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1. Introduction

The purpose of this article is to demonstrate the general method of
obtaining a theoretical formula of water waves produced by a vibrating
portion of the bottom with an “arbitrary form”.

The methods used by many authors so far are such that theoretical
formulae of waves produced by bottom displacement are derived from
integration of the equation (3) in section 2 under the conditions (1) and
(2) throughout the ‘“whole domain”, so their methods restrict their
studies to the problems of water waves generated by a portion of the
bottoms with “circular boundaries”.

In our method theoretical formulae of wave heights are obtained in
two parts respectively, (1) in the domain where the bottom vibrates,
(2) in the domain where the bottom is at rest; but both formulae are
connected smoothly by conditions at the boundary of the two domains.

Now let us develop our general method in detail in the subsequent
sections.

2. Basic Equation and Boundary Conditions

We use cylindrical coordinates (r, 8, z); r and 6 afe taken horizontally
at the undisturbed free surface of water,
and z vertically upwards (Fig. 1).

Suppose that @ is the velocity /T
potential, ¢ the elevation of water above BOTTM A
the undisturbed free surface (Fig. 1), ¢ / /////}W/\/\ /]/ / /7—
the acceleration of gravity, ¢ the time, // /
we have, as the surface conditions, Fig. 1.
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Also we have, as the bottom condition,
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where 7 is the velocity of bottom displacement and H the depth of
(3)
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water (Fig. 1).
Then the basic equation is given by
40=0

where
4=F 10
ort r or
3. Basic Equation and Boundary Conditions in Dimensionless

Form with regard to Length

Suppose that 7, is the radius of a circle enclosing the domain of
the vibrating bottom (Fig. 2), we have the boundary

(4)

(5)

(1) ¢onditions and the equation in dimensionless form
from (1), (2) and (3) as follows;
[/ '
2 g2 =0 @=0),
ot’ 07
a@' ={77’ (').’<1) 9 (z1= _H/) ,
0z’ 0 (r>1), :
49'=0, (6)

Fig. 2.

where
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4, Reduction of Basic Equation and Boundary Conditions
by Virtue of Vibration

Since we are treating the case of vibration, we may suppose that
@' =0, exp (—iont),
7' =7, exp (—iwt),

where o is the angular frequency of vibration.
Hence the boundary condions (4) and (5), and the equation (6)
become as follows; ’ '

—w0f+g 2 —0  (2=0) (7)
07’
6(170’ _ {770/ , (’r'<1) (zr: _HI) ( 8 )
0z’ 0, ('>1)
40/ =0 (9)

5. The Relation between the Displacement and
the Velocity of the Bottom

Denoting the bottom displacement by Dy, or by D'wo=D /7, in
dimensionless form, we have the velocity of the bottom displacement 7
or 7' as follows;

anot ’ a-D/bol;
= T = —
7 ot o7 ot
Elimination of the time factor exp (—%wt) from 7 and D', produces
70 = — (D v )o 5 (10)

where
D’bot = (leoL)o exp (_ ,l’wt) .

6. The Bottom Condition in Fourier Bessel Series

The amplitude of the bottom displacement, (D’..),, With a boundary
of an arbitrary form (Fig. 8) can be expressed by the Fourier Bessel
Series as follows;
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M0 D= S [A,, cos nf-+B,, sin n]-Ju(4,.a"), (11)
n=0 §=1
D where
| A6
Bn.s 7‘-[171;-1~1(}"1,*)]:Z

4201
: g S (D’bot)o . Jn(}‘n,{r,) . {Cf)s ’)’Lﬂ} -df-rdr y
Fig. 3. (In dimension- —=Jo sin nd
less form). 50:1, €1=52:53=.-.:2’

and 2,, (s=1, 2, 8,...) are positive roots of the Bessel function J,(2,,)=0,
taken in order from the smallest positive value.
Then by use of (10) and (11), the bottom condition (8) becomes

00,
02

= 0 (D')oS SI[A,.-cos n0-+B, ,-sin nd]-J.(2, ,7) (12)
n=0s=1

(r<l, #=—H)
% 0 ('>1, Z=—H). (13)
0z

Here we define the domain in the range 7'<1 as “domain (I)” and
that in the range 7'>1 as “domain (II)” (Fig. 3).

