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Abstract

The frictional coefficient C of an oscillating turbulent flow is
estimated on the assumption that the eddy viscosity is proportional
to the amplitude of the bottom friction velocity and the height
above the bottom. The dependence of C on parameters such as the
amplitude of the vertically averaged horizontal velocity, the period
of the oscillation, the depth of water, and the roughness length zo
(for the case of a rough boundary) or the molecular viscosity v (for
the case of a smooth boundary) is shown graphically by choosing
suitable non-dimensional parameters. The frictional coefficient for
the case of a laminar oscillatory flow is also discussed.

1. Introduction

In many practical applications of the dynamical equations of motion,
such as the case of a numerical experiment on long waves in shallow
water, the law of bottom stress is assumed as something like Clit|@
where # is the depth-mean velocity in a water column and C is the
frictional coefficient. There are several estimates of C in tidal currents
by means of the dynamical method (Taylor, 1918 ; Grace, 1936, 1937 ;
Bowden and Fairbairn, 1952), On the other hand, the bottom friction
is intimately related to the mean velocity profile or the turbulent veloc-
ity fluctuations near the bottom and there are some observations which
show the logarithmic law of velocity profile near the bottom (Lesser,
1951 ; Charnock, 1959). Furthermore, the turbulent velocity fluctuations
in a tidal current are measured by means of an electromagnetic flow
meter (Bowden and Fairbairn, 1956 ; Bowden, 1961) and the Reynolds
stresses near the bottom are computed. From these results, it appears
that the frictional coeflicient (for depth-mean velocity) of a tidal current
is about 1.5~2.5x107%. However, it is not yet certain whether the
same frictional law holds for a long wave of shorter periods, because
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it is plausible that the structure of the bottom frictional layer in such
an oscillatory current may be different from that of the tidal current.

On the other hand, the frictional law of the steady turbulent flow
in pipes and open channels is extensively studied by hydraulic engineers
but the frictional law of the oscillatory flow seems to be hardly inves-
tigated. Recently, the decay of waves in shallow water has become a
subject of coastal engineers and some experimental results are discussed
in conjunction with the theoretical estimate based on the condition of
a laminar flow (Biesel, 1949; Eagleson, 1962; Grosch, 1962), and the
transition from the laminar to turbulent boundary layer in an oscillating
flow over smooth and rough bottoms is also studied experimentally
(Li, 1954; Vincent, 1957 ; Collins, 19683).

The present paper is a theoretical attempt, though admittedly not
so complete, to find the frictional coefficient C of the oscillatory flow in
a fully turbulent state by assuming a suitable relation between velocity
shear and stress in water and to examine the dependence of the frie-
tional coefficient on the amplitude and period of oscillating currents as
well as to the depth of water.

2. Basic consideration.

We consider that the motion is predominantly horizontal in one-
direction and water is homogeneous with constant depth. Then, the
linearized equation of horizontal motion may be written as

o 0r |, or

g - 7 2-1)
ot 6.1;T6z (2-1)

where t is time, # and z are the horizontal and vertical co-ordinates
with the origin at the bottom of the water and the z-axis positive
upwards, % is the horizontal velocity, ¢ is the elevation of the water
surface from the undisturbed free surface, z, is the depth of water,
and g is the acceleration due to gravity. The tangential stress in the
x-direction is given by pr with p the density of water.
Now putting formally
8 _aU

"o T ot

, (2-2)
we may rewrite (2-1) in the form

0 or
- —_ 1 Jy—=_"2¢ . 2— ]
ot (u ) 0z (2-8)
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In terms of the vertically averaged velocity, (2-3) becomes
0 , -
2 @ U) =2 (=), 2-4)
t 2

where 74 and 7, are the surface and the bottom stresses respectively,
(ts=0 for the present discussion) and % is the mean velocity defined
by

= 1 Slh udz. (2-5)

The equation of continuity may be given by

om__19C

) 2-6
o z, Ot (2-6)

and from (2-4) and (2-6) together with (2-2), it follows

0%l 0%_ 1 8
Y gr == Z(rs—T4), 2-7
T t(Ts Ts) 2-7)

or in terms of U,

8 (8U o (aU) 5"
OUN _p O (OUN_y & (2. 2-8
6t“<6t> Yo oa\ ot gaxz(” Ts) 2-8)

