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Abstract

In order to make clear the role of the intermediate medium
between heterogeneous media, it is assumed that the intermediate
medium is dissipative. The case in which the effect of two hetero-
geneous media is subtractive is considerably limited; the special
case appears only when both heterogeneous media are very thick
and when the thickness of the intermediate medium is nearly equal
to (2m—1)/4 times the wavelength of the wave propagated.

1. Introduction

One theory on the attenuation of seismic waves has been proposed
by Prof. R. Yoshiyama in connection with the waves through a hetero-
geneous medium which has periodic parameters®. According to this
theory, the amplitude of the transmitted wave with a certain period T
diminishes as inversely proportional to cosh (zbx/aT), where a is the
mean velocity, b the amplitude of velocity variation and x the distance
through this medium. In the successive paper”, the author having
participated, a study was made of the transmission of waves through
the structure in which a homogeneous medium with a finite thickness
was inserted between two media with a periodic structure. They
pointed out that the total effect of such a structure on the transmission
of waves is dependent not only on addition but subtraction of their
thickness, and that its dependence is governed by the phase difference
of waves between two boundaries, ahead of and behind the intermediate
medium.

1) R. YOSHIYAMA, “ Stability of Waves through a Heterogeneous Medium and Ap-
parent Internal Friction,” Bull. Earthq. Res. Inst., 38 (1960), 467-478.

2) R. YOSHIYAMA and I. ONDA, loc. cit., Part 2, Bull. Earthq. Res. Inst., 40 (1962),
391-398.
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In this paper, the structure in which the intermediate medium is
dissipative, instead of perfectly homogeneous, is taken into consideration
in order to investigate the role of the intermediate medium.

2. Transmission through heterogeneous media inserting

an intermediate dissipative medium

In Part II of “ Stability of Waves through a Heterogeneous Medium
and Apparent Internal Friction ™, the problem of the waves propagated
through the heterogeneous medium, which consists of two media with
the periodic parameters and an intermediate medium being homogeneous,
was studied. From this study it was pointed out that the effect of an
intermediate medium cannot be neglected. In this paper, transmission
of waves through the intermediate dissipative medium, instead of
perfectly a homogeneous one, is considered in order to clarify the role
of the intermediate medium.

The medium is divided into five parts as schematically shown in
Fig. 1. The first and fifth media are both homogeneous, with the same
velocity a(1+b); both the second and the fourth media are heteroge-
neous, with the same velocity variation c¢(x) = a(1 + b cos y2'), where =’ is
measured from w, for the second medium and from x, for the fourth
medium; and the third medium is dissipative, different from the previous
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Fig. 1. Schematic illustration of the assumptions and notations.

3) R. YosHivama and I. ONDA, loc. cit., 2).
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paper, with the velocity a(1--b). The density p is assumed as constant
throughout the whole media, that is to say p, and velocities c(x) are
assumed as continuous at each boundary, to minimize the effect of the
boundary reflection and to emphasize the effect of the periodic structures.
The displacements in each part are expressed, omitting the common
time factor exp (ipt), and assuming |b|<1, as follows:

= exp{—ik(z—wx)}, B,= B, exp {tky(x—w,)} ,

1/ Po 0 Vv LoCo

I A=

k():plco .

II: A,+B,= w — = { Ay (—25) exp (—2,) + By (2,) exp (122,)}

Tm/l b? S dx cz(x) =a{l+b cos r(x—x,)} ,
2 o Cz(lv)
. A . .
III: A;= exp {—ik,(1—ta)(x— x,)} ,
4 £oCo
B,
B,= exp {1k,(1—ta)x —x,)} .

1/ LoCo

Iv: A4+B4:1/ ; " {A4"/"(_z4) exp (——ﬂ&,)—{—Bm,V(ZJ exp (ﬂz4)} ’

,  Cc(@)=a{l+Dbcosr(z—uz)}.