7. The Solution in Domain (II)

In this domain the bottom condition is always zero as designated

by (13).
The separation of the variables of @, in (7), (18) and (9) gives
—o'0,/ 499 =0 (2=0), (14)
dz
dz
and
do .
z — /_wzl s 16
dz" ¢ (16)
0 1 0 1 ¢ .
— = 4+ —4a”?)0,=0,
(61*’2 +'r" or’ * 7 602+a ) ? amn
where

V=00, ,
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@,y and @,” are the functions of 7/, 6 and 2’ respectively, and a’ is the
separation constant.

Solving the equation (16) under the conditions (14) and (15), we
obtain a group of solutions ‘

@, =cosh a,/(H'+7)
and '
cos a,(H-+7), (18)
(s=1, 2, 8,-++)
where a, and e, are the real and imaginary roots of Airy’s relation
o’=a’g' tanh o'H' .
By this equation the separation constant a’ in equation (17) can be
determind as e, and ia. (s=1, 2, 8,--.).
Taking into account that &, has periodicity of 2= with regard to @

~and damps out at the infinite point of 7, the solutions of the equation
(17) become '

@;4=(C,, cos n0+ D, , sin n6)H (a, ")
and
(C,.,cos nd+ D, , sin n0)K,(a,'r’) . 19)

(n=0, 1, 2, 8, >
s=1, 2, 3,---

From (18) and (19), we finally obtain @, as follows;
o =§) (C% cos n+ DY sin n)H,"(a,'r’)-cosh a,/(H'+7')
+§{ g (C™ cos hﬂ—l—D,‘,‘j,’ sin n8)- K (a,/r")-cos a,/(H' +2"), (20)
where the values relevant to domain (II) are denoted by surersuffix (II),
and C,,, D,, (n=0, 1, 2,---; s=0, 1, 2,...) are arbitrary constants.
8. The Solution in Domain (I)

Supposing that @}, satisfies the “ homogeneous” boundary conditions,
let us put 7/=0, i.e.,
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0y 4920220 (=0),
F4 .

6%) 0 ’ ’
_— z = —H s
=0 ( )
and
A,¢’(;,)=0 y
which are identical in form with the conditions and the equation in

- domain (II). We have then the solution of @}, in the same manner as
in section 7,

= Zj‘, (C.,.,cos n6+ D, ,sin nd)-J, (a,/r")-cosh a,/(H'+72)

nMa

C..cos n0+D,,sin nf)-IL(a,/r')-cos a,/(H +2) . (21)

Since the pressure (or velocity potential) must be finite at the origin
(r'=0), the terms including the Bessel function Y,(a,/7') have been
eliminated, and C,,, D,, n=0,1, 2, 8,-+--; u=0,1, 2, 3,.--) are
arbitrary constants.

Next let us consider the particular solution @, which satisfies

— o’y + 9 —2-

la@(p) __O I:O
P (z'=0),

3¢(’,,) :vol (z,: _HI) s
0z

A’¢;p) =0 ’
where, from (12),

7 = —io(Dide Sy SV [A,,-cos n0+ B, ,-sin 1] J(247) -
n=0 s=1

By inspection we can take the particular solution @, to be in the
following form ;

(b(m:_@

HMS

f;[ A, -cosnf+ B, sinnf]-J, (2, ;7 )(E, & + F, =) (22)
where
E — 1 . w2+g';‘n.s
" M,, 2us
1 —o'+4g2
Fn = N 7.8
' Mﬂ.& 2”.8

’

b
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O I R e I

e_/\”“‘ H' , ——e)‘”'-"H'

Thus finally we get the general solution (I) from (21) and (22) as
follows ;

o

O =04, +0,=3 (C, cos nl+ D, sin nb)-J,(a,/r")-cosh a,/(H' +7')

n=0
+3

8=1

Ms

3
1l

. (C®, cos nf+ D®, sin n6)- L(a,/r")-cos a/(H'+2')

Ms

—iw
n

i [4,.. cos nd+ B, , sin nf]-J(2,.,1) (B, €'+ F, e~ *ns*)
0s=1

(23)
where super-suffix (I) stands for the values relevant to domain (I).
9. The Determination of the Arbitrary Constants
Cy., D, Ci, and D%,
For determining arbitrary constants C%,, DY, (I=1I, II; »n=0, 1, 2,
3,---; u=0,1, 2, 8,---), we need two “independent” conditions at 7' =1.

