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1. Introduction

In the previous paper,® apparent attenuation of waves through a
periodic structure was studied. The method is theoretically reduced to
the study of the solution of Mathieu’s equation in an unstable region.
The effect of the periodic structure on the wave with a certain period
is expressed by the following formula ;-

Aoccl/cosh pz (1)

instead of a mere exponential decay function exp (—puz).

From (32) in the previous paper we know that apparent attenuation
like this is caused, or, we may say, balanced in energy, by generation
of reflected waves. Those reflected waves are superposed and transform
themselves partly into higher harmonic waves and partly into stationary
waves, which, in nature, will correspond to the so-called “ characteristic
vibration of the ground” in an earthquake.

However, the structure that was assumed in the calculation is too
much simplified to deduce from its result a conclusion on the apparent
attenuation of earthquake waves effected by heterogeneous structure of
the earth-crust. To approach the general theory in an irregular structure,
step by step, another special case is studied.

* R. YOSHIYAMA alone is responsible for the remarks.

1) R. YosHIYAMA, ¢ Stability of Waves through a Heterogeneous Medium and Apparent
Internal Friction.” Bull. Earthq. Res. Inst., 38 (1960), 467-478. This is referred to in this
paper as Part 1.
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2. Remarks on wave propagation in a periodic structure

In the course of these studies, it was suggested? by a few that the
difference should be made clear between the results, a) by the present
writers and b) by Prof. L. Brillouin, those of the latter being published
in his book, “Wave Propagation in Periodic Structure.” Accordingly,
some remarks are made.

It looks as though it covers all kinds of problems of waves in a
periodic structure. Certainly, explanation of Mathieu’s equation in
relation to the problem of wave propagation is also given in Chap. VIII,
“Mathieu’s Equation and Related Problems.” But it is not so detailed,
and seems not so rigorous, as that already given by Lord Rayleigh® in
1887. Especially concerning the solution in an unstable region, while
its interpretation and application should be the point of study at present,
only a rough sketch of its properties is given, which seems misleading,
in spite of elaborate explanations of the problem given in the preceding
chapters. The reason why it seems misleading is as follows.

In Seec. 42, he gives Mathieu’s equation®,

6@“ +(+7 cos 25)u=0
and continues, “Floquet discovered that the general solution of the
equation could be written

w=D,A@¢)e* + D,B(£)e™*

with amplitude A and B that are periodic function of ¢ with period =.
This solution is thus a superpositions of two waves propagated (or
attenuated) in opposite directions. This is clearly seen if we retain the
e™* factor and write original ¢ function of Eq. (42.1). D, and D, are
arbitrary constants. If we keep only one of these waves, we obtain

u=A(¢)e** A(¢) has period = . (42.6)

........ The frequency has been chosen as primary data, and the problem
is to obtain g, which may be

1) Discussions at the meeting of Seism. Soc. Japan, Oct. 10, 1961.
2) Lord Rayleigh, Sci. Papers, Vol, 3. pp. 1-14.
3) Léon BRILLOUIN, Wave Propagation in Pericdic Structure (Dover Pub.), pp.172.
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p=1p pure imaginary, unattenuated sine Wave% (42.7)

r=a+1f  complex or real, attenuated motion

2

Formula of £ in connection with 7 and 7 is not given in this section.
In the succeeding Sec. 43 “ Mathieu’s Function, General Discussion”, it
is written, together with that A(f) and B(f) are a certain constant
respectively when 7=0, that

/":Ibm =f(77: 7, r—0, m'—’-l/;‘ . o (433)

As Brillouin also may be aware, this asymptotic formula is not available
when ¢ is- complex, because, if it is calculated by Hill’s method, its
imaginary part is a certain integer, as already shown by Rayleigh.
"In any case, if we expect to learn something in this chapter, the
point of great consequence lies in how to understand the passage underlined.
Though definite qualification of each of the waves which he names
“two waves”, is not given, one might generally understand as it implicates
a wave slightly, assuming 7 is not large, changed in form from what
might propagate when 7=0. From the viewpoint of seismological
application, it is desirable that studies be conducted holding an image
of a wave on that implication. As “one of these waves” would mean
a wave in one of two directions which are implied in the “opposite
directions ”, either propagated (unattenuated) or attenuated, the passage
in question would mean that, by putting one of two arbitrary constants
D,=0 in the general solution of the unstable region, we can obtain at
once a mathematical representation of an attenuated wave progressing
in one direction through a periodic structure, amplitude of which would
vary slightly and periodically, ruled by A(¢), and would die down
exponentially, ruled by exp («f), along x-axis, in the direction of propa-
gation. After-all, in spite of the statement concerning p when it is
complex, one might be led from this passage automatically to suppose
that, even in an unstable region, the main features of the “two waves”
in opposite directions with decreasing, though not monotonous, amplitude
are given by e*e™’ and e *¢™* respectivly, and that these two waves
are propagated, which means, of course, that they satisfy the equation
of motion, independently of each other.
If this is the case, the problem of wave propagation in a periodic
structure could be solved without difficulty. However, the solution of
Mathieu’s equation in an unstable region can not be obtained in an
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expreésion which is fitted to those interpretations, adopted, it seems,
by Prof. Brillouin. It seems, furthermore, unreasonable from the law
of energy conservation that an interpretation like that should hold,
because the medium is at any rate a perfectly elastic one.