The equation (2-7) is the common representation of long waves of
small amplitude and if the bottom stress is given in terms of #%, the
solution can be found under given initial and boundary conditions. -

The bottom friction velocity w} defined by

Tp=|uzlug , 2-9)

may be approximated for a periodic motion in time (u}=1} cos (ct-+¢))
by

/

- (2-10)
where
as=2az, (2-11)
3r

and 4} is the amplitude of u} (See Proudman ; Dynamical Oceanography,
§ 151, 1953).
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Now, for the relation between the velocity shear and tangential
stress, we resort to the usual formulation of a turbulent flow. On the
ground of dimensional analysis, the turbulent eddy viscosity K. in neutral
stability may be put formally proportional to the characteristic velocity
of turbulence {v*>"* and the effective size of the turbulent eddy 4 such
that

K. ooV, (2-12)
and
ou
,—=T. 2-13
o (2-18)

Here, we assume that the effective size of the turbulent eddy is pro-
portional to the height above the bottom and the characteristic turbulent
velocity {v*>V* is proportional to #};". More specifically, we assume

K.=kij(z+2), (2-14)

where k is von Karméan’s constant (=0.4) and z, is the roughness length
of a rough surface. Similar assumption for the eddy viscosity is already
used in the discussion of the atmospheric frictional layer near the ground
(e. g., Ellison, 1956). For the case of a smooth surface, z, should be
understood as the thickness of a laminar sub-layer. Approximating the
frictional velocity in general® by

w*=t[u}, (2-15)
(2-12), (2-13), and (2-15) give

ou _ _wr (2-16)
6z k(z+z)

1) The size of turbulent eddies may decrease near the free surface because of the
presence of the free surface z=z;, and the characteristic turbulent velocity may not be
constant throughout the vertical column of water but a function of the velocity shear
and the height above the bottom as assumed in the Prandtl’s mixing-length theory.
However, a refined distribution of K, does not seem to be worth while to try in the
present crude discussion unless more definite knowledge about the turbulent structure of
an oscillatory flow is obtained.

2) Essentially, u* is not the friction velocity in an ordinary sense, but is a quantity
defined by (2-15) and coincides with the bottom friction velocity wz* at the bottom. For
convenience, we call u* the friction velocity in the present paper.
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3. The frictional coefficient for the case of a turbulent flow

over a rough bottom

If the motion is assumed to be periodic in time, we may put
w*=RJu*e”], (8-1)

where R, means the real part of the complex quantity. In the follow-
ing discussion, we use the complex amplitude u* with the prime dropped
for simplicity unless otherwise stated. The same rule applies for other
dependent variables too.

From (2-3) and (2-16) together with (2-15), the equation for the
friction veloeity u* is derived :

29y % 2
6u, ——@K, w
02" 2z

=0, (3-2)

where
K*=c[(ku}), and =z =z2+z,. (3-3)
Under the stress free condition at the surface:
w*=0 at z=z,, (3-4)

the solution of (3-2) becomes

wr (_y_> Z(ye~""*, c1) (3-5
wi \u Zye ™, 0’ )

where
y=2Kz"*, y,=2Kz'*, y,=2K(2:+2)",
and c,; is determined by
Z(yre™ ", ¢)=0. (3-6)
Here,
Z(Y, ¢.)=(a+1ib)J(Y)+iNY), 3-7)

and J,(Y) and N,(¥) are Bessel and Neumann functions of the order »
and ¢,=a-+ib. For small values of Y, Z,(Y,c,) can be expressed in
series form as follows :
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st (D)2 o+ 2 e 5

+ i{b +%<r+log %)Jr(%)(‘”%)} :

and
Zy(ye~, ¢))

() (o)1) 5 (o 2o g2}

. 2 y 1 179V 1
o2 (e - )+ 5 (5) e+ )
+z{+n r-f—og2 5 +2 2 a+2
where y=0.5772.... (Euler’s constant).

The values of @ and b computed numerically from (3-6) are
iniFig. 1 as a function of y,.
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Fig. 1. @ and b (cx=a+b) as a function of Yhe

For small values of y,, say y,<1,

1 l<2>2
at+=—=—=(-2)
+2 TNY,

and
b= —%(H—log—%"——%) .

