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Introduction

In the preceding papers (1),Y (2)” and (3),” the author has treated
the tsunamis in a right-angled canal and bay and compared the theory
with the data of the Chilean Tsunami of 1960.

To obtain the wave heights in each branch of the canal or bay, a
very intriguing method was introduced such that the long wave approxi-
mation and the wave number relation derived from the basic equation
as a result of separation of the variables are ingeniously used for the
reduction of equations. Hereafter the author call this method as “Momoi’s
method”. In this paper he also demonstrates the effectiveness of this
method for the analysis of a tsunami in a canal. The present purview
consists of two parts:

Part I : the case where periodic waves surge from a lower side of

“T” character,

Part II: the case where periodic waves invade from one of the

horizontal branches of the canals.

Part 1.

1.1. Theory.

Referring to Fig. (I. 1), the Cartesian co-ordinates (x, ¥) are centered
at the conjunction point of three branches, z- and y-axis being fixed at
the rims of the canals.

Suppose that (Fig. J.1))

D, : the domain in the range (x>d,, d,>y>0),

D, : the domain in the range (d.>x>0, y>d,),

D, : the domain in the range (d;>x>0, 0>9),
1) T. Mowmol, Bull. Earthq. Res. Inst., 40 (1962), 719.

2) T. Mowmor, ditto, 733.
3) T. Mowmo1, ditto, 747.
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D, ,: the domain in the range
(do>w>ds, d>y>0),

Dy, : the domain in the range

_______ (d;>2>0, d,>y>0),

Doz; Doyl Di 4, eg‘u%’n‘;"nges {; (4=1,2,3): the wave heights

- in the domains D;(5=1, 2, 3),

Co1 : the wave height in the do-

(_?;' main D, ,,
L. : the wave height in the do-
Fig. (.1). main D, ,,

¢ : the velocity of long wave,
viz., V'gH (H being the depth of water),
t :a variable of time,
then we have, as basic equations,

& ) 198% (;-1.2:3:01 and 0,2 1.1
(Z+Z)e=5 2% (1=1:2: 35 0.1 and 02), 1.1

for the domains D; (=1; 2; 8; 0,1 and 0,2).

(i) The Solution in the Domain D,
Since the boundary conditions in this domain are

.Q.C_l.zo (w>d2, y=0 and dl) y
oy

the wave height is expressed as?

Clzcoe—ikn+ }:_JOC§M) cos _7_;2'17?/ . 6+i"§m” , (1.2)

1

where a time factor exp (—iwt) is omitted as usual (w: the angular
frequency of the surging waves); the first term the surging periodic
wave ; the second group of terms the reflected waves; & and &™ (m=0,
1,2,3,---) the amplitudes of the surging and the reflected waves;

k‘m)—+\/k2 (mﬂ) (k=wlc).

(ii) The Solution in the Domain D,
Since the conditions at the boundary are

9% 0 (y>d, ©=0 and dy),
ox

4) T. Momol, loc. cit., 1).
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the solution in this domain becomes

- _ y
&= ZOCé"” cos % @ - ety 1.3)
m= 2

where ¢{™is the amplitude of the m-th mode of waves, and

)

lc;""=+\/k;—(

(iii) The Solution in the Domain D,
The conditions at the boundary are given by

%:0 (y<0, =0, and d,) .
ox

Hence it follows that the wave height in this domain has the following
form :

b o (m)
Lo= 3, ¢ cos —’? - e (1.4)
m= 3 .

¢i™ being the amplitude of the m-th mode of waves and
k™ = + k_(ﬂf)
/e (2
(iv) The Solution im the Domain D,,
In consideration of the condition ag;‘ =0 (y=0, d,>x>d;), a par-
ticular solution for the equation (1.1) has the form

(Ao (for) cos kP x+ By 1(fo.0) sin k'a) cos kPy

where A,.(f,.) and B,,(f,.) are arbitrary constants: f,, denotes a pair
of k and k" permissible by the relation (k®)*+(kP)=Fk".

