fig. 26. Resultant horizontal displacements for Case (1-1), ¢=2.0. Contour

values in units of 10—34u;.
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Fig. 27. Downward displacements u; for Case (1-1), C=0.1. Contour values
in units of 10—34u,.
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Fig. 28. Downward displacements us for Case (1-1), C=2.0. Contour values in
units of 10—34u;.
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Fig. 29. Direction of horizontal displacements of the free surface for
Case (3-1), C=0.1.
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Fig. 30. Direction of horizontal displacements of the free surface for
Case (3-1), C=2.0.
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Fig. 31. Resultant horizontal displacements for Case (3-1), C=0.1.
Contour values in units of 10~3Jus.
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Fig. 32. Resultant horizontal displacements for Case (3-1), C=2.0.
Contour values in units of 10~3Ju,.
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Fig. 33. Downward displacements u; for Case (8-1), C=0.1.
Contour values in units of 10—34us.
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y
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=50

Fig. 34. Downward displacements u; for Case (3-1), C=2.0. Contour
values in units of 10—34us.

measured in units of the semi-length of Y. For Case (2-1), the strike-
slip model, detailed figures are shown in Chinnery (1961).

For cases (b), when X is a square, the results of calculations are
shown in Fig. 35~38, where distances and depths are measured in units
of the semi-length of the side of square.

For cases (a), examples of the fall off of displacement components
along w,-axis, perpendicular to the fault surface 3, passing through the
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— X,

Fig. 37. Downward displacements us for Case (1-3), C=0.1.
Contour values in units of 10~34u,.

Fig. 88. Downward displacements along x;-axis for Case (3-3),
C=0.1, 1.0 and 2.0.
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U
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a.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0

Fig. 39. Downward displacements (above) and horizontal displacement (below)
along w;-axis for rectangular X of length 2 and of various depths, for Case (1-1).
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Fig. 40. Downward displacements at the origin for
various depths C of I for Case (1-1).

origin of the free surface are shown in Fig. 39~41 (for Case (2-1) see
Chinnery (1961)).

For a rectangular dislocation surface S which is inclined form the
vertical plane, if we choose the normal to S as shown in Fig. 42 and
we have y,=cos 6, v,=0, v,=—sin @, and if only Adu, does not vanish on

S, we have
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Fig. 41. Horizontal displacements (above) and downward displacements (below)
along x;-axis for rectangular 3 of length 2 and of various depths, for Case (3-1).

. Yo Sg WindS

_ Sg Widé,de,— H Wade,de,

— Sg( 7 —tan 0 WR)d&ds, .

Fig. 42. Rectangular dislocation sur- (d€,=tan ¢ d&,)
face S meeting the free surface If we want to evaluate these formulae}
obliquely. by means of numerical integration,
we are led to the following calculations for a point (x,, @,, 0):

Mo Lol X f 484 X p(5))ttang-6 X2 s,
du, 4z L r P 7 P o

te L[ Zefa(%)+ 25 F(2 )] 1tano-6 2 s,
du, 4= L » P r? p o

to L[ X% (%) —tano-6 22 us,

du, 4=z L 7 0 2

where 4S, is a surface element of the projection of S on the &,4,-plane
and the summation is taken over the dislocation surface S.
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Appendixes

Appendix 1. Volterra’s formula. The m-component of displacement
vector at an arbitrary point Q(w,, %, x;) due to a dislocation in an
infinite elastic medium, u,(Q), is determined by the formula

1@ =] 4T5P, Qu(Praz, (a-1)

where P is a point on the dislocation surface ¥ over which the integral is

taken and Tp(P, Q) is the (kl)-component of the stress tensor at P due

to a unit body force acting at @ in the m-direction. Here we introduce

equation (a-1) following Steketee (1958 b) for static cases, though it can

also be obtained from more general dynamic relations (Maruyama 1963).
The reciprocal theorem of Betti in static cases states:

[{{uerepav+ [Jupeimas= [\{ueFooav+ [fupeivas, @2

where the superscripts inside parentheses refer to the two possible but
different sets of displacements, stresses and body forces for a particular
elastic body which occupies a region D+S with S as its boundary. In
equation (a-2) p denotes density of the elastic body, Fy" and F}” the
body forces. We imagine a dislocation surface 3 in the body and apply
the equation (a-2) to the body with the boundaries S, ¥* and 3-. If
we apply proper tractions over S, I+ and 3, the body will be deformed
as if it were a portion of an infinite elastic medium. When a force
Fr in the positive m-direction is applied at @, and when such surface
tractions as will be generated by the force in an infinite medium are
applied on S, 3* and I-, the displacement field and the stress field in
D will be the same as in an infinite medium and they may be expressed
in the well-known formula (Love p. 185). Then as the first set in
equation (a-2) we take a unit body force acting at @ in the m-direction,
the displacement field Up(P, Q) and the stress field T7(P, @) which will
be generated at P in an infinite elastic medium by the force.  As the
second set we may take an arbitrary possible displacement field u(P)
and stress field r,(P) when there are no body forces. The reciprocal
theorem may then be written in the form '

SigFi"udeV+ SS 0 TimdS= ig Upeds .

S+st4s— +3—
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Since Up(P, Q) and Tp(P,Q) are continuous across J, using equation
(1.5) we have

m Frupd V= SS (i — ) Trwd S — “ Up (et — i d
D, b =
+ “ W T dS— H U ds . (a-3)
S

N

We take the magnitude of the body force FJ* operative at @ in the
m-direction to be unit, as

m FrodV=

Vo

{ 1: if k=m when V, includes Q
0: otherwise,

hence the left-hand side of equation (a-3) gives us %,(@). In the
case of Somigliana dislocation, by definition the second term on the
right-hand side vanishes. If the outer surface S is left free from
forces the fourth term vanishes. If we assume that S recedes to
infinity requiring at the same time that @ is not at infinity, the third
term vanishes in so far as w,’s vanish at infinity. Thus from equation
(1.2) we get equation (a-1) for an infinite elastic body.

Appendix 2. Line integral representation of the displacement field
due to a Volterra dislocation. A general Volterra dislocation is
specified by the discontinuity du across I which should be of a rigid
body displacement type as

du=b+wx¢. (a-4)

We deal with two cases separately : One is the case when du=b, and
the other when du=w x¢.

(i) When du=>b. If a unit body force is acting in the m-direction at
Q(x), the displacement u™ at P(£) is expressed as

1 rot(e, X grad 7) , (a-b)

o

8rpu™ = —1;(e,,, -grad)grad -+
e
where a, b, are the P- and S-wave velocities, grad and rot (also div and p2
later) are taken with respect to the coordinates of P,

grad f=grad »f, rotv=rot v,
and

r= ]/(51 _-’1;1)2 + (52 - .,02)2 + (53 - x3)2 .
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The stress component T at P(§) derived from the stress field u™ is
computed from the relation

Tr=200uy Ui +ui) , (a-6)

where partial differentiations are perfomed with respect to the coordi-
nates of Q(¢) and 0u/o&, is abbreviated by .

The product of the constant vector b, and the stress tensor Ty is
a vector A™ which may be written as

Am=2b divu+p grad(b-u)+ px(b-gradu . (a-7)
Substituting (a-5) in equation (a-7) and using the relations,

b div(grad r)=rot(b x grad r)+(b-grad)grad r,
rot(e, X grad r)=e,, div grad »—(e,,-grad)grad r ,
grad p*r x (e,, X b)=(b-grad)rot(e, X grad r)— (e, - grad)rot(b x grad r),

we obtain
1 1
drA™=(en- b)grad(7> + grad (7> X (em X b)+ ale,, - grad)rot(b x grad 7) .
By relations

[( grad %) % (en X B) ]-v:em -[bx (v x(grad %))] ,

(en-grad p)rot(bx grad )= — (e, grad yrot(b X grad r) ,

where suffix @ means the derivative taken with respect to the

coordinates of Q, we have

Am-y=l(em-b) grad , (l)»
4z r

+ %ﬂem . [b X <y X grad%)]

—zllja(em-grad o[rot(b x grad r)-y] .

