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1. Introduction

The method of obtaining theoretical formulae of water waves
generated by a vibrating bottom with an arbitrary form has already
been introduced by the author®.

In this paper the author intends to apply this method to a particular
case—a continuosly vibrating square bottom.

2. Basic Equation and Boundary Conditions

We used cylindrical coordinates (r, 6, z), taking (r, 6) at the
undisturbed free surface of water and z vertically upwards.
Provided that @ is the velocity potential, ¢ the time, ¢ the acceleration

of gravity, H the depth of water, and 7 the velocity of bottom displace-
ment, we have
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1) T. MomoIl, “General Method of Treating Water Waves Produced by a Vibrating
Bottom with an Arbitrary Form,” Bull. Eathq. Res. 40 (1962), 261-271. In subsequent dis-
cussions we refer to this paper as “T. M.”.
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Rewriting the above conditions and equation into dimensionless forms

with regard to length we get

00’ , 600’ '
_— 2 :0 N
ot’ +9 0z’ ( )
aﬁ, =771 (zl:_Hl) ,
0z
49'=0,
where
O'=0[ry, g=g/r,,
/ z'=z/7‘o ’ 77’:77/7‘0 ’
/ 6=0 H'=Hjr,, r=rlr,,
g 410 18 &
(1) ro or* v or v 80 02*’
) and 7, is the radius of circumscribed
circle of the square bottom (Fig. 1).
In the case of the harmonically

vibrating bottom, these conditions and

Fig. 1. equation are reduced to
—w 0y +g2% =0 (=0,
0z
, (1)
0@(’) :7}0/ (ZIZ_H/) ,
0z
A,q)ol':O ’ ( 2 )

where o: angular frequency of vibration,

O'=@, exp (—iwt) ,
7' =7, exp (—iwt) .

3. Fourier Bessel Expression of the Vibrating Bottom

According to the paper T. M.V, the amplitude of the bottom displace-

ment in dimensionless from is written as

(Di)e=S. S (A, cos nf+B,., sin n6)-J,(L,..7) , (3)

n=0s8=1
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where
An_s} € S S {cos 'm?} 0 dordr'
Bn,s —_—ﬂ[Jnﬂ(zn 8)12 ( bot)o . 'n. ( ’ns/r) rar
=1, g=eg=g=-.--=2,

Ans (8=1, 2, 8,--) are the positive roots of J,(2,.)=0, taken in
order from the smallest positive value,

Db,ot_(Dt:oh)o exp (_'iwt) ’

Dyoy=Dy/7, , and

D, is the bottom displacement.

Here we take the basal line of cylindrical coordinates parallel to the
brim of the square bottom (Fig. 1).

Now since we are treating the case of the square bottom the
expression (3) becomes as follows by virtue of symmetry :-

Dbom('rr 0) = Dbot('r’ - 0)

=Dyo(r, 7—0)
—_— 7T —
_Dbot(/rr? 0) ’
(Dbou)o—}__. g. Ay, cos 40Ty (2y,.7") ' (4)
where
A_S S D A10-T (1 7")-d0- 5
e (T Jo YD €08 410 Jullar)-d0-v'd (5)

Also the uniform vibration and the form of the square bottom make
the expression (5) simpler as follows;

__ 8eu(Die)s S”’ cos 410-d0
e ﬂ[JuH(lu,s)]z

Here we define the domain in the range '<1 as “Domain (I)” and
that in the range »'>1 as “Domain (II)” (Fig. 1).

(1/4/2ysecd
S P Tl . (8)

4. The Solution in Domain (II)

In this region 7/=0 in the condition (1), therefore the separation
of variables of @, so that ¢/=@,,-0,’, where @,, and @, are functions
respectively of only r, ¢ and only 2, gives
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49/ 0  (=—H) (7)

¢ 1 9 1 & ,n) .
— =t ——+a")0,=0, 8
(67*’2 r ort r* oo ? (8)

where a’ is the separation constant to be determind from the first
three equations.
A group of equations and conditions in (7) give the solutions,

¢,'=cosh a,(H' +2'), (9)
cosa/(H' +2'),
(s=1, 2, 3,---)
where a, and ia,” (s=1, 2, 3,---) are a real and an imaginery solution
of Airy’s relation w*=a’g  tanh a’'H’.

After substituting the “eigen” values a’'=a, and za,’ (s=1, 2, 3,---)
obtained from (7) into (8), we have the solutions of (8), i.e.,

@,o=(CIY cos n0+ D sin nd)- H(a,/r’) ,

(CSY cos n0+ Dy sin n)- K.(a,7') , (10)
(n=0, 1, 2, 3,-- )
s =1’ 2’ 3, .s . ’

where the Bessel functions are selected so as to fulfil the condition that
only the out-going progressive waves remain at infinite point of ’, and
can, cov DM DM are arbitrary constants.