Integrating the above-mentioned particular solution over the range
to be permitted by (k)4 (k)*=Fk?, we have a general solution, i.e.,

Loa= ; (Ao1(fo.) cos kP x+ By 1(fo.1) sin kP'x) cos kPy . (1.5)
0.1

(v) The Solution in the Domain D,,
In a manner similar to the fore-going paragraph, the solution

satisfying the condition Qg"ﬁ:O (x=0, d,>y>0) becomes
x
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o2 = ) cos kPa(Ay.(fo..) cOs kPy+ B, o(fo.0) sin ky(;ﬁy) , (1.6)
Fo.2

where A4,,(f,.) and B,.(f,,) are arbitrary constants: f,, a pair of k?®

and k{”: 3, the integration under the condition (k®)*+ (k®) =k
So.2

(vi) Condtions for Determining the Arbitrary Constants
At %=d2,

Co.=C1
3o, _ 0, } for (d,>y>0) . 1.m
ox ox
At z=d;,
{0,2250,1 ’
0%0s _ 0Ca. } for (d,>y>0). (1.8)
ox  ox
At y=d,,
_ {Goa for (d,>x>d,) ,
CZ_{Co.z for (d;>2>0),
»
o, oy for @>w>d) (1.9)
oy 0.5 for (d,>x>0) .
oy )
At y=0,
$=Coz
__aé: a:o,: } for (d3>x>()) . (1.10)
oy oy

(vil) Determination of the Arbitrary Constants
Substituting from (1.2)—(1.6) for (1.7)— (1.10), we have:

>\ (A, cos kMdy+ B, , sin kd,) cos k{Py
Jo.1
=~ F et S e cos ”;’fﬂy . g™ ,
m=0 .

1
SVEM(— A,y sin kPd,+ By, cos k'd,) cos My L a.m)

So.1

. .. = . mmn i (m)
= — kGt X (H k™)™ cos =Ey et
ma=0 21

for (d,>y>0):
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> cos kPdy(A,, cos kPy+ By, sin kPy)

Fo.2

= f§_‘, (A, cos k'dy+ B, sin k'd;) cos k{'y
0.1

fZ, (—kP) sin kPd (A, , cos kPy+ B, , sin k) \ 1.8)
0,2
= ,Z' kP {— A, sin kPd,+ B, , cos kP'd,} cos E{Py ,
0.1

for (d,>y>0):

S e cos My L grin™ay

m=0 9

= 3, (A, cos kPx+ B, , sin kPx) cos kd, ,
fon

for (d,>x>d,);
=3, cos kPwx(A,, cos k?d, -+ B, , sin k’d)) ,

fo.2

for (d;>x>0): 1.9)
i Ftlimyeim cos % 7 Ty - e*”‘(md,

- fz‘ (Ao'l cos kil)x—l_Bo'l sin k;l)m)(_ka(zl)) sin kz(ll)dl ’
0,1
for (d2>x>d3) ’
=3 cos kP w(— kP A, , sin k2d,+ kP B, , cos kPd,) ,

fo.2

for (d;>x>0):

3% Zi™ cos may, — >\ Ay, cos kP,
m=0 d3 Sfo.2

(1.10%)

3

S (—ikim™)E™ cos %x: S By k@ cos k®x j
m=0 fo.2
for (d,>x>0) .
Applying the operator Sdldy to (1.7) and (1.8"), using long wave
0
approximation (the first reduction of Momoi’s method),

ie, kd<l, [kPld<l, (i=1,2:j=2,9:1=1273) } (1.11)
or  coskd~1, cosk{d,>~1, sinkd~kd,, sink{d,~k{d, .