Apparent attenuation of wave in a perfectly elastic medium, if any,
may come from a mechanism like a resonator, and will be quite different
in nature from the attenuation by viscosity or any other consuming
mechanism,

To refer to the results by Rayleigh may be another objection probably
most easy to understand. Rayleigh introduces Mathieu’s equation

W

T +(0,+20, cos 25)W=0,

practically the same as that by Brillouin, and obtained the general
solution in one of the unstable regions, retaining time factor e,

W=Re54{0,e! "% - (1 —6,—2is)e!®*+9}
+Se*st{0,e! =8 4 (1 — O, -+ 2i8)e! #+9} (72)

R and S are arbitrary constants, but s is not arbitrary. It should be
determined so that W satisfies Mathieu’s equation, and he gives

45 =07 —(0,— 1) . (43)

Therefore he says, “ Whatever may be the relative values of R and S,
the first solution preponderates when « is large and negative, and the
second preponderates when x is large and positive. In either extreme
case the motion is composed of two progressive waves moving in opposite
directions, whose amplitudes are equal in virtue of (43).”

The important point in these accounts by Rayleigh compared with
the foregoing by Brillouin lies clearly in the passages underlined, a part
of which is written in italics by Rayleigh himself. It seems the statements
by these two eminent authors concerning one of fundamental properties
of waves in a periodic structure are inconsistent with each other.

According to Rayleigh, we are unable, despite Brillouin’s assumption,
to “keep only one of two waves”, because their amplitudes are necessarily
equal. In the region of unstable solution, that is when we think about
an attenuated wave, s isreal. And, whatever we may assume to be the
value of arbitrary constants R and S, we cannot build up from (72) a
simply decaying function which readily represents a wave progressing in
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one direction. It will be still more clear, if we refer to the results of
recent studies of Mathieu’s equation and Mathieu’s funection.

This portion may be a trivial one in his book, because the chief
interest of Prof. Brillouin might still have been in the solution in a
stable region, though it is remarked in Sec. 42 that “ Here the discussion
is conducted in the opposite way. The frequency has been chosen as
primary data, and...... ” The circumstances are quite different with
us in the studies of earthquake waves. Moreover, the interpretation

by Rayleigh is not sufficient for our study, as far as it is explicitly given.

3. Effect of intermediate homogeneous medium

The medium is divided into five parts, from I to V, at x=x,, 2,, @,
and x,, where x,<a,<<t,x,. The wave is propagated from medium I
to V. Density p is assumed constant, and expressed as p,; velocity ¢
in each part is assumed as follows:

I: a2y, homogeneous structure, ¢,=const.,
II: o<lax<w,, periodic str., ¢c;=a{l+0bcos r(x—=x4)},
IIT: x,<Ce<Cx;, homogeneous str., ¢;=const.,
IV: 2<e<x,, periodie str., c,=a{l+bcosy(x—=x)},
V: 2, homogeneous str., ¢,=const.

Then the wave motion in , I "
each part is obtained by the
methorc)i explained in Pgrt 1; Ho?ta'q' Perioaic Homog,|Feriodic 'L/a”wg
it is, removing common time
factor exp (ipt) and assuming G.fe)l G.fo)G.R| G R GAR

bl <1, A, @beospl] Ay |@litbeosyl) Ay

A /42 + Bz A’4_ + &
I: A1=17,,—L:exp{——'ik1(m—ocl)}, B, B,

— B1 . 23=0 Z4=0
Bl_;/ﬁgcl exp {ik(z—.)} , Fig. 1. Schematic illustration of the assumption
and the notations. a’'=x—m1, /' =x—s.
k=2 .
¢y
I1: At+B,= ;7 {4,y (—2) exp (— )+ Bop(z) exp (1)} »
ov2

b
2, Cg 2

tz:gx dx 2= Tat21/1—b2 - 7(90;&71) as lbl'_’o .
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II: Ay=—2 exp {—ik(v—a)}

