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Introduction.

The author treated the tsunami caused by the deformation of a
portion of the sea bottom, the shape of which is elliptical.?® The
anisotropy of the wave origin produces the directivity of tsumami. On
the other hand, it is also expected that the bottom irregularities in the
vicinity of the wave origin give rise to the directivity of the tsunami.
In this and subsequent papers the author will consider these problems.
In the first place, the two dimensional cases, where the submerged
vertical cliff is placed in water and near it a portion of the bottom or
cliff periodically vibrates, are considerred in this purview. Studies are
separated into three Parts, i.e., ‘

Part 1I: the case where the vertical cliff submerged in water

' vibrates horizontally (Fig. I, 1).

Part II: the case where a portion of the bottom in deep water

vibrates vertically (Fig. II, 1).
Part III: the case where a portion of the bottom in shallow water
vibrates vertically (Fig. III, 1).

Part 1.
(I, 1) Theory.

With # and 2z denoting Cartesian co-ordinates, x being measured at
the undisturbed free surface of water and z vertically upward, and D,
(/=1 and 2) denoting the domains (0<z, 0>2>—H) and (z<0, 0>z>
— H+h) respectively, the velocity potentials ¢, (=1, 2) in the domains
Dy (7=1, 2) satisfy the equations of continuity :
(a5 + )80 1)
o’ + 02* -¢]_ ) (

1) T. Momo1, Bull. Earthq. Res. Inst., 40 (1962), 297-307.
2) T. Mowmol, Bull. Earthq. Res. Inst., 40 (1962), 288-296.
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AZD 0 The surface condition (z=0) are
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Fig. I, 1. or —at‘;“"ga—z’—o (7=1, 2), (3)

¢; (=1, 2) being the elevation of water from the undisturbed free
surface of water in the domain D; (j=1, 2) respectively, g the accele-
ration of gravity, and ¢ a variable of time.

The bottom conditions are

9, _ =—
0 (=—H),

(4)
9%:_g (z=—H+2),
0z
where H is the depth of the deeper water, & the height of the cliff.
The boundary condition at the vertical cliff is that the horizontal
velocity of water particle at the cliff sinusoidally vibrates

9 = _jwDiue (5)
ox

where Dy, is the amplitude of vibration which is related to the horizontal
displacement of the cliff by D,,=D..e ' (the only real part has a
physical meaning).

For the case of vibration the equation (1) and the conditions (8)—(5)
are reduced to

0’ 0° ,
O Ny =0, g
(Z+ 2w (1)
— ' +99%i=0 (2=0), (3)
0z

%0 (z:=—H),
0z (4)
6;¢>;=0 (z=—H+h),

0z
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%‘%: —iwDL, , | (5')
where j=1, 2;¢; is the velocity potential eliminated time factor e—**
(w: angular frequency of vibration). Hereafter the primes (’) of ¢; and
Dy, are omitted for simplicity.

In the domains D; (=1, 2) only the out-going progressive waves
from the cliff and the waves being damped out as leaving the cliff

remain, so that the expressions of ¢; (=1, 2) must be of the following
forms®—"

$i= AP e+l =z cosh g (H+2)+ S, A== cos a®(H+7) , (6)
8=1
b =AP %" cosh al (H—h+2)+ i‘, A®e+%” cos a@(H—h+2) , (7)
s=1 .

where A, AP (s=1, 2, 8,--:), AP, AP® (s=1, 2, 8,---) are arbitrary
constants to be determined by the conditions at the origin (x=0);a",
al’ (s=1, 2, 3,---) and a}®, af (s=1, 2, 8,---) are eigen values of the
equation (1) due to the conditions (3') and (4'), i.e., the solutions of w?
=ga{’gtanha’ H=—qagtana’H (s=1,2,83,- - +) and o*=a{’gtanha{’(H—h)
=—a”g tan a®(H—h) respectively. '
Substituting (6) and (7) into the former of the equations (2), allowing
for the abbreviation of the vibrating time factor exp(—twt), we have
the wave heights ¢; (7=1,2) in the domains D; (=1, 2) as follows:

Tw i (1)
L=—"+Ale =% .cosh ai® H
g

oo

+%7‘”. g—iot {Z APe%" cos af,”H} ) (8)

s=1

Tw _ (@)
Ce= g cAPeiettay®  cosh qf(H—h)

s=1

+igai_ g—iot {i A§2)e+a§2)z cos a (H — h)} . (9 )

3) T.H. HAVELOCK, “Forced Surface-Waves on Water,” Phil. Mag., 8 (1929),
569-576.

4) T. Momol, “The Effect of Coastlines on the Tsunami (1),” Bull. Earthq. Res. Inst.,
40 (1962), 719.

5 T. Momol, “The Effect of Coastlines on the Tsunami (2),” ditto, 40 (1962), 733.

6) T. Momol, “On Water Waves Generated by a Vibrating Bottom (Two-dimensional
Case),” Zisin [ii], 15 (1962), 52, (in Japanese).

7) K. TAkRANO, ¢“Effects d’un obstacle parallélépipédique sur la propagation de la
houle,” La Houille Blanche (Mai 1960), 247.
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In order to determine the arbitrary constants A", A" (s=1,2,3,--),
AP, AR (s=1, 2, 8,---) we have two available conditions at =0:

b=¢, (0>z>—H+h), (10)

(from the continuity of pressure),

¢, _Ha
0b, _ | o 0>2>—H+h), (11)

ox
—twDy, (—H+h>z>—H),
the first being the continuity of velocity
of water particles and the second the

horizontal velocity of water particles at
the cliff.