70,1/1 b S” dx
2 “3 04(9))

V: A= 1/poo exp{—zko(w ©,)} .

where the functions +(+z) are periodic functions of z, which enter into
the general solutions of Mathieu’s equation, approximated respectively
by sin (zFz/4) for the largest p of the expressions in the second and
fourth media, which is nearly equal to half an amplitude of the velocity
variations, #=0/2. If the factor of the attenuation in the third medium
is written as exp (—xx), « is the ratio of the attenuation coefficient
£ (=n/QcT) to the wave number, %, so that « is regarded as a half of
1/Q, and therefore for the sake of argument the order of magnitude of
« may be neglected.

Now the wave alone is considered, the wavelength of which pro-
pagated through the homogeneous medium is doubled in the periodic
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structures, because such a wave has the largest attenuation in
propagation®.

The coefficients A4,, B,, etc. are connected with each other by putt-
ing the displacement and stress to be continuous at each boundary.
In the result, the transmission coefficient is obtained by the form

A, exp (—1z,)

A, cos k cosh (2, +2,)-+1 sin kx cosh 1z, —2,) +0(a) ’

where
ko =ky(1—1a)®y+2,=ko(%;—2x,)— k2, , and X,=x,—, .

In such a limit as « tends to zero, the expression obtained above agrees
with the result of the previous paper”, remembering that both 2, and
2z, are integer time of =, that is, if 2,=Ilz and z,=mn=, cos kx=(—1)
-cos k&, sin kx=(—1)!sin kv, and exp (—iz,)=(—1)".

Next, using the relations exp (—2iz,)=1 and 2,+2,+ kv, =k,(x,—,),
the above expression can be rewritten as follow;

A, exp{—ik(x,—x)} [ 1+4exp (—21) ] ,

A, exp (kz,) cosh p(z, +z4)|_1 +exp (—2uL — 2kx,) exp (—2ik,x,)

where

tanh pC=——COSh 11z, — 2,) or exp(—2¢{)=tanh pz,-tanh pz, .
cosh pu(z, +2,)

The numerator is interpreted as the wave to transmit from T=u,
through to ®,, whereas the denominator explains for the wave to at-
tenuate due to transmission through the periodic structures and the
intermediate dissipative medium. The term in square brackets denotes
the magnitude of dependence on subtraction of thicknesses of periodic
structures and on thickness of an intermediate medium.

3. Effect of subtraction of thicknesses of two periodic structures

Next, the behaviour of the term in the square brackets is examined:
this term is designated by the symbol S, and is dependent on three
independent variables 24, 2k%,, and 2k, 24 is determined by the

4) R. YOSHIYAMA, loc. cit., 1).
5) R. YosHIYAMA and 1. ONDA, loc. cit., 2). In that paper, a few expressions must
be corrected: the numerator in the formulas on the top line and in the abstract (in

Japanese) of p. 398 should read (—1)*= for 1,
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Fig. 2 (a). Relations among pzs, pzs and exp (—2¢().
(b). Extreme values of S for exp (—2¢().
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Fig. 8. Extreme values of S for Q@ koxo.

values of ¢z, and pz,, so that the relation between 2, and exp (—2x()
is given for some parameters, the ratio of uz, to pz,, as graphically
shown in Fig. 2a. It is seen from this figure that, if either tz, or uz,
is small, the magnitude of exp (—2x{) is small although another is
large. However, exp (—2¢) cannot be assumed as small for moderate
values of (z, and /2,

If 2¢{ and 2xw, are given, the expression S has the values
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between respective curves of S corresponding to 2k,v,= =, thence it is
possible to denote the existence region of S for some parameters 2k,
as functions of exp (212). Fig. 2b illustrates the extreme values of S
for parameters 2xx,=0, 1 and infinity. On the other hand, Fig. 3
illustrates the extreme values of S for some parameters exp (—2u().
From these figures, it is seen that S can become very large only in
the case of both 2rxv,—0 and exp (—2¢{)—1, that is to say, in this
special case, subtraction of thicknesses of two periodic structures plays
an important part in the transmission of waves through such a medium;
while the existence region of S becomes narrow rapidly as 2w, increases
apart from zero. It may be interpreted that the effect of subtraction
of them becomes small, as the result of considering the intermediate
medium with dissipation. It is remarked that the greater the value of
exp (—2uf) is, the greater both the width of existence region and the
lowest value of S become.