For large values of y,, say v,>3,
a=-—1, and b=0.

(3-8)

(3-9)

shown

(3-10)

(3-11)

(3-12)
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Therefore, it follows :

ﬁ_:ﬂ/}/h—)z , for small ¥,, (3-13)
u;; 1-—- (yo/ '.l/h)

and
ﬁ*___ s (Y N\ —inf s TT@) () in/t _
=—1n e tHP(ye "), for large vy, , (3-14)
u} 2 _
where HP(Y") is the Hankel function of the second kind. (3-13) shows
that for small y, the stress 7 decreases linearly with respect to depth
from- the bottom to the surface, and (8~14) shows that the decrease of
stress is exponential for large values of v.
Now, in terms of y, (2-16) may be transformed into

ou _ 2ur

=, 3-15
oy Ty (3-15)

and the substitution of (3-5) into (3-15) yields
u__ 1 Zyye™™", e1) — Zo(ye ™", c1) (3-16)

Uz k (?/0/2)3_“/4Z1(y037i”14y Cy) ’

where the boundary condition at the bottom such that u=0 at y=y, is
taken into consideration. It can be easily shown that for small values
of y (y<1), the velocity profile in terms of z is given by

U 1 z+z )
2 == L I 83-17
R og( ” (3-17)

Therefore, if the depth of water is small, the logarithmic formula of
the velocity distribution holds for the entire domain.
In terms of y, (2-5) becomes

n= (%)S” uy dy , (3-18)

b Yo
and the substitution of (3-16) yields

B Ll W e | (3-19)
(Yol 2)e™* Zy (Yo, ¢3)

Since in general ¥, is very small and (y,/y,)’<1, (3-19) is reduced to

—j—*———al—l—’iazerio, (3-20)

B
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where
m(D)fp+ s )0
(P52 )=
A=Vai+ai,

and

0=Tan " (a./a;)<0 .

For small values of v,, it follows,

A:%{Zlog(g’;)—-gi}, and 0=0, (3-21)

and for large values of v,

A ety 2]

(3-22)
T P Yo
0=Tan {(,L/4)/ (r—i—log 2)} .
The frictional coefficient C is now defined by
cp=Riur=C (f%){w , (3-23)

where % is the amplitude of @.” Therefore, the substitution of (3-20)
yields

C=A"%". (3-24)

Taking (8-21) and (8-22) into consideration, it is found that for %,<1,
the frictional coefficient is almost independent of wave period and
amplitude and only a function of z,/z,, or in other words, the steady
flow condition is applicable to the oscillatory flow in this range. On
the other hand, for y,>8 the frictional coefficient is a function of ¥,

3) Strictly speaking, the instantaneous friction coefficient C should be defined by
Re(vpeiot)y=C|Re(iieiot)| R(tieiot) ,
but for the periodic motion, the following approximation may be introduced;

|Bu@oi)|Rac)=( o JA Ra(as)
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only so that C is independent of the depth but dependent on wave period
and amplitude.
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Fig. 2a. Amplitude C of the frictional coefficient C as a function of @/(ozn)
for the oscillating turbulent flow over a rough surface.
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Fig. 2b. Phase 0 of the frictional coefficient C as a function of i/(sz;) for
the oscillating turbulent flow over a rough surface.
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Combining the two relations, (3-20) and (8-24), C (amplitude of C)
can be given as a function of /(sz,) with z,l/Az0 as a parameter as shown
in Fig. 2a. For small values of 1/(sz,), C increases with decreasing
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Fig. 3a. Amplitude C of the frictional C as a function of znfzo for the
oscillating turbulent flow over a rough surface.

16

0.3

ol LY

8 U

4=logl3y 72,

.// V//

0.0 =

vd

10°

zn/ Z.

Fig. 3b. Phase 0 of the frictional coefficient C as a function of zx/z, for
the oscillating turbulent flow over a rough surface.
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values of /(sz,) for a fixed value of z,/2,, and for #/(cz,) larger than,
say 10% C stays almost constant. Fig. 2b shows the corresponding
phase angle |0| as a function of #/(¢z,) with z,/z, as a parameter, and
it is seen that the phase angle is noticable only for small values of
if(cz,) where the increase of C is observed.