Voot
B.= B, exp {tk(x—z,)} , k=2
]/pocrs G

IV: A+B,= 1 {A(—2,) exp (—pz,)+Bar(z,) exp (#2,)} ,
V/pycy

Q:SZ de = rat, )/ 1—b _ r(x—=x,) as [b|—0 .
z3 Cy 2 -2

Vi A=A expi—ilfo—a)), k=P,
VPOC{) 65

Nine arbitrary constants, A4,, B,, 4., B., A4,, B,, A, B, and A,,
instead of the five in Part 1 are reserved for boundary conditions.
Direction of propagation of each wave is shown in Fig. 1. In a homo-
geneous medium, primary wave and reflected wave are set separately,
because either of the two is respectively a particular solution of equation
of motion. On the other hand, those in a periodic structure are not.
1(z) is a periodic function of z which enters into the general solution
of Mathieu’s equation.

%ﬁbl +{g*+2b cos 2z}, =0,
-

$1= Ayr(—2) exp (—p2) + By(z) exp (12) ,

g is a parameter that depends on the period of the wave and the constant
of the structure,

If wave length 2 is defined in a homogeneous medium by 2=2ra/p,
g=2L/[2, where L=2z[r is the wave length of the structure. As it was
explained in Part 1, the most important case in our studies is given by
¢=1, i.e., A=2L or p=ayr/2. Then, as it was also already explained,
Y(2)=sin (z—o)+s,8in (82—¢), o=x/4, s$,=b/8,
£=0b/2, regardless of the sign of b.
4r(—z) is obtained by putting o=—=/4. We put in this paper, assuming
[blK1, ¥(2)=sin (2—=/4), +(—2z)=sin (z+=/4) and p=b/2.
From the conditions of continuity of displacement and stress at four
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boundaries, we have eight simultaneous algebraic equations of 4,, B;,- - -
..., A, of a type similar to (22) in Part 1, from which A,/A, is obtained.
To minimize the effect of boundary reflection and to clarify the effect
of periodic structure, velocity and its gradient are assumed continuous
at four boundaries and ¢;=¢,=c¢;; i. e., i) e;=¢;=¢;=c,=a(1+Db), i) x,—x,
=2lz|r, and x,—x,=2m=|r, where | and m are integers respectively.
Four boundaries in z-coordinates are 2,=0, z.=Iz, 2,=0 and z,=mr;
velocity gradient at the boundary vanishes. Then we have, putting [b{<1,

ki=k,=k,=k,=pla, and ¢=1 gives k,=7/2,
W (ma) = —p(—mm)=(~1 VT,
& y(@) exp (1) exp (#2)-cos (o), 1#=b]2
=1/V'2, when 2=0
=(—1)"exp (pmz)[V'2 , when z=mxr.
L y(~#)exp(—pm)=1/V'Z , when z=0
=(—1)"exp(—pmn)V' 2 , when z=mr.

The eight algebraic equations above stated are much simplified as
follows ;

By T, B irB), via-B), S5 T3 tA=4
—1 1 —1 0 0 0 0 0 1
1 1 ) 0 0 0 0 0 1
0 (=0 —¢y -1 0 0 0 0 0
0 =0 ¢ 0 1 0 0 0 0
0 0 0 —cos k2, sin k,x, 1 -1 0 0
0 0 0 sin kg, cos k,x, 1 1 0 0
0 0 0 0 0 t(—m) —¢&(m) —1 0
0 0 0 0 0 Z(—m) ¢m) i 0

where ¢(n)=(—1)"exp(un=), n being an integer, and x,=x,—x, is thickness
of the intermediate homogeneous medium. For convenience of comparison
with the formula (1), put lz==z, and mr=z,, 2z,/y and 2z,/r are approxi-
mately equal respectively to the thickness of the zone where structure
is periodic. From these equations, we have
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A 1
A, cos ky, cosh p(z,+2,)+1 sin ke, cosh p(2,—2,)

so that

CA 1

A, {cosh? p(z,+2,)—sin® k,z, sinh 24z, sinh 2uz e’
Strictly speaking, these formulae are available only when z, and z, are
respectively a multiple of =, but effect of periodic structure will be
deduced therefrom. The important point of the formula is that the
effect of periodic structures at intervals is not always additive, though
always |4,/A;|#1. k,=pla=7/2, so that cosyr=2cos*k,z—1. When sin k.,
=0, i.e. cos kw,==+1 and cosyw,=1, |4,/A,|=1/cosh p(z.+z,); the effect
is perfectly additive. When sin kyx,= +1, i. e., coskx,=0 and cosyz,= —1,
|A,/Ai|=1/cosh u(z,~2,); the effect is subtractive. And it is natural to
presume some correlation between the effect and the magnitude of
Fourier’s coefficient of the mathematical expression of the whole structure,
through which the wave is transmitted.
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