Putting (6) and (7) into (10) and (11), the conditions (10) and (11)
become

A cosh aP(H +2) + g ALY cos al’(H +2)
=A{® cosh a®(H—h+2) + gl A® cosal®(H—h+2) (0>z>—H+h), (12)
+iaM A cosh ai"(H+2)+ g (—a®™AY cos aM(H+2)
—iaP AP cosh ai?(H—Nh+z)

1 3 (+a)A® cos a?(H—h+z) (0>z>—H+h), (13)
s=1
—iwDy, (—H+h>z>—H) .

Il

The systems of functions {cosh a{’(H+z), cos al*(H+?) (s=1,2,3,--)}
and {cosh a?(H—h+2), cos a®(H—h+2) (s=1, 2, 3,--+)} have orthogo-
nalities in the range 0>2>—H and 0>z >— H+h respectively, i.e,,» 91

SO cosh? a’(H+2)dz=I"" (non-zero) ;

-H

go cos? aV(H+2)dz=1I!"" (non-zero) (s=1, 2, 3,:++);
-

SO cosh al’(H+z) cos aP(H+2)dz=0 (s=1, 2, 3,-++);
-H

8) T.H. HAVELOCK, loc. cit., 3).
9) T. Mowmol, loc. cit., 6).
10) K. TAKANO, loc. cit., 7).
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" co a®(H+2) cos a(H+2z)dz=0 <sq& . 8=1, 2, 3"") 7
m S a, S a, z)az= ’r.lr:l 2°83...)
and

' cosh® ¢?(H—h+2)dz=I""" (non-zero);
—H+h
" o a(H—h+2z)dz=I""" (non-zero) (s=1, 2, 3,-+-);

H+h
0

cos a’(H—h+2) cos aP(H—h+2)dz=0 (s=1, 2, 3,-++);

—H+h

0 _ . 8=1y2,3;“’ .
S_HM cos a®(H—h-+z) cos a?(H—h+2z)dz=0 (37&7'. r=1,2, 3’...)’

Hence multiplying (12) by cosha{*(H—h-+z), cosa®(H—h+2) (s=1,2,3,+-+)
and integrating —H+h to 0 with respect to 2, the relation (12) is reduced
to the following equations:

AP L] Cnnr), Hy H=D1+ 33 AP L), H, H—R]= AP -7 (14)
s=1

AT [ Coron), Hy H— R+ 5 AP L (), H, H—R]= AP I~ (15)
(s=1, 2, 3,++, ),
where
Lo Csn), H, H—h]= g"_m cosh a®(H+2) cosh a®(H—h-+2)dz
N S
(@ — @by

—aP{cosh a?*(H—h) sinh a{® H—sinh a{"h}] ,

[a§? sinh a{?(H—h) cosh a H
I, [Cae), H, H— h]:SD . €05 a(H-+2) cosh af (H—h+2)dz
-H

_ 1
(@) +(ed)
+af” cos ¢’ Hsinh a?(H—h)] (s=1, 2, 3,---, =),

[a{*{sin a{" H cosh a{’(H—h)—sin a{*h}

IE-m = go cosh? ¢ (H—h+-z)dz

—H-+th

=l[_1_ sinh 20 (H—h) + (H— h)] ,
2L 2a{®
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0

L [Crsn), Hy H—h]= S - cosh a{’(H+2) cos a®(H—h+2)dz

— P $in o H) cosh o H
8 0

+a{cos al(H—") sinh a{" H—sinh a{"h}]
(S=1, 27 3)' %y OO) ’

0

L, J(us2), H, H—h]=g  cos aP(H+z) cos a®(H—h+z2)dz .

-+

=W”y—1(7)q[a»;§’{sin ai’ H cos a(H—h)—sin aPh}
s ) — A7)

—a® cos el Hsin a(H—n)] (s,8'=1,2,3,--+, ),

Im-m = g cost e (H—h+2)dz

—H+h

1 1 i 2 _
=_2_{ Sgm o0 2a"(H—h)+(H—h)} (s=1,2,8,-++,00) .

0
In like manner, applying the operators S cosh a{(H+2)dz and
-0

0
S cos al’(H+=z)dz to (13), we have
-

0Dt sinh g0 h—ia® AL T, [ n-r), H—h, H]

aél)

+ 3 AP AP L JC ), H—h, Hl=+iaP AP, (16)

—twD . . ey e
a® 2L sin aMh—1a5? AP 'Io,s[(o—zl+h), H—h, H]
8

+§1 aP AP, [(Crsn), H=h, H]=—aP AP (s=1,2,8,---, «), (17)

where
Loo[Cran), H—h, H] =S
=1,,[(Cp-s), H, H—N] (already given) ,

' ) cosh a{?(H—h+z) cosh al’(H+z2)dz

-+

0

L o[(Cxin), H—h, HJ=S cos a,”(H—h+z) cosh a{’(H+2)dz

—H+h
=1, [Cps), H H—L] (s=1, 2, 8,-++, )
(already given) ,
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Lo [Crsn), H—h, H]= So cosh af? (H—h+2) cos al (H+2)dz
—H+h
— s,O[(?—H—{-h), H, H_h] (S:l, 2, 3,...’ OO)
(already given) ,
L, [Crs), H—h, H]= SO cos a(H—h+2) cos af’ (H+z)dz
—H+h
:IS'S'[(O—H-HL): H’ H—h] (3, S,=1, 2, 3, ceey, OO)
(already given) ,

cosh? a® (H-+ z)dz:l[L sinh 2a$ H+ H] ,
-4 2aV

™= SO
2

I — So cos? aﬁl’(H—}-z)dz:l[ L gin 20{"H-+ H]
-z 2L 2qf

(s=1, 2, 3,..-, ).