For a fixed values of i/(cz,), the increase of z,/z, is followed by
the decrease of C and the increase of [0 as shown Fig. 3a and Fig.
3b. However, for large values of z,/z, C becomes constant for a fixed
value of #/(cz,), showing the independence of C on 2,. In this range,
C can be given as a function of /(cz,) as shown in Fig. 3c. Thus, the
frictional coefficient C increases with decreasing %, decreasing period of

oscillation in the range of #%/(0z,)<<10?, and with decreasing depth of
water for large values of %/(czs).
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' TFig. 8c. Amplitude C of the frictional coefficient C as a
function of 4/(o20) for sufficiently large values of z/zo.




K. KAJIURA
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4. The dependence of T, and u on U (the pressure
gradient term)
The substitution of (2-10) and (8-20) into (2-4) yields
uz = Ue®|[ai+{a.— 145/ (c2))}]", (4-1)
where
(4-2)

tan 6={u}/(c2;) — .}/, .

Since «,>0, and «,<{0, it follows that 6>0.
Putting }/(c2,)=7, we have uj;=(3z/8)ycz,¢®, if Uis assumed real,

and it follows from (4-1),
(4-3)

2 o 8 U 2
Hai+ (a.—7) :<— . —) .

e+ ()= (-
Remembering that «, and «, are functions of y, and ¥, and »=10/y}
by definition, we can solve Uf(sz,) in terms of 7 with %, or 2,/2, as

a parameter.
In particular, for small values of 7, we have

r=(B) U and o=, @
37/ (oz:)(ai+ad)
so that
o 8 e—;e . 3
L,,_<§)—A_2U : (4-5)
On the other hand, for large values of 7, we have
- §>_U d =~ 4-§
. (gm_zh,an o=2., (4-6)
(4-7)

so that
T3=(oz)e™*U .

Furthermore, from (8-20) and (4-1), it follows,

Bd

i_{ ditat )
U la+(a—7 7

so that %/U~1 for small values of 7 and %c/ U~y for large values of
7. The phase difference between U and w is given by 64-0.
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As shown in Fig. 4a, the ratio 'ﬁ/ U of the mean velocity to the
velocity with no friction stays almost unity for small values of Uj(sz;)
but decreases for increasing values of U/(sz,) as is expected from the

io®

1.0 ﬁ
~~ N
- T NN \\
T N\ \\\\i\
] N \\ \\
AR
0.5 | lo (z./z.)k\s\\4§k\
T A\ \\\E\
AN \\ \\
1 AN \:\§
. \\\:\ §
0.0 \‘
10° 10' 10 10 10*
18/3MU0/eZn
Fig. 4a. The ratio of the depth-mean velocity @ to the velocity U for the

case of no friction as a function of U/(ozx) with zr/z0 as a parameter.
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Fig. 4b. Phase difference & between vg* and U.
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simple consideration of the frictional effect. In other words, in the
dynamical equation of motion the acceleration of water dominates over
friction for, say, U/(cz,)<<10° as in the case of ordinary gravity waves
without friction, but, with the increase of U/(sz,), the frictional
effect becomes increasingly important and in the limiting case of
U/(62,)>10° the wave is in a state of balance between the pressure
gradient force and the frictional force. TFig. 4b shows the phase
difference 6, between U and wuj, which varies form |0| to =/2 with
increasing U/(sz,). Taking Fig. 2Db into consideration, the phase differ-
ence between U and i increases from zero to =/2 with the increase of
U/(o-zh).

It is understood that the dynamies of the unsteady river flow such
as the flood wave can be treated as a quasi-steady state if Ul(cz,) is
very large and tidal waves in rivers may be considered as half inertial
and half frictional to balance the pressure gradient.

