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Abstract

This work is the continuation of the previous study on the
generation of a tsunami in the near field for a three-dimensional
case, which has been done by means of numerical calculation resorting
to an electronic computer. The method of analysis follows nearly
the same line as that in the previous paper of the same title. Such
a method, with a little modification, makes it possible to compute
further the wave height of a tsunami in the near field, even though
it is very low in efficiency.

According to the results of the computation, it turns out that:
(1) the variation of waves at the central part is more rapid than in
other parts: (2) as far as the later phase is concerned, at the central
part of the wave origin and only in this part, the motion of the
waves goes above the mean level of water. In other words, in the
parts excluding the center the undulations are superposed on the tail
of the long wave.

From the second reason described above, the approximation of
the shallow water seems to be still in use for the analysis of the
phenomena in the present stage (#*=21~45).

1. Introduction

In the preceding paper”, the author calculated the wave heights
of the tsunami at nearby points occupying the wave origin. Then, as
t* (time variable) increases, the method of computations prevents us
proceeding with the integration, which is due mainly to the existence
of the vibrating factor cos w*t* included in the expression of the wave
height (see the formal expression (1) in section 2). Although the method
of integration used in the previous study is inadvisible from the point
of view of cost and efficiency, the main part of the work in this paper
follows almost the same lines as that of paper I.

1) T. Mowmo1, Bull. Earthq. Res. Inst., 42 (1964), 133. This paper will be referred
to as paper I in the following discussions.
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2. Method of Analysis

In calculation, the crux of the problem is the avoidance of the
difficulty of integration due to the time factor cos w*t*. As described
in the introduection, the entire portion of the present study is worked
out in a very similar way to the previous one. Though the efficiency
is low, for the present stage (¢* =21~45) of the computation, the method
of the previous analysis is still applicable with a little modification.

For reference, the formal expression of the wave height produced
by an instantaneous elevation of a portion of the sea bottom within a
radius a* is given below :

cR:a*j“MJom*r*)Jl(k*a*)dk* , (1)
o coshk *

where the notations and definitions are exactly the same as in the
preceding paper I. '

When a time parameter t* becomes large, the value of w*t* (w*
=1'k* tanh k*) varies remarkably even for a very small increment 4k*.
But such rapid variation takes place mainly in the range of a small k*,
where a gradient of w* is greater in magnitude than in the range of
a large k*. It may be surmised from the curve of w*=1"k* tanhk* in
Fig. 1. Whereas no discussion for Jy(k*r*) including a position parameter
r* has been made so far. For the range of r*=0~27.5, if a number
of divisions of the integration is taken, such as a divided interval less
than that of the previous work”, the integration (1) is expected at least
to have the same accuracy as in paper I. These circumstances limit our

3
w

W= /k"'l‘onh k*

Fig. 1.
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attention only to a consideration of the former problem in this para-
graph, i.e., with regard to the time parameter t*.

As previously noted, the rapid variation of cos w*t* is due mainly
to the large gradient of w* in the lower range of k*. If we change the
divided intervals of the integration so as to fit the gradient of the
relevant part of »*, a number of the divisions of the integration in the
lower part of k* is forced to be greater than in the upper part. This
process is propounded in the following.

As in paper I, the parameter a* is specified as 10 in the present
study. Hence, if the interval of the integration (1) is limited to the
range k*=0~10, the error from the cut-off integration behaves like
that in the previous work”. Then a simple way to make the variation
of cos w*t* slight seems to be by the following procedure. The interval
(0, 10) is separated into ten regions, i.e., (0,1), (1,2), (2,3), ---, (8,9),
(9,10). In the m-th region (n-1, %), a number of the divisions of the
integration should be taken in proportion to the average gradient of
o* in the relevant interval,

which might approximately be o
given by the relation :
oy —wi e N, , (2)

where (refer to Fig. 2)
o}, and o} : the values of
w* at k*=mn-1

and n;

N,: the number of the
divisions in the n-th
interval.