The arbitrary constants A, A" (s=1, 2, 8,---), A® and A? (s=
1, 2, 3,--:) can be obtained as solutions of the infinite simultaneous
equations (14), (15), (16) and (17).

(I, 2) Used Values.

We used the following values for determining the arbitrary constants
AP, AL, APand AP (s=1, 2, 3,..-):
depth in the deep side of water (H)=10cm,
depth in the shallow side of water (H—h)=5cm
or the height of the submerged cliff (k)=5 cm,
period of vibration of the cliff (7')=1seec,
acceleration of gravity (g)=980cm/sec?,
amplitude of vibration of the cliff (Dyy; in form omitted prime)
=lecm.
On substituting these values into the Airy’s relations o*=a{"g-tanha® H
=—alg-tanaH (s=1, 2, 8,---) and o*=ai’g-tanh a(H—h)=—alg
-tan aP(H—h) (s=1, 2, 3,---), we obtain, by method of trial and error,

ai’=0.068060 , a{’=0.30090 , a’'=0.62185 ,

a’=0.93821 , a=1.2534 , a{=1.5682 ,
a®=1.8828 , a®=21973 , a®=25117 ;
0 =0.028500 , o =0.61526, a®=1.2502 [ 18)
a?=1.8807 , a=25100 , a®=3.1390 ,

a=3.7678 a” =4.3964 af?=5.0249 ,
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where the calculation has been made up to s=8.
In the following section we shall be concerned with the method of
calculation of the infinite simultaneous equations (14), (15), (16) and (17)..

(I, 3) Outlines of Numerical Analysis.

The simultaneous equations (14), (15), (16) and (17) possess an infinite
number of unknowns A", A”, A? and AP (s=1,2,8,--.). For calculation,
these equations, in general, are approximated by a large number (N) of
terms such that the contribution of the omitted terms is considered as

negligibly small. On the assumption that; AP, A® (s>N)=0; gzg;

the equations beyond s=N are able to be omitted, the equations (14),
(15), (16) and (17) become 2(N-+1) simultaneous equations with 2(N-+1)
unknowns A", AP, AP and AP (s=1, 2, 3,---, N). Here the validity
of the approximation by a finite number of terms must be examined.
From a purely mathematical point of view, necessary and sufficient
conditions for the existence of the solutions of the infinite simultaneous
equations have not been known so far.

Hence, if the variations become smaller as a number of unknowns
successively increasing, then it may be interpreted that the solutions of
these simultaneous equations converge. Such an interpretation for
convergence is sometimes permitted in the world of applied mathematics.
Thus, this convention is also followed in this purview.

Since the coefficients of the equations (14)—(17) are complex, the
solutions A, A®, AP and AP (s=1, 2, 3,---, N) are generally of
forms, i.e. :

A,S"zxg‘)—}-iyo‘" ,

AW =g 4 jy® =1, 2, 8,--+, N)
s =& 1Y, (S— y &4y 9y ’ ’

AP =x® 44y |

AP =g®+y® (s=1, 2, 8,--+, N),

(19)

where
wél), yé”; Q?g”, /yy) (S=1, 2, 3"", N) ’
x?, ¥, «P, yP (S=1! 2, 3, N)
are all real.

On substitution for (14)—(17) from (19) and taking the real and
imaginary parts respectively, the number of the equations (14)—(17)
changes from 2(N+1) to 4(IN+1). By solving these 4(N+1) equations,
we can obtain the solutions A", AY, A® and A® (s=1, 2, 8,---, N) by
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virtue of (19).

{, 4 The Result of Computation and the Convergence.

Using the values described in section (I, 2) and a{, a®, a® and
a® (s=1, 2, 8,---, 8) in (18), which were prescribed by Airy’s relations,
the equations (14)—(17) are respectively solved for the successive increase
of N from 3 to 8.

For easy evaluation of the computed values we took new expressions
as given below, instead of A", A", A? and A? (s=1, 2, 3,---, 8),

¢t =2A% cosh aH ,
g

¢ ="A"cosaH (s=1,2,8,-++,8),
g9

‘* (20)
P =2AP cosh a®(H—h) ,
g

(9 =LAP cos a®(H—E) (s=1,2,3,---, 8).
g

Then the expressions (8) and (9) of the wave heights become

Clzi.cél)e—i(mt—aél)z) + ZB: ,i.C§1)e_iwt . e_a;nz
szi,cé2)e—i(mt+a((’2)x) + E ,i.cm)e—iwt . 6+u§2’z 1)
s=1
where the only real parts must be retained in consideration of physical
meaning. '
From (21), we can see that:
¢, ¢ are the amplitudes of the out-going waves in the z-positive
and -negative directions respectively;
¢V, ¢? the amplitudes for the s-th mode of the disturbances on
the x-positive and -negative sides of the origin, which are expo-
nentially decreased with respect to position.
Actual calculations were made by use of the OKITAC-5090 at the
Computation Centre of Tokyo University.
The results of computations are given below :

when N=3,
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when N=4,

when N=35,

T. MoMol

¢V =—0.26211-exp (—12-0.077321) ,
¢®=—0.093632-exp (+1-1.5103) ,
¢ =40.0092889- exp (+14-1.4213) ,
£h=—0.0088734-exp (+1-1.4523) ;
¢ =—0.24382-exp (+1-0.26128) ,
¢ =—0.019312-exp (+1-1.4501) ,
£ = +0.012315-exp (+-1.4621) ,
¢ =—0.0052134-exp (+1-1.4531) ;