5. The frictional coefficient for the case of a turbulent

flow over a smooth bottom

For a smooth boundary, some modification of the results in the
previous section 1s necessary, because the bottom surface is located at
z=—z, and the roughness parameter z, should be replaced by the
thickness of the laminar sub-layer with the kinematic viscosity v. Thus,
(8-16) is replaced by

u s 1 Zye™™", ¢))—Z(ye ™, 6)
= = i - , for y>v,, 5-1
uy  uy ko (W/2)e " Z(ye, ¢p) =t &b

where u; is the velocity at the top of the laminar sub-layer: y=1v,.
Within the laminar sub-layer, we may put approximately,

y&:’ﬂ; ’ll;&< , for O<y<y0 ’ (5—2)
2y
so that
s _ Uiz _pr (5-8)
u v

The Reynolds number N defined for the laminar sub-layer may be
assumed constant and estimated to be 11.6 on the basis of an experi-
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mental formula of the velocity profile for a smooth circular tube®.

Taking (5-3) into consideration, and neglecting the contribution of
the velocity in the -laminar sub-layer to the mean velocity, we may
write in place of (8-20),

2 —(a,+N)+ia,=Be, e - )
uB
where
B=V(a,+N)'+aj,
and (5-5)
' ¢="Tan Ya,/(a,+ N)}<0 .

Therefore we have, in place of (8-24), for the frictional coefficient C,,

C,=Be¢. (5-6)
Two limiting cases of y, are easily derived as follows :
B=—1—{2 log (ﬂ)—é}—l-N, |
k Yo 2] for small v, , (6-7
=0,

and

4) For small values of y, we may derive in place of (3-17),
w 1
7;—7 g( )—I-N, z>zo,.

and substituting the relation (5-3), we have
=5.75 1og,o( )+(N—5 75 logo N) .

Comparing the result with the leuradse’s experimental formula for a smooth circular
tube, namely,

=5.75 logm< >+5 5,

we have ‘
N=11.6 (%ig* is put equal to ugp*).

Strietly speakmg, N may also be a functlon of ¢ for an oscillatory ﬂow but we
assume tentatively N constant.

Returning to the definition of the eddy- viscosity (2-14), we have.at the top of the
laminar sub-layer,

K,=k#g*20=kNv=4.64v.

Thus, we have implicitly assumed that the viscosity jumps to the eddy v150051ty of
about 5 times the molecular values at 2=z, so that the velocity gradient is riot conti-
nuous, although the velocity itself and stress are continuous at the top of the laminar
sub-layer.
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m= () e} 4T
¢=Ta”"’[“%/{%_<r+l°g yEO)}] ’

Making use of the Reynolds numbers such as

for large v, . (5-8)

L= Uiz, . M:ﬁga

; ’ (5-9)
v Y
with
p=6"=V"q/(v), (5-10)
we have
Y=2V"2NJk pz,/L = 2V 2NJk|M ,
and

1, =2V"2[k pzs V'L,
so that (5-7) becomes

=35, 5,
B=5.751og,, L+1.75 } (5-11)
=0,
and (5-8) becomes
A 2V [NE }2_];”2
B_(?>[<?) {7 r—log 1V 2NJk+log M +4], .
-12)

p= Ta%"[—%{—lyz—]f—r—log 1V 2Nk +log M}—l] .

(5-11) together with (5-6) shows that for small values of y,, say
f2,<0.2 L, the frictional coefficient C, is a function of a Reynolds
number L only, and is equivalent to the ‘case of the steady turbulent
flow over a smooth bottom. On the other hand (5-12) shows that for
large values of y,, say pz,>0.6L'*, the frictional coefficient C, is a
function of a Reynolds number M only® and the depth of water z, is
not an important factor in the determination of C,.

5) A different definition of a Reynolds number is possible, for example,
R=%ug*lv, 1=2iig%o,
where [ is a kind of excursion distance defined by the friction velocity. Then, it is easily
seen that
R=M2.
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From a practical standpoint, it seems to be easier to understand
the relation by taking a Reynolds number based on the mean velocity
instead of the friction velocity. From (5-9) and (5-4) we may put

| L*=%z,/v=BL,
and (5-13)
' M*=%sly=BM .

In particular, for two limiting cases of ¥,, this conversion can be made
without regard to fz,.