The values of w* for k* (=0, 0.5, ---, 10) are tabulated in Table 1,
of which the curve is plotted in Fig. 1. Using these values, N, is com-
puted essentially in accordance with the formula (2). To determine the
proportionality coefficient of the expression (2), we need one more require-
ment that the divided intervals of the integration be less than those in
paper I to make the integration converge for the position parameter 7*.
For the value of 0.04, such a requirement is approximately satisfied.
The choice of the above value leads to the determination of N, values
at each interval, as shown in Table 2. In the present study, since the
method of the integration follows Simpson’s rule, N, must consist of
even numbers. Therefore, N, values computed by the relation (2) are

* . X
Grod, w = Wn ~ wp-

Fig. 2. A gradient of »* in the n-th interval.
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Table 1. The values of w* versﬁs a variable k*.

k* ¥ k* o*

0.0 0.0000000 5.5 0.2345168 X 10!
0.5 0.4806855 X 10° i 6.0 0.2449474 X 101
1.0 0.8726936 X 10° 5.5 0.2549503 X 10t
1.5 0.1165213 X 10! 7.0 0.2645749 X 10t
2.0 0.1388544 X 101 ‘ 7.5 0.2738611 X 101
2.5 0.1570520 X 10t | 8.0 0.2828426 X 10t
3.0 i 0.1727762 X 10t : 8.5 0.2915475 X 101
3.5 | 0.1869123 x 10! 9.0 0.2999999 X 101
4.0 ‘ 0.1999329 x 10t ‘ 9.5 0.3082206 x 10t
4.5 0.2121058 X 10t | 10.0 0.3162277 X 10t
5.0 ! 0.2235966 x 10t }

Table 2. Numbers of the divisions at each interval.

k* ! N, ; k* N,
0~1 | 174 | 5~ 6 42
1~2 | 104 6~ 17 40
2~3 _ 68 7~ 8 36
3~4 : 54 | 8~ 9 34

4~5 i 48 | 9~10 32

rounded so as to consist of even numbers. Now applying Simpson’s
formula to each interval (n-1)~#) with a relevant number (IV,) of the
divisions, the numerical integrations are carried out with the use of the
electronic computer.

3. Computation and Discussion

The computed results are tabulated in Table 3 and graphically shown
in Fig. 8. The calculations are made for the range t*=21~45 up to
27.5 with regard to the position parameter r*.

In order to check the convergence of the integration, the number of
the divisions at each interval is doubled, the results of which are given
in Table 4 only for the case of t*=45. Since the variation of cos w*t*
is rather gradual for ¢* of less than 45, to make the calculation only
for the case of t*=45 suffices for an examination of the convergence of
the integration for other ¢t*. In comparison with Table 4, the values
tabulated in Table 8 are found to have an accuracy of at least three
decimal digits.
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In drawing the graphs, the scales of the ordinates are appropriately
changed allowing for a relative smallness of the wave heights, in the
stages (t*=21~45) of the present work, as compared with those in paper
I, so that the figures enable us to visualize the minute variations of
the wave heights in the later phase. In Figs. 3a and 3b, the ordinates

o8 LR . lsth valley
t=21

. k3
o 5] ,I‘O l{)// | i
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] X

! \/\/ \L’Hh valley
X

Fig. 3a.




374 T. Momor

are in scale unit twice those of the previous paper, while, in Figs. 3¢
and 3d, they are scaled up four times.

As we pass from the first (¢*=21) to the seventh figures (t*=27)
in Fig. 3a, the continuation of the small valleys discussed in the previous
work is seen near the tops of the first crests, which are designated by

0.5+ € R

. . t =31 ‘ y
t=32
*
t=33
W * :
/ \/"
X
t=34
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“6th valley” and “7th valley” in the figures. They are propagated
backwards as described in paper I.

In this purview, the discussion will be mainly focussed upon the
phenomena of the later phase.