£ =—0.26191-exp (—1-0.056969) ,
¢ =—0.093527-exp (--1-1.5188) ,
¢ =+40.0091280-exp (+1-1.4514) , ¢
£ = —0.0087136-exp (+1-1.5008) ,
¢ =+0.0052814-exp (+1-1.4989) ;
¢&=—0.24339-exp (+1-0.21937) ,
®=—0.019735-exp (+1-1.4591) ,
£ =+0.010435-exp (+14-1.4987) ,
¢ =—0.0059309- exp (+1-1.4839) ,
= -0.0029704-exp (+1-1.4722) ;

e =—0.26189-exp (—1i-0.045966) ,
¢ =—0,093432-exp (+1-1.5288) ,

¢ =+40.0089681-exp (+1i-1.4832) ,
¢ =—0.0086214-exp (+1-1.5258) ,
¢ = +0.0042848-exp (+1-1.5050) ,
¢ =—0.0041853-exp (+17-1.5608) ;
¢ =—0.24367-exp (+1-0.19739) ,

£®=—0.020878-exp (+1-1.4613) ,

¢ =+0.0084581- exp (+1-1.5050) ,
¢®=—0.0073669-exp (+7-1.5099) ,
£ =40.0036473-exp (+4-1.4889) ,
¢ =—0.0019965-exp (+17-1.4949) ;

(22)

(22)

(23)

(23)

(24)

(24)
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when N=6,
¢ =—0.26188-exp (—17-0.029923) ,
=—0.093389-exp (+1-1.5367) ,
¢ =+0.0089521-exp (+1%-1.5015) ,
¢" =—0.0086206-exp (+%-1.5182) , - (25)
=40.0042315-exp (+1-1.5139) ,
¢i? =—0.0041153-exp (+14-1.5021) ,
£ =+0.0031284-exp (+1-1.5141) ;
¢ =—0.24873-exp (+1-0.12361) ,
¢ =—0.021103-exp (+14-1.5002) ,
£ = +0.0080142-exp (-+4-1.5132) ,
£ =—0.0075016-exp (+1-1.5236) , (25)
£® = +0.0038297-exp (+17:1.5013) ,
£ =—0.0015360- exp (+74-1.5036) ,
# =+40.00083216- exp (+1%-1.4921) ;
when N=7,
=—0.26187-exp (—1i-0.012361) ,
£ =—0.093351-exp (+1i-1.5421) ,
= +0.0089411-exp (+4-1.5362) ,
£ =—0.0086200-exp (+1-1.5243) , | (26)
¢ =+0.0041182-exp (+1-1.5264) ,
¢=—0.0041024-exp (+1%-1.5161) ,
¢s" = +0.0030024 - exp (+17-1.5362) ,
¢ =—0.0029926 - exp (+1-1.5039) ;
¢ =—0.24401-exp (-+1-0.093245) ,
¢ =—0.021800-exp (+1-1.5216) ,
£ =+0.0079345-exp (+1-1.5261) ,
¢ =—0.0076187-exp (+1-1.5391) , (26))

¢ =+0.0040032-exp (+17-1.5241) ,
¢ =-0.0014321-exp (+1-1.5249) ,
¢ =+0.00074259-exp (+-1.5213) ,
& =—0.00021817-exp (+1-1.5162) ;
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when N=8,

£ =—0.26187-exp (—1-0.0093921) ,
¢ =—0.093311-exp (+1-1.5520) ,
¢® = +0.0089401-exp (+1%-1.5721) ,
¢®=—0.0086105-exp (+1-1.5537) ,
£ = +0.0040932- exp (+1-1.5319) , @7
£ =—0.0039996 - exp (+1%-1.5466) ,
¢ = +0.0029998-exp (+7-1.5495) ,
£ = —0.0028327-exp (+1-1.5418) ,
£® = +0.0019346-exp (+17-1.5532) ;

¢ =—0.24421-exp (+17-0.042361) ,
¢®=—0.021521-exp (+1-1.5528) ,
¢ =+0.0078134-exp (+1-1.54326) ,
¢®=—0.0076234-exp (+1-1.5536) ,
£® = 4-0.0048211-exp (+1-1.5462) , 2T)
¢®=—0.0018291-exp (+1-1.5416) ,
£® = 40.00070039-exp (+14-1.5361) ,
¢ =—0.00011391-exp (+1%-1.5199) ,
£ = +0.000058211 - exp (+14-1.5236) .
From the results of calculations, the values of ¢V and ¢ respectively
vary —0.26211- exp(—1-0.077321)(from(22)) to—0.26187-exp(—1-0.0093921)

(from (27)) and —0.24382-exp (+1-0.26128) to —0.24421-exp(+17-0.042361)
(refer to (22') and (27")). It seems very probable that

gw — —0.261---

N-——> o0 N
@ —— —0.244- - ( )

taking into account that the exponential parts of £{", {;” are tending to
a unit. As far as ¢® to £ and ¢ to ¢§® are concerned, the exponential
parts tend to exp(+i-7/2) and exp(+1i-z/2) respectivly and the orders
of the amplitudes remain on the whole unchanged. It can, therefore,
be concluded that the infinite simultaneous equations (14)—(17) have
solutions of convergence. They may be considered to be approximately
given by putting the exponential parts of ¢, & to 1 and those of
cw—e® and ¢P—¢® to exp(+i-z/2) in (27) and (27), that is to say
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&P =—0.26187, ¢V=—0.093311-7, ¢=+40.0089401-7 ,
£ =—0.0086105-7 , ¢=+0.0040932-%, ¢&’=—0.0039996-2, ; (28)
W=+40.0029998-7 , (P=-—0.0028327-7, ("=+40.0019346-1 ;

£ =—0.24421 , ¢ =-0.021521-3, (¢P=+0.0078134:1,
£P=—0.0076234-7, ¢®=-+0.0048211-%, ¢»=-—0.0013291-%, (28
#=140.00070039-% , ¢»=—0.00011391-% , & =-+0.000053211-% .