For these conditions the next three equations are available ;

O =@’ (continuity of pressure),

90" _ 08

a0 i) . . .
SO0 (continuity of velocity of water particle),
[ 0
or' or’

but the first two of these equations are found to be equivalent.
Consequently, the conditions

@é])lz¢éll)l (24)
and
6@(()[)/ _ 6¢(()II)I (25)
or' or'

are enough to determine the arbitrary constants.
Substituting (20) and (23) into (24) and (25) we have
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S (C) cos nf-+ D, sin n6)-J,(a;)- cosh e,/ (H' +2')
n=0 .

EM*

f‘, (C, cos nf+ D\, sin n6)-I,(a,’)-cos a/(H' +2')

M

(Cy'9 cos nf+ Dy sin n0)- H"(a,’)- cosh a,/(H’ +72')

0

]
]

(C,‘}‘,’ cos nf+ D"} sin nd)- K,(a,’)-cos a/(H'+7') , (26)

-
Ms
uMg

Il
—

8

S (C, cos n-+ DY) sin n6)-a, - J,(as) - cosh a/(H' +2)
n=0

+2§ (C, cos nb+ DY, sin nb)-a, - 1,'(a,)-cos a/(H' +2')
2 ﬁ_j (A, . o810+ B, , sinn)-2, - I, (2. By 5%+, ,~ %)
2 (C3%) cos nf+ D'y sin n6)-a,’ - H"'(a,’)-cosh a,/(H'+2')
2‘, Z:‘, (G cos 0+ Dy} sin nf)-a - K,'(a,’)-cos a,/(H'+2') . (27)

Orthogonalities of functions {cosh a,(H'+z’), cosa,(H'+2')} (s=1,
2,3,---) in the range 0>2'>—H'" and of functions {cosnf, sin n6}
(n=0, 1, 2, 3,---) in the range 27>0>0 reduce the relation (26) and
(27) into the following simultaneous equations

CldJ(a))—CMH(a,)=0 n=0, 1, 2, 3,..+),
DEJ(a))~DHHa)=0  (n=1, 2, 3,---),
COI(a,))—C™ K, (a,)=0 (n 0, % g ’
DUL() DK (@)=0  (FZ7 5500,
’ 1 b (28)
CiW (a))—CIH (a)) =Ry (n=0, 1, 2, 3,-++),
D7S'I‘)]J"I(a0,) D"(Ill))H(l)l(ao ) Rn 0 (n_ 3’ ) ’
Colla)~CiK @)=Re (323 3 5000,
3,

DLL/(a,)—

1) T.H. HAVELOCK,

B
DK,/ (a/)=E.]

s=1, 2, 3) ’

“Forced Surface Waves on Water ”, Phil. Mag., 8 (1929).
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where

R:n‘) iw-4 = (A
. . n,U nu'Jn/ anu 'Lr(Lo)u,
Rf,o} sinh 2a, H' +2a, H' ;:,{ B, } : (Au)- Ly

L::’AFS (B,.e""" +F, e ") cosh a,(H'+2)dz
-H

1, 2 —+ {o*(cosh a,’H'—cosh 4, ,H')
0

B Mn,u '{i,u_
+9'(—a, sinh a/H' +4,, sinh 2, ,H')},
R:’; tw-4
* — - / 'In u L(s)
Rfj;} sin 2a, ’H’+2a H' ;::'o{ M} S )

L;;;:S (B, o6 ™ 4+ F, ") cos a,(H'+7)dz'
-

n,% n,% as

+9 (e, sina,/H' +12,,sinh 4, ,H')},
'(—w +g Zn u) s _(‘D +g'1n u)

—An,uH M u H
, -

From (28) we finally obtain the arbitrary cosﬁants as follows;

C:L%}: i-wa, .R:,n{Hn(n(ao/) . (n=0,1, 2,-..),

o 2 W(ay)
DZ)} i n'ao ‘R {H;”(fl;,) , (n=1, 2, 8,--+), |
I 29
C;Us} a.- _R { n(a’ ) (nzoy 1’ 2y"'> [ ( )
C'r(zns) ’ I( I) S—':]., 29 39"' ,
Dr(zl)s ’ { n(a’ ) ’n:l, 2: 37 e
m} a/ R ah <s _123. ) .