(this approximation denotes that the wave length of the surging periodic
waves is long enough as compared with the width of the canal), we
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have?® :
> (Aps+Bo k) =g - LM er e
fo
Z‘ kél)(—Ao,1k;(cl)d2+Bo,1): —ikcoe_“‘%—l—iICC{O)e"'ikdz,
o . (1.12)
le.Aoz L(Am‘f‘Bmk 'dy) ,
0.2
—fZ (kx2)) dsAo.z— %.l kil ( AO.lk:(u”dK—‘f_BO,l) .
0.2 0.1

dy
Applying the operator S"dm to (1.9) and by use of the approxi-
0

mation (1.11), the relation (1.9’) becomes
¢Petiud, = 3 Ay y(d.—dy) + fZ dy(Ap,+ By kP dy)
Fo1 0.2

) 1.13
+ikd2@’me I “ZAO,l(ky))zdl(dz“ds)+Zkz(/2)d3("—Ao,2k:;2)d1+Bo,z) ) } ( ' )
fo.1 fo.2

Also applying the operator Sdsdx to (1.10") and by use of (1.11), we
0

have
Céo’: Z Ao,z ’
Jo.2
1.14
ik = kP B (119
Jo.2
After some reductions of (1.12), we have:
from the first and the third relations of (1.12),
Z By k"= 1 {(Cowikd"+Ci0)6+wdz)” > Ao,z} ,
T d;”_ds fo.2
(1.15)
Z A0,1= 1 {_dg(coe—ik(lz+C16'Fikd2)+d2 Z AO.Z} y S
Foa d,—d, fo.2
where d,#d, (d,>d,) (referring to Fig. (I.1));
from the second and the fourth of (1.12),
3 A ()= d—ld (ki RE00 T 4 5 A, (kY
S0
(1.16)

ZBO 1k(1)_ d'—ld {ds( ,bksocfik(lz+1/kc(0)e+lkd2) + ZAO (k(2))2d d:s}

fo1 2
On substitution of the first expressions of (1.15) and (1.16) for the
5) T. Mowmol, loc. cit., 1).
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fourth of (1.12),
3% Agy=di(—ThEye= e kL Oe ) o (G R L0 | (L1T)

0:2

where the following reduction is used, i.e.,
;1 Ay {1—(kPYd d}~ fE Aoz s (1.18)
0.2 0.2 .
and hence
25 Ao (kP >=0 .
fo.2
Putting (1.18) into (1.16),
3, Ao (b0 == (g gmirer (g
To1 d,—d,
. 1.19)
3 Bk == s (g gmires g gpogriney |

Soa 2~y

From the latter of (1.15) and (1.17),

3 Aoy = {(do— Ao (e )
fo1 d,—d,

+ikddy(—Coe 4+ L Ve En)) | (1.20)

Substituting (1.17), (1.14) and (1.20) for the first of (1.13), we have

o (A A} L0 + et 0+ R AL
={led,— ik (d, +d;)}e~*eL, . (1.21)

Following the principle of Momoi’s method (the second reduction of
this method) (refer to the introduction of this paper), (1.18) becomes,
in consideration of the wave number relation k*=(k®)*+(k2),

f%z'Ao,z(k;”f:% Ay lr— f%z Ay (k) >~0 or fozz Ay () ~k? f%,z Ay, . (1.22)
By use of (1.22), the second equation of (1.13) becomes
+ikd LVt R = — % Ao (kY d(d,—dy) —dldskzg‘, Ao+ ,Z kPd;B,, . (1.28)
: 2 02
Putting (1.14) into (1.23),
+ikd Vet = — % Ao (kY d(dy—dy)—(Kd,ds+ikd ) . (1.24)
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In like manner, applying Momoi’s method to Z-term of (1.24) by

use of the first expression of (1.19) and the wave number relation
E=FL)+FkP)), we have ‘

( + ’l:kdz)Céme”"d’ + @kdl( _Coe—ikaz +C{0)e-kiktlz)
= —d(dy—d)l* 3, Ao,y — (kd d, +3ked )0 (1.25)
0.1

Since the expression ZAM is given in (1.20), (1.25) becomes, to the
approximation of the order of kF*'d%: (§=1,2,8),

{—kedy+ ik (dy— Al 500 — o0t B4 + (ihddy— k)
= —{kd,+ik*d,(d,—d,)}e "%z, . (1.26)

On equating the ‘first of (1.14) to (1.17), we have, as the third equation
with respect to £{; ¢ ; £ (the first and the second equations are
given in (1.21) and (1.26) respectively),

(ihd,+Der*aar® — O = (ikd,—1)e~"z, . (1.27)

The reductions made so far are to connect the amplitudes in the
straight parts of -the canal by use of the relations in the conjunction
part (which is characteristic of Momoi’s method).