In Fig. 5a and Fig. 5b, és and ¢ are shown as a function of L*
with fz, as a parameter. For Fz,<L*', the curves of different Sz,
converges to a single curve and |¢| approaches zero, indicating the
dependence of C, only on L*. For pz,>L*/" the effect of the period
of oscillation (8z,) shows up distinetly in this representation. Another
representation of the relation is made with the aid of the Reynolds
number M* in Figs. 6a, 6 b which do not depend on. jz, explicitly for
large values of fz,/L*'* and are simpler than Figs. 5a and 5b.
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Fig. ba. Amplitude O, of the frictional coefficient C; as a function of a Reynolds
number L* for the oscillating turbulent fiow over a smooth surface.
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Fig. 5b. Phase ¢ of the frictional coefficient C, as a function of a Reynolds number
L* for the oscillating turbulent flow over a smooth surface.
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Fig. 6a. Amplitude C. of the frictional coefficient C, as a function of a

Reynolds number M* for large values of Bzx(>0.6v L). Broken line in-
dicates the amplitude of the laminar frictional coefficient C,.
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f 1IN
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Fig. 6b. Phase ¢ of the frictional coefficient C; as a function of a
Reynolds number M* for large values of fzx(>0.6v L).

6. The frictional coefficient for the case of a laminar flow
'Although the frictional dampihg of water waves for the case of a
laminar flow has been. well investigated: theoretically (Proudman and
Doodson, 1924 ; Biesel, 1949), it may be worth-while to discuss the
problem from a viewpoint of the frictional coefficient.

For the case of a laminar flow, with the kinematic v1sc051ty Yy we
may put in place of (2-16), = oo L C

ou_ T : . _
0z v . (6-1)

Then, the equation corresponding to (3-2) is

621' 1:0—1_20.

02" vy (6-2)

The solution of (6-2) under the stress free boundary condition at
the surface (z=%z,) is given by :

7 _sinh {(1+19)8(z,—2)}

7, sinh {(1+1)Bz} (6-3)
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where

A=V q[(2v).
Under the condition that
u=0 at 2z=0,
(6-1) may be integrated to yield

u:<@_> cosh {(141)3z,} —cosh {(1 +1)B(z, —z)}
y (1-+7)3 sinh {(141)8z,} )

Therefore the mean flow becomes,

i [1- Qi
(vo)*V 2 Bz, tanh {(1+1)Bz,} 1

=

Now from (2-4), we may put

1oy

so that by substitution of (6-5) into (6-6) we have
7= (vo)"* tanh {(1+17)3z,}e""*U .
Therefore, from (6-5) the mean velocity is given by

= [ _ tanh {(141)3z2,}
“_[1 (1-+9)B2, ]U’

and from (6~4) the surface velocity u; becomes

us:[l— cosh {(11+ i),?z,,}]U )
Formally, we may write (6-7), (6-8) and (6-9) in the form :
75l U=(vo)""ae™,
w|U=be" ,
us/U=ce*s ,
and, it follows

75l =(vo)*De®

(6-4)

(6-5)

(6-6)

(6-7)

(6-8)

(6-9)

(6-10)
(6-11)
(6-12)

(6-13)
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with
D=alb, and 6,=0,—0,. , (6-14)
For large values of fz,, it is ‘fo.und that ; |
6,=n/4, and a=1; 6,=0, and b=1, (6-15)
so that (6-10) becomes |
75/ U= (vo)"?e™* (6-16)
and (6-14) becomes
D=1, and 0,=n/4. (6-17)

For small values of #z,, we have

0,=x/2, and a=1V"2pz; 6,=x/2, and b=8/2(8z,) (6-18)
so that (6-10) becomes

5/ U=(c2,)e"™"*, (6-19)
and (6-13) becomes

5% =(o)*8[(V 2 fz:)=8v/z , (6-20)
and

D=3/{\V"2pz}, and 0,=0.

Fig. 7 gives a and 6, of (6-10) as a function of Sz, which shows

1.5
61'0 .
1.0
— 6,
- a
0.5
oo 47— T T T T T T
1.0 20
Bin

Fig. 7. @ and 6; as a function of Bz; for the laminar oscillating flow.
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that @ increases from 0 to 1 and the phase angle decreases from 7[2 to
7/4 with increasing pfz,. Fig. 8 shows b, ¢ and 0., 6, as functions of
Bz, in which |@/w,| is also shown. From the figure, it is found that
the ratio of the mean current to the surface current varies from 1 to
0.66 -and the minimum value lies somewhere around PFz,~1.0. The

ig]’/usl‘[usum

@I 93 ~
1.5

0.0

BIn
Fig. 8. Amplitudes (non-dimensional) and phases of the mean velocity and
surface velocity, and the ratio of the mean velocity to the surface velocity as
a function of Bzx for the laminar oscillating flow.