10. Theoretical Formulae of Wave Height

1 (6@'
ot
dimensionless form are obtained from (20), (23) and (29) as follows;

) , the heights of waves in
2'=0
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W =gt 2 (C™ cos nf+ DY, sin nf)- J,,(aO r')-cosh a,/H’
Q

et 2 5 (C®, cos nf+ D", sin nd)-I(a,/r")-cos a,/H’

lI

(A4, ,cos n0+B, , sin nb)-J,(,.r')- »  (30)

oo
—itu Z

aMa

n,8

e = e "“’”Z(C“ cos n0+ DY sin nd)- HV(a,'r')-cosh a, H’
+ 2@ g gt 22‘,( I cos nf-+ DY sin nﬂ) K,(a,/7)-cosa,/H ,(31)

where ¢ and ¢™’ stand respectively for the wave heights in dimension-
less form in domains (I) and (II).
Using the relation ¢=7-¢’, we finally obtain the wave heights

C(I) =/ro.c(1)'
C(Il)zrn,cﬂl)/ , (32)

where ¢® and ¢ are the wave heights in (I) and (II) respectively, and
¢P and ¢ are given in (80) and (31). As far as other constants
included in (30) and (81) are concerned, reference should be made to the
preceding sections.

11, Asymptotic Formula of the Out-going Wave

According to Watson®, asymptotic formulae of Bessel and modified
Bessel functions are given by

x n
i °0 f'—;—;ﬂ)

HY(a,/r')~

’
! pal
s 0')‘

1 ... 2 —ay'r—i —+qu
K. (a7 )y~—==i"". e ¢ .
2 7y 1

By virtue of the above asymptotic expressions, the out-going wave
of ¢" js found to be composed only of terms with the factor H"(a,r").
Hence the formula of the out-going wave is written as follows;

2) G.N. WASTON, Theory of Bessel Functions, (Cambridge Press, 1922).
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C(Il)z't'_w_'g__/':o_z_ . m . cosh a/l)H' N(H) . e’(—wHuor"?)’ (33)

where

N(6)=5,(CS cos nf+ DS sin nd)-¢™",
n=0

and the relations

9=0'"y,  Q=0¢[7,
H=H'r,,

have been used.

Here we can see that the factor N(6) plays the main part in causing
the directivity of the out-going wave at a distant point from the wave-
generating source.

In due course we shall apply this method to a particular problem
in a subsequent article.
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9. EEOERZ UNZIFEHTARIZI DT INTIKESR
ERbiFk S FHEKTDS1NT

wEwEn B H & R

BEIABTICENT, EEOHE LEAKER X DRE Sh 2B 2 BRI BB TG .
RO HBRERD, FHIETREESHONEAMHRE E Halcy, MRALTESCHET
3X51, MORNOBOROEERBREIRE Lie. WHOMERD 2ICBL, FHHTIRENRZ M
LEAR D, Zh# Fourier Bessel Bi#% T\, FHRERZAMEEKTHL OEELL LD, &0
Fourier Bessel BBz X 2581%, FEXEMLOLHLD Lo, MMETE, E£EOHE Lz
EE#% Fourier Bessel B4 L7 & &, Fourier Bessel (fxkdp 3= L%, HrInLL LT3,
= @ Fourier Bessel {REUIMHMNIC ST 2T D, FHERDL T, +OEEEL a2k, £
hix, Fourier Bessel (&¥% BHERMEED Lz, KV BHTHBLEZLNREZNLTH S,

AR X 2T, —IG “EEY DL LERRIT 5 2 &0 Water Wave ORIEIZFHRIC
BRAE LD LR 5.