According to the theory based on the long wave approximation, a

0.25) Cr
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\./
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- . x
t=40

Fig. 3c.
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very sharp valley and only one appears in a part of the later phase,
which is followed by a long tail gradually approaching to the mean level
of the water from below. According to the results of the numerical
calculation, however, the small valleys subsequently appear after the
first large valley. These small valleys prevail throughout all the figures.

0,25} °R .
t=42
5 10 J 20 25 30 F

0 N TN~

Fig. 3d.

In the center (the exact point) of the wave origin, the surface of
the water moves up and down through the mean level of the sea, and,
as far as the later phase is concerned, only in this part does the water
surface go above the mean level. The motion in this central part pro-
ceeds rather quickly than in other part. Such a rapid motion is considered
to be due to the convergence of the retrogressive waves, which will be
explained in the next.

Referring to the figures designated by the parameters t*=23 to 26
and 26 to 29, the second crest (with a stated number “1”) is generated
after the first large valley is separated into two crests (with “2” and
“3”), one of which is progressive and the other retrogressive. The
former disappears into the first largest valley, while the latter being
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Table 8. The variation of the tsunami heights in the near
field versus time.

ol ey

(r t*=29)

(r (tF=22) |

—0.1337969 % 10°
—0.2171539 x10°
—0.6283778x 10!
—0.3495427 x 10°
—0.3475829 x 100
—0.1645390 < 100

—0.6969858 X 102
0.9951638 101
0.1723091 X 100
0.1552041 x 100
0.2691446 x 100
0.2893070x 100

0.2425994 x 100
—0.2676409 x10°
—0.1655659 x 101
—0.2384424 X 10°
—0.3663542x10°
—0.2280038 x10°

—0.6158100x10-?
0.6425843 X101
0.1148641 x 100
0.1703888 x 10°
0.2043192x10°
0.3089425 x 10°

0.9047025 x 10—1
—0.1537128 X 10°
—0.6378861 x10~1
—0.1177961 x10°
—0.3411538x10°
—0.2826078 x10°

—0.1170065 x 10°
0.6381168 102
0.7518296 <10~
0.1826137 x 10°
0.1533254 X100
0.2910798 x 10°

n r=20)

(r 7(t*= 25)

Cr (t*=26)

—0.3126623 x 10°
—0.3788366 x 101
—0.1459898 x 10°
—0.3267816 x10-¢
—0.2713835x10°
—0.3169368 <100

—0.1732308 x 100

—0.3730086 101
0.6589615x 101
0.1592555 % 100
0.1379128 x 10°
0.2410817 x 10°

—0.3485438 x 100
—0.2513627 x 10!
—0.1815262x10°
—0.1471913x10~!
—0.1728067 x 10°
—0.3194534 x10°

—0.2283573x 100

—0.7175380 x 101
0.5186336 <101
0.1048468 x 10°
0.1517606 x 10°
0.1800914 x 100

0.9296316 <102
—0.7332868 x 101
—0.1410569 X 100
—0.5936261 X 101
—0.7619971 X 101
—0.2834407 x 10°

—0.2701731x 100

—0.1259634 x 10°
0.3196321 X 102
0.5562752x 10!
0.1637200 < 100
0.1354788x10°

Ctn @)

Cr (£=28)

(x (t=29)

oo

DO b b et
Oo=JUt N

RN

0.1663739 < 10°
—0.1194960 x 10°
—0.5871657 x 10!
—0.1233904 x 10°
—0.1620571x 101
—0.2126634 x 100

—0.2903069 x 100

—0.1873981x 10°

—0.6003368 x 10—1
0.3610758 101
0.1442749 x 100
0.1236156 < 10°

—0.9851518 X 10~*
—0.1203583 X 10°
—0.1103204 x 10—¢
—0.1517322 x 10°
—0.1300842x 10!
—0.1244780 % 10°

—0.2798562 x 100

—0.2282421 x 10°

—0.1032027 x 100
0.2829955 x 101
0.9337135x 10!
0.1368200 x 100

—0.2714464 < 10°
—0.5585501 101
—0.8671024 <101
—0.1190926 x 10°
—0.5722848 101
—0.4653144 X101