In a problem of tsunami, of much interest are the amplitudes of
the out-going waves leaving the cliff, or ¢! and ¢®.

When the values described in section (I, 2) were used, the amplitudes
of the out-going waves are |¢{"|=0.26187 cm (the first of (28)) and |[¢{*|=
0.24421 em (the first of (28’)). The wave in water of deep depth is in
height larger than that in water of shallow depth by 0.26187—0.24421=
0.01766 (cm). The ratio of || to [¢{*] is 0.26187/0.24421=1.0723, i. e.,
the former is larger than the latter by 0.07239%.

d, 5) Supplement.

In the preceding sections, when the appropriate physical values as
in section (I, 2) are given, the procedures for obtaining the solutions
and their convergence are described.

To illustrate the variation of the ratios of the amplitudes |C{|/|¢|
of the out-going waves versus the ratios of the depths H/H—h of
both sides of the cliffs, let us supplement two more numerical results
here. Since the solutions are given without proofs of convergence, we
have given these results in this section as only supplementary remarks
of the fore-going ones.

When the height of the cliff A=6cm (other used values are the
same as those given in section (I, 2)), that is, the ratio of the depths
H|H—h=10/4, the results are, to the approximation of nine terms
(N=8), as follows:

¢ =—0.26721 , =-0.093412-7, ¢"=+0.0089601-1% ,
¢ =—0.0086209-7 , ¢=-+0.0041528-7, ¢{{V=—0.0041021-7, ¢ (29)
£®P=+0.0080021-7 , ¢»=-—0.0029451-7, ¢&{=+0.0022459-% ;

&P =-—0.23936 , M=—-0.022542-7, {P=40.0079461-%,
P =—0.0077912-4 , ¢®=+40.0048916-7, ¢=—0.0015432-7, (29"
Z®=+0.00075132-7 , ¢®=—0.00013401-% , £=+0.000065319-% .
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When the height of the cliff h=4cm (other values being referred
to the section (I, 2)), i.e., the ratio of the depths H/H—h=10/6, the
amplitudes become, to the nine terms approximation,

¢ =—0.26001, ¢ =—0.093105-7, ¢{’=+0.0087901-% ,

¢ =—0.0082016-7, C®=-0.0040213-7, ¢=-—0.0032921-3, ¢ (30)
¢ =-+40.0024321.7, ¢P=-—0.0024613-7, ¢’=+0.0015001-% ;

(P =—0.24932 , ¢ =-0.020032-7, ¢=40.0074301-7 ,
¢®=—0.007539-7, ¢®=+0.0042091-7, ¢&»=~0.0010931-2, (30°)
¢® = +0.00065238-1 , ¢ =—0.00010002-7 , ¢ =+10.000050113-% .

Then the ratios of the amplitudes of the out-going waves, [£"|/|C6],
are; when H/H—h=10/4, from the first of (29) and (29),
L0 ¢#1=0.26721/0.23936
/] =1.1164 ; 31)
N

when H/H—h=10/6, from the
first of (80) and (30'),

|z 2] =0.26001/0.24932
=1.0429 . (32)

\ The ratios (81), (82) and that

ey obtained in section (I, 4) (the last

Y 0405 0.6 0 Hh/M s the case where H|H—h=10/5)

Fig. I, 2 are plotted in Fig. I, 2 for the
variation of the depth ratios.

~
~

Part II.

(I1,1) Theory.

In 2 manner similar to Part I, the co-ordinates (x, z) are centered
at the mean surface of water above the cliff, the x-axis being taken
horizontally and the z-axis vertically upwards. In the present Part, the
case is considered where a portion of the bottom on the lower side of
the submerged step is vibrated (Fig. II, 1). Let the length of the
vibrating region be l; the domains in the range (0>z>—H, >x>0),
0>z>—H, >1) and (0>2>—H+h, 0>2) D,, D, and D, respectively
(refer to Fig. II, 1); the velocity potentials in the domains D, (=0, 1, 2)
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¢; (=0, 1, 2) respectively. Nz
Then the basic equations in Water|Surtace x>0
the domains D; (=0, 1, 2) | Hoh D, |0 | J‘
are, in incompressible fluid, b2 0o 1 D
! i, Bottom

4p;=0 (=0, 1, 2), (1) ;
where ///7‘1

2 2
=2 2 +_6_z *
ox* 0% Fig. 1II, 1.

The surface and bottom conditions for the case of vibration are:

in the domain D,, —a’p,+ g%=0 (2=0),
” (2)

% oDy (z=—H),
0z

where o is an angular frequency of vibration, D,, the amplitude of
vibration of a portion of the bottom and ¢, D,. have been expressed in
simplified form omitted primes which must be added in full form when
the time factor exp(—twt) is excluded (this point should be referred to
Part I and this convention will be followed in subsequent discussions
and in Part III);

in the domain D,, —ao'p,+928=0 (2=0),

0z (3)
910 (2=—H);
0z
in the domain D, -w’¢2+g%=0 (z=0),
| ¢ (4)

90 (z=—H+h
5 (z +h).