As z, and z, are multiples of = respectively, the wavelength or the
period of waves propagated is fixed, according to periodic structures
under consideration. 1/Q to the maximum amplitude observed in the
shallow earthquakes will perhaps be given by part of the surface waves.
The absolute value of S is illustrated in Fig. 4, where exp (—2¢() is
assumed as 0.8 and 1/Q in the intermediated medium is taken as 0.01
in order to facilitate the understanding. It is understood from this
figure that the effect of subtraction of them appears only for the
intermediate medium with thickness nearly equal to (2m—1)/4 times the
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Fig. 4. Variation of S for exp (—2x()=0.8, Q—1=0.01.
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wavelength of waves propagated.
The average value of S is calculated as follows:

- 1, l4exp{—2—(Q'+2i)}
S &g Sd(ky,)={1+ exp(— 2/1@}[1”'5 In 1+exp (—2¢0) ]'
and, if ¢ is a multiple of =, it is expressed by the form
1, 1+exp(—2#— Q'mn)
S= {I+exp(— 2/“‘@)}[1+ In 1+exp (—2u0) ]
={1+exp (—20)}[1—O0{Q " exp (—2¢0)}] ,

which is the average from the first minimum of S to m-th (or from
2,=0 to half an integer times the wavelength of waves propagated)
and is nearly equal to 1+exp (—2¢{). It is certain that the effect of
subtraction of them is small, except for a few special cases.

In addition, the phase lag of S is illustrated in the upper part of
Fig. 4, and tends to zero at the thickness of the intermediate medium
at which the absolute value of S denotes no variation with respect to its
thickness. When S is small, the phase lag varies linearly and slowly,
while, for large S, the variation of the phase lag becomes very large.
That is to say, properties of the transmission coefficient are very com-
plicated for the special thickness above-stated and these special cases
will seldom appear.

4, Concluding remarks

In the previous paper®, the wave propagation through the medium
in which a homogeneous medium was inserted between two heterogeneous
media was studied, and it was pointed out that the transmitted waves
was affected by thickness of the intermediate medium. So, in order to
make clear the role of the intermediate medium, it is assumed that it
is dissipative instead of perfectly homogeneous, and the amplitude of
the transmitted wave with the most attenuate character is calculated.
By defining S for the ratio of the contribution toward addition of
thicknesses of two heterogeneous media to that toward subtraction of
them, the transmission coefficient is expressed by the form

1_4_5= exp {— (%, — )}
A, exp (kx,) cosh p(z,+2,)

in which the numerator represents the phase transmission through the

6) R. YosHivaMA and 1. ONDA, loc. cit., 2).
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whole medium, while the denominator represents the attenuation factor,
the first of which is the contribution toward the intermediate dissipative
medium, the second of which is that toward addition of thicknesses of
the heterogeneous media, and S is interpreted as the correction for
subtraction of them.

S behaves itself in the finite range for certain values of 2z, pz,
and £%,, and is nearly equal to unity except for the case in which not
only the product of tanh pz, and tanh zz, is nearly equal to unity but
also thickness of the intermediate medium is nearly equal to (2m—1)/4
times the wavelength of the wave propagated. The former exception
must satisfy that both heterogencous media are very thick. If either
condition is not satisfied, the effect of subtraction of them need not
be taken into consideration.

In conclusion, it is little expected that such special cases appear.

In addition, if the seismic waves are propagated through the
heterogeneous medium approximated as the alternately  stratified struc-
tures consisting of homogeneous medium and heterogeneous one, it is
suggested that the total effect of apparent attenuation on the transmitted
waves is expressed by addition of effects of each medium.
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