15
- - o,
D -
10— -0.5
© T B4 B
D
5| _
=
0 1 T T 7 T T TT 7 1 0.0
1.0 20
8 Zy

Fig. 9. D and 0; as a function of 8z; for the laminar oscillating flow.
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phase angle relative to U .decreases from z/2 to 0, but the difference
of 6, and 4, is always small. Fig. 9 is a graph of D and 64, of (6-13)
as a function of 5z, which shows that D decreases and 6, increases with
increasing values of fz,. ,

The frictional coefficient C,.defined by

f,,=0z(§_r)ﬁu, L L (621

can be written with the aid of (6~13)‘ih the form,

C,= (i”)(”“)’pe% o (622

Making use of the Reynolds number L* or M*, defined in (5-13), we

have

C,=V"2pz,De |[L*, (6-23)

or : "
C,-\/ 2De" [M*. , (6-24)

Therefore, the frictional coefficient is mversely proportlonal to : the

Reynolds number and also a function of fz,. In particular, for large

values of fz,, C,=1" 2 M+, (c f Fig. 6) and for small values of
Bz, ¢;=38|L*.

7. Application of the laminar frictional formula

The advantage of writing the bottom stress 1n ‘the form (6-10) or
(6-13) may be seen in the following discussions. '

If we are to solve (2-8) for the periodic wave in time (progressive
waves), {={e'"""™, by introducing the relations (2-2) and (6-10) we
have the characterlstlc equatlon as follows :

mi=mA(l+iEe) | | (1)
where
gn=ct, m,=dlc,, and E=al/(V 2 pz).
Slnce o 1s assumed real, we have
| m= *rnl—i—'wnz—mo(l—i—v,E'e“’l)'”2 (7-2)

For small friction, the solution may be reduced to
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m1=m0<1 +—é—E sin 01) , (7-3)
and

my= —%E cos f; . (7-4)
Therefore, the phase velocity ¢ is given by
c= co<1 —%E sin 01> . (7-5)

In particular, for large values of £z, a=1 and 6,=n/4 so that

m, 1
My , . 7-6
m, 4‘8Zh ( )
and
c 1
—~=1- . -7
Co 4Pz, (=0

For free seiches in an enclosed basin, the wave decays with time
so that the discussion should be modified by putting oc=o,+ %o, =c*e".
The essential change lies in the estimation of tanh (1+44%)pz; in which
is no longer real but g*¢™* with p*=1"¢*/(2v) and e=tan(o/o,).
However, for the case of small friction, we may assume

(8*2) - % tan~(aslo)<1 ,

and may use S* in place of A. Then, for waves periodic in space
(standing waves), {=(, cos mx ¢*"*, the characteristic equation becomes

c=ci(1+1E*e™), (7-8)
where o,=c;m and E*=a[(V 2 f*z,). For small values of E*, we have
01:00(1—%12«7* sin ol> , (1-9)

and

=221 cos . ' © (7-10)

For large values of g*z,, a=1 and 6,==/4, so that
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oy 1 , (7-11)
gy 4ﬂ*zh

and
o 1 | (7-12)
oy 4F%%

These results are the same as the results given by Biesel (1949),
at least for shallow water waves with gz,>1%. Furthermore, for z,=2,
(7-11) and (7-12) coincide with the result given by Proudman and
Doodson (1924) by a complicated numerical method (See also Defant;
Dynamical Oceanography, Vol. 2, p. 159, 1961) as shown by Platzmann
and Rao (1964).

The essential parameter for the dampmg and period increase of
seiches is fz, as in the case of progressive waves and an important
characteristic of the laminar friction is that the bottom frictional
stress 7, is not in phase with the mean velocity % except for very
small values of fz,, so that, if we put the stress in the form —fz,4,
the coefficient f is related to the period of oscillation and includes the
term of phase difference.