The velocity potentials ¢; (=1, 2) in the domains D, (5=1, 2),
satisfying the conditions (3) and (4), are given as follows (refer to
Part I):

¢ =BPe+d = cosh a(H+72) + 3, BY e=2"% cos a® (H-+2) , (5)
s=1

¢ =APe %" cosh o (H—h+2) + 3, A® e cos a®(H—h+2), (6)
s=1
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where A®, A® (s=1, 2, 8,--+), B, B® (s=1, 2, 3,---) stand for the

0 1
arbitrary constants.
On the other hand, the solution of the equation (1) in the domain

D, that satisfies the condition (2) has already been given by the
author, i.e.

do=(APe~14"* + BPe*i%"%) cosh a® (H+2)
+ 3 (A9ee s + BOe-w"%) cos a(H+2)—iwDyu(z+9]w?) ,  (T)
8=1

where A”, B®, A® and B® (s=1, 2, 3,---) are the arbitrary constants.
The expression (7) was given in the paper written in Japanese, so
let us outline the derivation of (7) here.
Suppose that a particular solution of the equation (1), satisfying the
condition (2), is ¢, and a general solution, satisfying a “homogeneous”
condition :

— a9 2 =0 (z=0),
0z
s~ (e=—H),
0z

the latter of which is an expression putting to zero in the second of (2),
is denoted by ¢,, then the general solution of equation (1) under the
condition (2) is in general given by

¢o=¢a+d’p . (8)

12)

Such a formulation has been made for the case of three dimensions.
The particular solution is ¢,= —iwDy(2+g/e"), from an intuitive
consideration, whereas the general solution ¢, has the following form :

by =(APe~%"* - B®¢*1%"*) cosh a{(H+2)
1+ 3 (A9 w7 + BOe~%") cos a (H+2)
s=1

where exp (—iaz) and exp (+iay'x) designate the progressive waves in
the opposite directions : exp (—a®x) and exp (+a{"x) the boundary correc-

tions at either side of the vibrating region or #=0 and [; af”, a{”

11) T. Mowmo1, Zisin [ii], 15 (1962), 53, (in Japanese).
12) T. Mowmol, Bull. Earthg. Res. Inst., 40 (1962), 265.
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(s=1, 2, 3,-..) the solutions of w’=a{gtanh ¢"H=—a" tan a"H; A,
B, AP, B® (s=1, 2, 3,---) the arbitrary constants.

Hence in consideration of (8), the general solution of the equation
(1) under the condition (2) is of the form given in (7).

As the boundary conditions for determining the arbitrary constants
contained in the expressions (5) to (7), we have:

¢0=¢1 ’
8¢y _ Ocp, (=1, 0>z>—H), (9)
9 ox

the first being the continuity of pressure and the second the continuity
of velocity of water particles;

Oy _0b (0, 0>e>—H+h),
ox ox (11)

o:%‘% (=0, —H+h>z>—H),

where (10) stands for the continuity of pressure, the former of (11) the
continuity of velocity of water particles and the latter the vanishing
of the velocity of water particles at the cliff.

Substituting (5) and (6) for (9), and applying the operators (refer
to Part I)

S" cosh a®(H+2)dz , g
-"

cos a(H+2)dz (s=1, 2, 3,--+),
b:4
we have

. (0) ig(0) 1o (D)
_MO(O)/IO(H)+(A(()0)6—WO Z+B((,O)6+m0 l):Bél)G"'mO 4 ,

(12)
;a0 . .
(— AP e=ia )L+Béo)6+za00)l):B(()l)e-}-ta.él)l , )
(0) ()] —aV
+ MO I + (A®e+e"t 4 BOg=0" )= BWg a1 |
(Aﬁme"'“éml—Bsm)e'“éml): _B;l)~us(1)l , (13)

(8':1’ 2’ 3!"') ’

where M® = +iwD,[al? ; M= 41iwD,,/a®®; [P and I} have already
been described in Part 1.
Since the depths in the domains D, and D, are equal, so are the
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values of af, a!® and al’, i (s=1, 2, 8,---) respectively. Hence
these characters will appropriately be interchanged in the following.

In a manner similar to Part I, putting (6), (7) into (10), (11) and
applying the operators,

dz (8:17 2: 37"') ’

—H+h

SO cosh ai?(H—N+z))
cos a®(H—h~+z) |

to (10) and the oprators,

(S=1, 2’ 3;"') ’

—H

SO {cosh af,“(H-%—z))d
z
cos al(H+z) J

to (11); the following equations possessing an infinite number of unknowns
are obtained:

APIED = =M+ (AP + BY) Lol C o), H, H—1)
+ 33 (A9 +B0)- Ll o), H, H-1]
APLID =M+ (AL +BE) Lo [Cre), Hy H—1]

+ 33 (AP +BY) I, [Cores), Hy H=1] (s=1, 2,3, -+,
(14)
—iaP AP LCuss) H—hy H14+ 5, 0P AP 1, o[C g1, H—h, H]

:,ia/éo)(__AéO)_*_BéO)).Io(U) ,
— 40P AP L), H— by H]+ 3 a9 AP L, [Cnr), H—, H]

8
=aP(A9—BP)-I™ (s=1, 2, 3,--+) ,
where
M= +ioDyfaf*

A{sm = + iwDbot/a'?)- ’

the expressions I/Z", I, [(Cpen), H  H—N], I [(Cxr), H H—h], 7",
L Cuss), Hy H=h], Lo [Cres), Hy H=0), LCra)H—h, H], I, [(Cg:),
H—h,H], P, L, {Cysr), H—h, H], I, [(Cren)y, H—h, H] and I/® should
be referred to Part I.