Thus we have three equations (1.21), (1.26) and (1.27) available to
determine co o and C“”. Solving these equations, the following results
are obtained : o ‘

o_ &—d,—d, ceiap i | (1.28)

Y ditdatds

©__ 2d, - e 1k@r+ay ) 1.29
S A dord, ! (1.29)
(0) — 2(d1_’ikdzd3) g tkdy» ‘ 1.80
g Tfﬁfﬁf‘ 3 .30)

where d, <d (refer to Fig. (I. 1)).

Though we must determine, as a next step, the amphtudes of the
higher modes of the waves, viz., ™, &™), ™ (m=1,2,38,.:.), it is
probable that the orders of these amplitudes are of k*d}/(m=)* (m=1, 2,
3,--+; 7=1,2,8) under the long wave approximation (kd;<&1) (refer to
the preceding paper® of the present author) On the basis of this fact,

6) T. Mowmo1, loc. cit., 1).
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no consideration is made of the higher modes of the waves (These higher
‘modes, if necessary, may be obtained in the same manner as the first
mode).

So far as the conjunction part of the canal (D; (=0,1; 0, 2)) is
concerned the dimension of this part falls within the first order of the
long wave appr_ox1mat10n Although the solution in this part is not
obtained, the variation of the wave may be considered to be very small
to the extent that the wave in this part can. be approx1mated to those.
in the adjacent canals. '

(viii) Consideration of Particular Cases

Here the consideration of particular cases is made in the following :
(1) when d,—0;

d,—d, '
(0) 1 2 'e*t~2kd2 R
{ ——————d1+ i, Co
2d )
L 2L gtk e - (131
R R - asp
2d ]
o _, 1 .e—ikdy* .
3 ————d1+d2 So

The first two expressions are identical in form with those obtained
for the case of the right-angled canal, which can be regarded as a
particular case for the present study.

* Qur concern is with the third expression.. As d; decreases, the
amplitude in the domain D, becomes equal to that in the domain D,
while the former is different in _phase with the latter by kd,. In spite
of d, tending to zero (d,%0), ¢ is still finite. Then it may be interpreted
that the amplitude at the corner of the crooked part of the right-angled

2y yinayr
d +d Y

(2) when dl———d2=d3-—,-d ;

canal is expressed- by

sz_%.e—z-m;o (from (1.28)),].
2

= -e‘?'deCo (from (129)) , o | ‘<1‘32>

g =

o= z e kg, (from (1.30)) ,
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the third expression being derived by use of the following reduction :

d,—ikd,d;=d(1—1kd)
~de "™ (kd<1).

The amplitudes in the domains D, and D, become equal to each other,
as would be expected. The amplitude of the reflected wave in the
domain D, is one-third that of the incident wave and late in phase by
(m+2kd). Since kd<1, these two waves are nearly in inverse phase,
while those of the progressive waves in the domains D, and D, being
two-third the incident one.

3) when d;—0 (=2, 3);

=G (from (1.28)) ,
£ — 2e~*ag (from (1.29)) ,
¢ —2¢, (from (1.30)) ,

that is to say, the reflected wave in the domain D, tends to the incident
wave in magnitude and both waves are in phase; the amplitudes of the
progressive waves in the domains D, and D, approach twice that of the
incident wave (the phase difference is a consequence of the assumption
that d,>d, (refer to Fig. (I.1))).

I.2. Numerical Results.