By means of the formulae

ot (2) = g Bz,
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ggvxgradgod)T:Sgadé,
SSrotA-ud2=SA-d€;

where d¢ is an element of the line o and the line integrals are taken
once round the dislocation line in the positive sense and £ is the solid
angle subtended by the loop « at the point @, we have

U(Q) = ﬁem - bR

1 1

+:1;em . [ b>< S7d£]

—%(em . gardQ)S(b xgradr) - dE.
w

This may be written in vector form as

1(Q) =4l{ bO+b X S%dg-m grad, S(b r) - %} . (a-8)

w

(i) when du=wx¢ (or du,=0,¢, 2u=—2,,) the product of the
vector (o x§) and the stress tensor T} in equation (a-6) may be written
as

kaTﬁ:Rthfhuf,n—]“/I(Qkkfnul’cn),l‘*‘/lgzkuln'l'/’Qkhénu;cn,l ’
or in vector form as

A" =Nox§) divu™+p grad [(w X ) - u™]
+1(wx¢) - gradlu™+ (o x u™) . (a-9)

By substituting (a-4) to (a-9) we have
8rpA” = L (@ §)en - gradypr
+% grad [(e<¢) - (e, - grad) grad 7]
+-l'% grad [(ew <€) - rot (e, x grad )]

+L[(@x¢) - gradl(e, - grad) grad »
a
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+%[(w x €) « grad] rot (e, X grad 7)
+£(em - grad)(w x grad )
-l—%w xrot (e, X grad r) .

We can obtain the following relations

grad [(w x¢) - (e, + grad) grad 7]+ (e,, - grad)(w x grad r)
=[(wx¢§) - grad](e,, - grad) grad 7,
and
grad [(wx¢€) - rot (e, X grad 1)]
= —[(w %X x) - grad 7](e,, - grad) grad r
+[(wxx) « e,] grad p*r+[(e, X @) - grad] grad r,

where we considered the definition é=x—r. Further we can
obtain the relation

w X rot (e, x grad r)+[(e, X w) - grad] grad r
=rot[(wXe,) X grad r]—(e,, - grad){(wx grad r) .

By substituting (a-11), (a-12) and (a-13) into (a-10), we have
8rp A™ :ﬁ—z-(w x €)(e,, -+ grad) pr
+%[(cu x &) - grad](e,, - grad) grad r
—I—%{——[(u) X x) - grad r](e,, - grad) grad r
(X x) - en] grad 1727'}

+ﬁ2[(w x ¢) - grad](e,, + grad) grad r
a

+%[(w x £) - grad] rot (e, x grad r)

+—bﬂ7 rot [(w X e,) X grad 7]

—%(em - grad)(wx grad r) .

361

(a-10)

(a-11)

(a-12)

eagsily

(a-13)

(a-14)
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By the relation

rot (e, X grad r)=e,l*r—(e, - grad) grad r,
we find

[(wx¢) - grad] rot (e, X grad 7)
=[(ox¢) + gradl{e ;*r—(e,-grad) grad 7}
=en[(0wX x) - grad p*r]—[(o X §) - grad](e,, - grad) grad r .

If we substitute this into (a-14) we get
8rp A™ = —%[(w x é) - grad](e, - grad) grad »
—%[(w x x) - grad](e, - grad) grad »
+ éz—(w x€)(en - grad) pr
+%em[(w X x) - grad p*r]
—{—LI;—[(a) Xx) + en] grad pir

+£2— rot [( X e,) X grad 7]

—%(em - grad)(w X grad 7), (a-15)

where we considered the relation

p_ 242y .

b a’
The first term of the right-hand side of (a-15) may be written
[(wx¢) - grad[(e, - grad) grad »
=[(w X x) - grad](e,, - grad) grad r
—(wXxr)(e, - grad)f’r
—(w - grad)(e, < grad r) . (a-16)
Substituting (a-11) in (a-15) we obtain
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8rp A™ = —%-—tﬂ[(w X x) « grad](e,, - grad) grad »
+ 20 x)(en - gradyrr
+ %em[(w x x) + grad p*r]
+2(w - grad)(e, x grad r)
——b%(em - grad)(o X grad r)
+ _b/‘;[(w X x) * e,] grad pr
_;-% rot [(w X e,) X grad 7] .