From (12) and (13), we have

A — ﬂlo(o)e,;ia{,’”z ’ (15)
21,™
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Mo —ial®y
g (16)
Mo e—af’) ¢
Al=— 21 (17)
BO—=RBw_ M 3+a’£0__)L (18)
I 21

Substituting for (14) from (15) and (17), the equations (14) become

il
Aézl[om—h) = -—Mo(z) + (_]%‘J_Z+Bém> .]0'0[(0_H+h), H, H—h]
N 0
= © p—al¥
+§1(—%+B§0)) Lo[Cxsn), H, H—H] ,

() T (H-1 @ MJO)G"LW‘(’O)’ ( 0
As )Is - )=M3 )+< 2[(3) +B00)>'IO.3[(—H'HL)’ H’ H—h]
0

oo M© e-a;‘,”z
+ 5 (- BY ) L C ), H, H-1)

(szll 2, 3)"') ’ (19)

=100 AP Lo [(Lz10), H—h, H]+ i a" AP I o [(Crin), H—h, H]

. (0)

(0 1

=i ( — MO ) gti% 4+ BO ).

0 —*21(3) 0 [
0

~ 0P AP [Cin), H—hy H] + 3 a0 AP -1, [Csr), H—, H]

O

o ,—-al

=q0( — M e —BO . 1@

8 2I(H) 8 8
8

(s=1, 2, 8,---).

Thus we have the infinite simultaneous equations (19), whose unkowns
are A, AP (s=1, 2, 3,--+), B, B® (s=1, 2, 3,---).

The method for obtaining the solutions of infinite simultaneous
equations were outlined in Part I.

Before proceeding to numerical analysis, let us consider the expres-
~ sions of the wave height.

By use of the relation 8¢/0t= —gZ (2=0), the wave heights ¢; (=0,
1, 2) in the domains D; (7=0, 1, 2) become:
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from (5),
Clzi.cél)e—imc+iaé”z+i.i Cwe=ivt. e—aél)z : (20)
=1
from (6),
Cg=,i.cé2)e—iwt—iaé”:+,i.Z et e+a§2)z : (21)
=1
from (7),
C0=i R e—iwt(céo)e—iu‘go)x + Eéo)e—:—ia(()o)x)
F it pra Q2 0 —as —iwt) . 29
+’L'§€ (Ss € s +Ca e s )+e bot » ( )
where

w
<S =; -B®.coshaH ,

w
W="".B%.cos a®H (s=1, 2, 3,---),

AP .cosh a®(H—1) ,

o

g
§2’=%-A§2’-cos a®(H—h) (s=1, 2, 3,--+),
(23)

- w
Zo=2.Bp-

0n_ @ O)
) '_"_'As

-cosh al"H ,

cosh a®H ,

-cos aH ,

cos alH ,

(S=1, 2, 3;"') ’

e
Zo=2.Bo-
g

and D}, contained in (18) is expressed in full form adding a dash ().

(II, 2) Used Values.

Used values to solve the equations (19) are the same as those given
in section (I, 2) of Part I except for the length of the wave origin (1)
which is taken as 50 cm.

When these values are used, “eigin” values a® (or a"), a!” (or a.")
(s=1, 2, 3,--+), a® and a® (s=1, 2, 3,.-+) are determined as given in
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(18) of Part I.

(11, 8) The Results of Computation.

Following the procedures used in Part I, we have the ratio of the
amplitudes of the waves leaving the cliff, i. e. |¢2/Z®| from (16) and (19).
We are less interested in the case of vibration of the bottom, so that
the ratio of the amplitudes, when N=4 (N stands for a number up to
which the unknowns A®, BY®, A® and B?® (s=1, 2,---, N) are only
retained to solve the infinite simultaneous equations (19)), has been com-
puted alone, i.e., [¢2/¢®]|=1.48 (J¢¥]=0.773 cm, |£§"|=0.522 cm).

Part. III.

(III, 1) Theory.

In this Part, the case where a portion of the bottom in shallow

water neighbouring the cliff z

vibrates vertically, is considered >
i Water| Surface x>0
(Fig. I11, 1). T A v4
The definitions and notations DeH, ,'] Do |0 T :

to be used in this Part are identi-
cal with those used in Parts I Bottom

i o i 1,1, // ////// 7

in the domain D, Fig. III, 1.
Rl 9_2> _
(6x2+ o2t t=0,
—w2¢+g¢ =0 (z=0), (1)
%z—":a)Dhot (=—H+h) ;
oz
in the domain D,
" &
9 Vg, =0,
(0&72 + 0zz>¢1
—w2¢1+9@£=0 (2=0), (2)

%z = — M
> 0 (z=—H);
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in the domain D.,

(aa’c 0z* )d) 0

— ', +ga¢’ =0 (2=0), .

020 (e=—H+h,
0z

(3)

where Dy, D,, D,, stand for the domains —I<x<0, 0<®, < —I respec-

tively, instead of 0<x<l, I<z, ¥<0 in the case of Part II.