In terms of the horizontal displacement of the water mass ¢, (2-7)
can be written as

% 0% 73
o —_f 7-13
ot ' ow ot (7-13)

and if f is real and independent of the period T of a seiche, which
seems to be realized in the ease of a turbulent flow with %/(sz,)>10%
the rate of period increase AT/T is proportional to T'? and #*. However,
for the case of a laminar flow with large values of pz,, f=(vo)%e™[z,",
and the period increase 4T/T is proportional to 7% The difference of
the period increase due to friction for the laminar and turbulent flow
is already mentioned by Platzman and Rao (1964).

6) For small Bz;, his method of approximation is not accurate, because of the
development in terms of v\/2,

T7) - According to experiments, the actual value of f seems to be several times greater
than that derived on the basis of the linearized laminar theory. The discrepancy of the
f value between theory and experiment is not yet resolved, although an attempt is made
by Grosch (1962) without success to explain the discrepancy by introducing non-linear
terms in the equation of the boundary layer.




172 : ‘K. KAJIURA -

8. Discussion

The approximation of long waves which is assumed throughout this
paper requires that the wave length should Elarge compared with the
depth of water, namely, mz,<1 and o/m=1" gz, , where m=2z/A. Taking
these conditions into consideration, ,

% =( ﬁ ) 1 > 10% .

V' gz, /mz, TV gz,
Or, in teijms of the wave amplitude a, we ‘may write for. the case of
#w=U, '

o2y

w=(as)/(mz,),
and

2

u (a) 1 >10a.

= I~
. ORp mzy, . Zp

This shows that the approximation of long wave is roughly satisfied for
#/(oez;) >1 if (a/z,)=0.1 (c. f., Fig. 2a, and Fig. 2D).

- The ecritical Reynolds number for the transition from- laminar to
turbulent boundary layer in an oscillating wave motion is investigated
experimentally by several authors. Li (1954) studied the case of an
oscillating plate and proposed a Reynolds number for a smooth surface,

Rene=(a[v)"*d' =800,

in which d’ is the total excursion of water particles relative to the plate
just outside the bottom boundary layer. For long waves, this condition
is approximately equivalent to (3z/8)}*=566. Vincent (1957) argued
on the basis of his experimental results for progressive waves that Li
overestimated the range of laminar conditions at least for the case of
a rough bottom.  Both of these results are estimated from the observa-.
tion of dye streaks, watching the transition from laminar to turbulent
appearance. Recently, based on a different principle. to determine .the
critical Reynolds number, Collins (1963) gave (37/8)M*=160.

For y=10"*cm’sec™, g=980 cm sec™, the criterion of Collins can be
written as a>0 75(z,/T)"* (c. g. s. unit). Therefore, a wave of, say, 10
minutes in period may be considered to have a turbulent--boundary
layer if a>1cm for the depth of 10m. This shows that tsunamis and
seiches would have a turbulent boundary layer in shallow water even

if the bottom is smooth. It may be of some interest to note that C,:




On the Bottom Friction-in an -Oscillatory Current 173

(laminar) and C, (turbulent) curves.(c. f., Fig. 6a) intersects at about
M*=300 for large values of [fz,(82,>0.6 L).
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7. RERIEIC BT B R T 5 K

woEEm W T OR=ER

MENEEREE, KEEEEE L KENS O Iz hFIT 5 & HE UUERRKEHAL, K@
LR Y UHD A0 T hERIZoWT, AR OIREE, AN, KECBHLTESE
Bk EYERTEE OO TR L. &iE Sz oW T, FEIREREUE 2oz (20 X
2 MEEREX) ITXoTEED, 2/z L0835 LR LT ERERERE 2X1078 B2ELRS
25 JAOEN A v atn ¥ TIRESEREAARE D, OSSO EERR S MU ERL
THv, EOBRLIEEEE, KEAHEDDDE, FEEREIIIRTE vA 2 A XEIKkE 2 &
Dot L¥(=dqzh) Tkl TERFOEX 6 20007z M* (=adh) pESETHD EN
TN, FUEEERRE AR AR e MBS L e B DIE M*=300 OHhichizicd,