—0.2356708 x10°

—0.2540578 x10°

—0.1338886 x10°
0.4330094 x10-2
0.4046186 < 10!
0.1472949 < 10°

(to be continued)




378

T. MomoIl

Cr (£+=30)

(continued)

(r (*=31)

Cr (t*=32)

—0.5096617 X101
—0.5109874 x 102
—0.9362873 10t
—0.5248258 x 10—!
—0.1112924 x 10°

—0.5805500 %102

—0.1654758 x 100

0.1129578 x 10°
—0.4829511 10!
—0.1081836 x 10°
—0.9198347 x 102
—0.1320538x 100
—0.1392408 x 101

—0.8724924 x 10-1

—0.7217172x 10!
—0.1004548 x 10°
—0.6152487 10!
—0.2333786 x 10!
—0.1020881 < 100
—0.5766893x 101

—0.2544586 x 101

17.5 —0.2665398 x 10° —0.2454385 x10° —0.1928833x 100

20.0 —0.1804128 < 10° —0.2313168 x 100 —0.2499663 x 100

22.5 —0.6663251 X101 —0.1252452 % 10° —0.1570843 x10°

25.0 0.1262506 10! 0.3583641 x 102 —0.1877657 x 101

27.5 0.1289519 x 10° 0.8034148x 10! 0.2627287 x 101
r¥ (r (t*=33) Cr (t*=34) Cr (t*=35)

—0.1826739 x 10°
—0.6571266 X101
—0.1289667 x 101
—0.7102185x10—*
—0.4483471 X101
—0.1035193 x 10°

—0.2401558 x 103
—0.1270642 x10°
—0.2349880 x 10°
—0.1794838 x 100
—0.7195002x 101
—0.6823179x10-2

—0.3342451 102
—0.1321041x10~1
—0.2075211x 101
—0.9461016 X101
—0.6589406 < 102
—0.1173306 x 10°

—0.1674311x10-1
—0.5900894 < 101
—0.2079261x10°
—0.2131345x 100
—0.1351630x10°
—0.1875425x 101

=

0.4949715x 101
—0.2536150x 101
—0.6431852x 10!
~0.6600041 x 10!
~0.1604417 x 10—1
—0.8805177 x 10!

—0.5935271 x 10!
—0.9982094 x 102
—0.1636161 x 10°
—0.2387550 x 100
—0.1752818 x 10°
—0.3573170x 10!

Cn (=31

Cn@r=38)

—0.1053493 x 10°

—0.6426967 x 101
—0.7487107 x 10!
—0.1886592x 10!
—0.5692642 <101
—0.3732764 X101

—0.9805191 <101
0.1548593 x 10—2
—0.9495846 x10~1
—0.2234319x10°
—0.1885223 x 100
—0.7958531 X101

—0.8338378 x10~*
—0.5753012 101
—0.3668207 x 10!
—0.7797699 X 102
—0.8311557 X101
—0.3871250 X102

—0.1055529 x 10°
—0.2095195x 10!
—0.3194665x 10!
—0.1733566 x 10°
—0.1984186 x 100
—0.1400777 x 10°

0.3242543 101
—0.1795998 x 101
—0.8182507 %102
—0.4008359 x 101
—0.6559731 x 101
—0.1157965x 10—t

—0.7587938x 10!
—0.6164467 x 101
—0.2122918 x 102
—0.1207580 x 10°
—0.2123742x 10
—0.1848554 x 10°

(to 7be con';inued) B
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(continued)

379

Cr (t*=39)

 (r (t5=40)

(r (t*=41)

—0.3789326 X101
—0.1965230 < 10!
—0.2876131x 10!
—0.6713784 X101
—0.2359828x 101
—0.4784421x10-¢

—0.2998668 <101
—0.9387075x 101
—0.9765953 x10—3
—0.7325856 x 101
—0.2046250 x10-!
—0.1966887 x 10°

—0.7989278 x 101
—0.5008691 X101
—0.5716922x 101
—0.5038433 <101
—0.3167054 X102
—0.7424293 101

—0.1222291 x 102
—0.9522665x 101
—0.2408218 10!
—0.2298520 10!
—0.1560281 x 100
—0.1903089 x 100

0.1276993 <102
—0.4069672x 101
—0.4308245x 10!
—0.1396610 x 10!
—0.2376004 10!
—0.6324940 10!