The solutions of (1), (2) and (8) are as follows:

P

) 2 O ¢
p.=APe % * cosh aP(H—h-+z)+ Z APe % % cos alP(H—h+2),
=z1

=Bé1)e+iaé1)x

(

bo=(APe=%" s BPe*ia") cosh O (H—h +2)

_{_Z(A(O?e‘a r_;_B(O)e—a

cosh alV'(H-+-2)+ Z Bive=ez ¢og a®(H+z),

eosal”(H—h+2)—twDy(2+9/o?) ,

ro(4)

where, in this case, a{?=a!” and e¢®=a®, in place of a®=a{® and
a®=a’ in the case of Part II.

By the relation ¢=—(1/g)(®¢/6t), the wave heights in the domains
D; (=1, 2, 0) become, from (4),

where

. il = s _a
CIZZC((II)G fottiay I’I"'L'Z C;l)e mt.e a;'zr s
s=1

(2) m,

o
. it ig(® . 0y 3 "
ngzcé‘z)e 1wt iag I+7"Z Ci-'e mt.e_as
8=1

Co=1- e—iwt(CéO)e——iaéo)z+50)e+iaéo)z)
o

+i‘2 —u.ut(r(O)e—a z+:y )e—a z)+e thbO“

w
¢ =—B" cosh a'H ,
g

W=2B"cosa’H (s=1, 2, 8,+++),
g

(5)
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e =L A cosh a®(H—h) ,
g
;2):%A§” cos a(H—h) (s=1, 2, 3,--+),
. (6)
Co=LA0 cosh a(H—h)
g

&y =By cosh af (H—P),

©O=2A4" cos a® (H—h) ,
I (s=1, 2, 3,--+).

> w
o =—EB;0) cos al(H—nh),

Available conditions for determining the arbitrary constants are:

¢2:¢0’
0by_0py [ (w=—1,0>2>—H+h),
or ox

bo=¢, (=0, 0>2>—H+h),
(7)

ox  0x

0:%‘% =0, —H+h>z>—H).

Substituting (4) for (7) and applying the operators :

SO {cosh al'(H—h+72)

d =1, 2, 8,--+),
cosa§2)(H—h+z)} 2 (s )

—H+h

—H

SO {cosh aP(H+2)

}dz (s=1, 2, 3,--+),
cos aM(H+2)
we have (these procedures are the same as in Parts I and II),

;a2 ()] :al0)
APerian t= — MO |[E-M 4 (AP g+i%"t 4 BO g=iay Yy,
—a® -~ ~al® (0)
Af?e % l=+MP [+ (APe % '+ BPet% ) (s=1, 2, 8,--+),
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__A((’2)e+iaé2)l:_Aé0) e*':aéO)’—*—Bé‘” e_fag% ,
Af—”e‘“?)’=A§“’e"’s(m’—B,‘°)e+“sm)‘ (s=1, 2, 8,---),
—MP +(AP +BP)- [;1-»
=B L o[(Lr-1), Hy H=h]+ i BPILL o[ Caen), Hy H—h]
=1
+Ms(2) + (A;O) _I_Bs(o)) . I:H—h)
= BPL,[Cnen) Hy H=R]+ 3, BOL, [Cois), H, H=1]
8’'=1
(S:l, 2y 3;' * ') ’

(8)

+ia(— AP + B L [(Lr21), H—h, H]

+5, 6040 —BO) LA O, H—h, H]=+ia B L™
a0 (— AP +BOY- L, [Cper), H—h, H]

+ 3 a9 (A9 —B)- L [C ), H—h, H]=—BPaP [

(S:]-, Zr 37"') ’

where the expressions M?, M® (s=1, 2, 3,-..), IJZ™», [T (s=1, 2,
3,-+)s LolCusn)y Hy H=0], L o[Cn-r), H H—h] (s=1, 2, 8,+++), L. [Crsn)s
H’ H_h] (S::l’ 2, 37' ° ')r Is’.s[(o—ﬂ+h)1 Hr H_h] (S, S,'—-——‘l, 2r 31' * ')r IO.O[(?—H+h)7
H—h,H], L,[Cys), H-h, H] (s=1, 2, 3,-++), I, L, [("ns), H—h, H]
(s=1,2, 8,--+), L, [Cp-n), H—N, H] (s, =1, 2, 3,---) and '™ (s=1, 2,
3,---) were given in Parts I and II.

(III, 2) Used Values.

The values used in this Part are the same as those in Part II, except
that a vibrating portion of the bottom is placed on the upper side of
the cliff in this case.

(111, 8) The Results of Computation.

Following the methods described in Parts I and II, the arbitrary
constants are determined, by use of the expressions (6), as follows (actual
computations were made by the OKITAC-5090 at the Computation Center
of Tokyo University) :

162 1¢°1=1.51 (1¢6571=0.924 em, [¢;"=0.612cm) ,

where the only case of N=4 has been computed as in Part II, the case
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of vibration of the bottom is of less significance in the problem of
generation of a tsunami. In due course let us consider the case of the
instantaneously elevated bottom.
Here, the comparison of Parts II and III are given below:
(1) the amplitude ratios of both cases are nearly equal.
(2) the amplitudes in the case of Part II are smaller than those
in Part III.
Firstly, this result seems to be inconsistent with the fact that the work
done by a vibrating portion of the bottom in deep water should be greater
than that in shallow water. However, further consideration shows this
result to be self-consistent. Referring to the preceding paper™ written
in Japanese, in water of uniform depth, the wave height of the out-going
wave from the “vibrating” wave origin varies sinusoidally as the length
of a vibrating portion increasing. If the relation holds that (a half length
of the wave origin) x (a wave number)=m=z (m: integer), the out-going
wave disappears irrespective of the length of the wave origin.
From this fact, we can find no difficulty in the interpretation of the
result of this paper.
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