Using the relations

(e - grad) rot [(o X x) X grad 7]
=(w X x)(e, - grad) F*r—[(o X x) - grad](e,, - grad) grad r,

grad p*r X [e, X (o X x)]
=e,[(wXx x) - grad p*r] — (o X x)(e,, + grad p*),

rot [(w X e,) X grad 7]
= —(w - grad)(e, X grad r)+ (e, - grad}{w < grad ),
and
rot [e, X (w X grad )] = — (e, + grad)(w X grad ),

equation (a-17) becomes
8rp A™ = %(em - grad) rot [(w X x) X grad 7]
+ l‘;i grad *r X [e, X (o X x)]
n %Qi rot [(w % e,)) X grad 7]

n i" rot [e, X (w X grad 7)]

+%[(a} X X) + en] grad p*r .

363

(a-17)

(a-18)
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The first term in (a-18) becomes

(e - grad) rot [(w X x) X grad 7]
=(e, - grad) rot [(w x €) X grad r]+2 rot [e,, X (0 x grad )] . (a-19)
If we denote the differentiation operator with respect to the
coordinates of @ by adding suffix @ as

0
0%

f:(em * grad)Qf;
we can easily arrive at the relation

(en - grad)p[(ex &) X grad, r]
= —(en - grad)o[(w x §) x grad, 7]+ (w X e,,) X grad, 7. (a-20)
By substituting (a-19) and (a-20) into (a-18) we have

rp A™ = —77—2—'(%'; 2] (en + grad), rot [(w x &) X grad 7]

+ w rot [e, X (w X grad 7)]
a

+ iﬁu rot [(w X e,) X grad 7]

—I—%‘;{ grad p*r X [e, X (@ X x)]
+’£?[(“’ X x) + e,) grad pir . (a-21)

The surface integral from the first term of the right-hand side of
(a-20) becomes

SS rot [(wx &) x grad r] - vd¥ = —S [(wx&xr] - %5 .
From the second term we have
Sgrot [en X (0> grad 7)] - vdX¥
= S[em X (o> grad r)] - dé

=e, * (S(w > grad r) X d§)

=e,, * g(;—:,\'iw))(dﬁ.
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From the third term we have
Sg rot[(wxe,) X grad 7] - vd¥
- S[(a) % e,) % grad 7] - dé
= X(w X en) + (grad rx df)
—p. r
=y, gw x(r xds) .
From the fourth term we have
Sg{grad 7 [en X (@X x)]} - 9d3
- S g[em < (@x x)] - wx grad pr)dS
2
=[en X (@ X x)] - S7d§
1
= 2e, - [(w X x) X S7d€] .
From the fifth term we have

(X x) - e,,,“ grad p*r - vd3

a2 (2

=2e,, * [(oxx)2].
Thus

47, (Q) = alen grad), S[ (X&) X H . dt
~+a)e, - [(wx %)xds
oo (2
ten - S(wxx)x%de

+en - [(wxx)2],

365

(a-22)
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where
_ Atp

Tty

Employing the relation é=x—r, we can write in the vector form
4zu,=(oX x)R2

+§<w><e>><ids
r

+a gradg S[(wxe) x%] .- dé

e (2

—aS(wx L)xdé. ' (a-23)

r

For a general Volterra dislocation (a-5), as the result of the
computations in (i) and (ii) we have
1 1
H(Q)==< (b+oxx)2+ | dux —d¢
4x r
+a grad, S (duxr) - %dé

+ w xerlde
r

—a g (X 1) % %dﬁ} . (a-24)
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16. PR 45 & OV AERRETT I 8810 ) B B R A
LR R RR e L b L 5

R GUT & 7 5 HEEETNL I < 5 AHhTH3IFh Ed, FOERO KEAROHME B3
B EIR OB LTIy, T OMRIEE TR EOKIHC oW C M EE S izdicik,
TEDBMTIE, HECE SRS MREMEHRUL 2H40 =F L EMAEL T3 2R ATHTH
53,

ARG R OB & 5 b, FERELLRTHS EF AL, SROTHL/NIIHRER
IZEZBRIEHHFIND & R TH 5. %+ D% Kasahara, Knopoff 7z X iz X o C
strike slip fault Z il TIRTOEFAE LTE S 2 5 TEA bz,
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