To see the variations of the wave heights in each canal for the
ratios of the canal widths, the following expressions are introduced :

|C§0)/50[=|1_—_I_22»_1—R_31| (from (1.28)) ,

1+-R2,1+R3,1
(0) — 2 :
(e} /Col———1 YRR, (from (1.29)) , (1.33)
(S [— (from (1.30)) ,

1+R,,+R;,

where d./d,=R,,, d;/d,=R;,.
The variations of the ratios /¢! and [¢{/¢,| for R,, and R;, are
plotted in Fig. (I.2), where R,,>R,, by d,>d,.
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N
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N/ 360,189/ B0l
(Iz‘;’/sgl)

(t/10)

[i710]

M : N
M 7

PR s
+ + +

1/n01/91/8V/71/61/5 /4 V/3V/2 1 2 3 4 5 6 7 8 9 1011 12

R2’| (=d2/d|)

Fig. (I.2). The values stated in round and square brackets denote the ratios of ds; and
di or R;,;. The drawn curves are the variations of |(2'@/¢o| and |¢;(@/¢o| versus Rs.
(=d:/d,) for given Rs, respectively, the former and the latter of which are marked with

round and square brackets respectively.

Part II.

This part is composed of two cases, i.e., the incident waves come
irom @) the domain D, and b) the domain D, (refer to Figs. (II. al and

bl)), on the supposition that the width of the
canal in D, is larger than that in D,. Firstly,
the former case is treated.

a) The case where the periodic waves come
Sfrom the domain D,.

II. al. Theory.

Using the same notations and definitions as
in Part I, the basic equation and the boundary
conditions are identical with those in Part I,
except for the difference of the directions of the
surging periodic waves. Hence the solutions are
given as below:

K— d2
D.
Do! Do,lE D dy
' ) N

Ds

Y

& d3

Direction of
Surging Waves

Fig. (L al).
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For the domain D,,

Cl i‘ C(m) cos /’;’/,E,y . e+lk§m)m , (2.1)

m=0 1
which is an expression excluding the surging wave term in (1.2);
for the domain' D,, the solution is given by (1.3), i.e.,

=3¢ cos Mg et (2.2)
m=0 9

for the domain D, adding the sUrging wave term to (1.4),

m*r . _i,c(v'n)y_ 9.3
ds' e~ (2.3)

for the domains D,, ‘and D”, the solutions are described by (1.5)
and (1.6), i.e.,

Cor= fz (A4, ,cos k’x+B,, sin k’x) cos kMy (2.4)
0.1 . .

and

Coo= f > cos kPx(A, , cos kPy+ By, sin EPy) (2.5)
0:2
respectively.
Available conditions for determmmg the arbitrary constants are
the same as those given in section (vi) of Part I.
Following the procedure in section (vii) of Part I (Momoi’s Method),
the first modes of the waves in each canal are obtained as follows:

0) - 2d'¥ . —tk(d;+d2) 2.6

| d1+d2+d36 o s (2.6)

© — 2d, o ikaye 2.7)

S d, 1, Co s (2.7)
—d,—d.+d :

ég) 1 2 3. , 2.8)
drdid, &8

where d,<d, (refer to Flg (1. al).

By the same reason as in part I, the solutions of the higher modes
of the waves in the straight parts of the canals and the wave in the
conjunction part are left untouched.

As the next step, let us consider the particular cases.
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(¢.1) when d,—0;
e —0,
¢ —0,
Ct(im — =&

The progressive waves in the domains D, and D, tend to zero, while
the reflected wave in the domain D, approches in amplitude the incident
one with inverse phase.

(a.2) when d,=d,=d,=d;

io):_g_.e—i-zkaco ,\

C(O)_____2_.e—i-kdc ’ (2 9)
2 3 ) 0 "
=3

The amplitudes in the domains D, and D, are equal to each other,
which is an unexpectedly interesting result. At least, the author has
anticipated larger wave in the domain D, than in the domain D, so far.
The amplitudes of these waves are two-third that ‘of the incident one,
while the reflected wave amplitude is one-third.

A comparison of the same cases in Part I and II is made in a later
section. ‘

(a.8) when d,—0;

o 2d
1 '———d2+d3
Cdrd

‘(0) . 4_d2+ds .
’ d,+d,

. e—ikdzco ,\\

Lo | (2.10)

Co -

The wave height in the domain D, is completely dOminated by the
ratio of the widths in the domains D, and D,. When d,=d;; the model
becomes a straight canal.