—0.9036628 x 102
—0.6501827 x10—*
—0.6436562 X101
0.1035888 x 10—+
—0.8896980x 10—+
—0.1857099 x 10°

(r (*=12)

(r (t*=43)

(r (t¥=44)

=t
Ol OISO
o oo mo

DD DD =
STEEYS
QUiowm

271.5

—0.2071932x10-*
—0.1443164 <10t
—0.1203388 x 101
—0.8642462 <102
—0.5505289 10t
—0.2618714 10t

—0.4209879 <101
—0.2311560 x 10—+
—0.9117022x 101
0.6163059 x 103
—0.3961341 x 101
—0.1757287 X 10°

—0.5555909 < 101
—0.2458035x 10!
—0.1674241 x 10!
—0.3687935x 10!
—0.5502734 X101
—0.1648510x 102

—0.6737441 10+
0.1165126 X 102
—0.8497107 x 101
—0.3664756 X101
—0.1348417x 10!
—0.1372471 X 10°

—0.9575868 X 102
—0.4018033x 101
—0.4197536 X 10!
—0.5086247 x 101
—0.2388210x 10!
—0.1349646 x 101

—0.5998985 x 10~1
—0.7630058 x 102
—0.5483353 < 101
—0.6728383 x 101

0.2098552x10—2
—0.7216884 x 10!

(r (t*=45)

= et
- SJ'I OO
o oMo uto

20.0
22.5
25.0
27.5

—0.2454479 10!
-0.2390638x 10!
—0.3697378 X101
—0.2809909 x10—¢
—0.3038057 X102
—0.4387479 10—t

—0.2714107 < 10!
—0.3848310x 10!
—0.1733665x 101
—0.8205269 < 10!
—0.2331027 X 103
—0.1564376 x10~¢




380 T. MoMoI

propagated inside induces the rapid variation of the water surface at
the center of the wave origin. In a like manner, such phenomena seem
to be seen in other figures, but the correspondence of the small crests
between the figures are far from certain. Hence, the further remark
to account for these phenomena is suggested to the readers.

Table 4. The results of the integration made under a doubled
number of the divisions.

’* ; (n (t*=15) Lo ew=m) | | k=)
| 0.2457459 X 101 ] 10.0 | —0.3062846 x10-2 “ 20.0 | —0.1736419x 10!
! |
‘—0.25\392014><1o—l | 125 | —0.4389307x10-1 | 22.5 | —0.8205614X10-!
50 | —0.3698774x10-! | 15.0 | —0.2715306 %10 ‘ 25.0 | —0.248605810~2
]—o.zsnsn:axm—1 | 17.5 | —0.3349825x10~1 | 275 —0.1567166x 10~

Looking through all the figures, one of the most outstanding features
is that the undulations of the later phase, except for the movement at
the central part, take place below the mean level of the water. In the
preceding paper I, we came to the conclusion that the tsunami, in the
initial stage, markedly resembles in shape that derived from the theory
based on the long wave approximation. This fact seems to be valid for
the tsunami of the later phase in the present stage, which is explained
with the help of the figure (Fig. 4).

Mean level of water

e

Tail of S~

I
Superposed

H ~
undulation long wave ~—_ "

Fig. 4.

In Fig. 4, the broken line stands for a schematical line of the long
wave and the bold line the small undulation superposed on the hypo-
thetical tail of the long wave. As shown in the figure, if we assume
that the waves in the later phase (in Fig. 3) as consisting of two kinds
of waves with different wave numbers, i.e., the one being the long
wave and the other the waves of the large wave numbers, the behavior
of the later phase below the free surface of water would be satisfac-
torily explained.
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