II. a2. Numerical Results

For convenience of graphical expression, expressions similar to Part
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I are used, i.e.,

Olgl=—— 2 (from (2.6)),
ICI /Col R1,3+R2.3+1 (from (2.6)),
O 5 | — 2 f 2.7 2.11
|Cz /Col R,,3—|—R2_3+1 (from (2.7)), 2.11)
(0) =|"'R1,3_R2.3+1| f 2.8
125" /&l Ryot Byt 1 (from (2.8)),

where d,/d;=R,,, d,/d;=R., and R,,>1 by d,>d,.

The expression of the reflected wave in (2.11), viz., the last of (2.11)
is identical in form with the corresponding one in (1.83). Likewise, the
first two of (2.11) are of the same forms as the last two of (1.32), which
are the expressions of the progressive waves. Therefore, the following
substitutions of ¢{®, ¢{” (or ¢"), R,, and R,, stated in Fig. (I.2) give
rise to the use of Fig. (I.2) for this case:

g0 — e, L for ¢) = (o ¢)
R2,1 - R1,3 ’ R3.1 - Rz.s ’

where the restriction E,,>1 for this case, instead of R,,>R,, for the
former case.

b) The case where the periodic waves come from the domain D,.

II. b1. Theory

The analysis of this case follows exactly the same lines as in section
@), so that much of the detail should be referred

Fzmr”?"wg:a . to in the preceding part.
y , - Using the same notations and definitions as
K d2— in Part I and the section a), the first modes of
D, the waves in the straight canals become
N 2d _
D :D': D d {0J= 2 o g~ ik (dgtdg) ,
I i H N N d,+d,+d, G
Ds ~d,—d,+d
'(‘0):_1—32_.6-—$-de1 , 2.12
£ dtd,+d, o ( )
eds
0 — 2d, T

Fig. (1.b1). d,+d,+d,
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where d,<d, (refer to Fig. (II. b1)).

The considerations of the particular cases given below :
(b.1) when d,=d,=d,=d;

Cio)zg,e—mmco ,

_.3‘5'2“60 , (2.13)
9

CS(O) =__e—z-kdco ,
3

In the same way as in Part I and the section @) of this part, the
amplitudes in the domains D, and D, are equally two-third the incident
wave amplitude, while that of the reflected wave in the domain D, is
one-third. Though the amplitudes in (1.82), (2.9) and (2.18) for the
corresponding canals are equal, a clear phase difference of the three
cases can be seen.

Firstly, the reflected wave for the case of Part I is in later phase
by z+2kd for the incident wave (refer to (1.82)). This suggests that
the dimension of the conjunction part affects the phase of the reflected
wave. Secondly, the reflected wave for the case of section @) in this
part is in perfectly inverse phase for the incident wave (refer to (2.9)).
This result is due to the assumption that d,>d..

Thirdly, owing to the assumption that d,>d,, the phase lag of the
reflected wave from the incident one is 7+4-2kd for the case of section
b) (refer to (2.13)).

Next, as far as the progressive waves in the case of Part I are
concerned, the phase lags are 2kd.

For the cases of Part II, the progressive waves advancing straight
through the conjunction part of the canals are later in phase by kd
(refer to the second of (2.9) and the last of (2.18)), while those turning
in the conjunction part being in later phase by 2kd (refer to the first
expressions of (2.9) and (2.13)).

II. b2. Numerical Results

The amplitude parts of the expressions (2.12) have the same forms
as in Part I. By similar changes of the expressions as made in section
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(II. a2) the use of Fig. (I.2) for this case is possible.

Concluding Remarks of Part I and II

Although the author’s method has only been applied to cases where
the widths of the canals are small as compared with the wave-length
of the surging waves, this method is also valid for the case where the
widths of the canals are comparable with the wave-length of the waves.
In the near future, the latter treatment will be made.

Anyway, as far as the problem in the case of the long waves is
concerned, the expressions of the first modes of the waves are in exact
agreement with those derived from the consideration of the flux in the
canals.” Our method, however, makes it possible to compute the higher
modes of the waves beyond the initial one (refer to the preceding
paper®), while the method derived by the flux can find no way to a
further study of higher modes. When the study of waves of medium
wave-length compared with the width of the canal is made, this point
will become clearer. :
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