By combination of (9) and (10), we have the velocity potential @{""’
in Domain (II) as follows;

o =3 (CY cos nd+ DSV sin nb)- HP(a,r")-cosh ay(H' +7)

n=0

3 (08D cos nd-+ DY sin n6)- K (a,r)-cos a/(H'+2)  (11)
=1

n=0
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5. The Solution in Domain (I)

In this region 7,0 in the condition (1), so we consider the general
solution @{"’ in domain (I) as the sum of @}, and @,,, where @}, is the
general solution under the “ homogeneous ” boundary conditions, in which
we assume 7,/=0, and @, the particular solution under the *‘imhomo-
geneous” conditions.

Then we have, as the particular solution, according to the paper T.M.,

Oy =—iw0 >, S Ay y-€08 410+ TRy ) (B i + Fioe ™), (12)

=0 s=1

where
1 (’)2 + g,zu,s

M4l.s 241,3 ’

1 —ot g2,

E4l,s=

Fl,s:
! M4Z.s z41.-!?

M, = (_wz_’_g'&u,s) ’ (—(1)2‘*‘9,241,3)
41,8 — e_)\“’syr , —'6>‘4l'SH' ’

and, as the general solution satisfying the “homogeneous” conditions,
= i (C", cos nf+ D) sin n)-J,(a,/r')-cosh a,/(H' +2')
n=0
+3, 3 (CY, cos nl-+ D sin nb)-L(a,r)-cos a,(H'+2),  (13)
s=1n=0

where CJ,, C¥,, DR, DX are arbitrary constants.
Thus we finally obtain the general solution @&’ in Domain (I),
O =0y +9,, , (14)

where @, and @, are given by (12) and (13).

6. The Determination of Arbitrary Constants C{, and D}’
(=L, II; n=0, 1, 2, 3,---; u=0, 1, 2, 3,---)

The following two conditions are enough to determine the arbitrary
constants C{,, D!, that is to say,

(1) continuity of pressure, at r'=1,
' ¢(§I)/=¢éll) ,
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(2) continuity of velocity of water particle, at r'=1,

6(173”’ a(pén)'

1
or or (16)

a@él)/ _ a@éu)’
Y
to (15), so the above two conditions are used.
Substituting (11) and (14) into (15) and (16), and applymg the
operators,

where the condition (at r'=1) is ‘found' to be e(iuivalent

’ y ! ! ! : g ’ ’ ’ '
|- {oin mapaol. cosh astar+20az, | {2 T0kdo] eos ot/ +2)az,

(n=07 1, 2;"'; 3:17 2: 3:"’) ’

to the relations (15) and (16), we obtain the following compatible
equations, i.e.,

(I)J(a l) C(")H,fn(aol):() (’n:(), 1’ 2,.. ,
D,ff?JJn(ao')—DATB’HJ”(%'FO (n=1, 2, 3,---),
C,‘J’,I(a’) CWEK,(a,)=0 <’;7'22, é, gy ,
DOL(a)-DK()=0 (3275 310,

eda(a))—ClHY (a) =R,
(=0, 1, 2, 38,--+),
CoJ/(a)—CIH (a))=0
{u: positive integers except
for u=41 (I=0, 1, 2,..+)
D%J. (a))— D)0 H" (a,)=0
(n=1, 2, 38,--+)
Ci.Ii(a,)—CiKi(a)=R,.,
(l:O, 1, 2,-~~)
s=1, 2, 8,-+-/
CIL/(a,)—CiYK,/(a,)=0
u: positive integers except for
u=4l (I=0, 1, 2, 3,--+) ,
s=1, 2, 3,---
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DL/ (a)— DY K,/ (a,)=0

n=1, 2, 3,-+-
(Z=1, 2, 3)

Ryo= iw-4 oS A AR n) IO 17
41,0 sinh 2a, H' + 20, H’ ugll st A (A o) L) 17

1 2
LY,= . - {w*(cosh a,/ H' —cosh 2, ,H’
b Mu.u sz,u—aolz {w ( ’ * )
+9'(—a, sinh ay/H'+2,, , sinh 4, ,H')},

oA
R, .= e A, u* Aaru (R, u L, ’ 18
" sin 2a,/H +2a,H’ 1?:“ b i) Ll (18)

1 2
Ly.= . - {w*(cos a,’H'—cosh 1, ,H'
al, M“,u fz,,u,—l—as’z {(D( oS 4y, )
+g'(a, sina ’H’—H,, « 8inh A, . H')},
Mu (“—w +g14l u) ’ —((1) +glu u)

—A y:4 A H'
e 4l,u , e4lu

where

Solving the above simultaneous equations we get the arbitrary
constants :-

ina,

C(I) =2 Hm(ao/) R4z )
ira,

C;P% ZTO : H4(ll)(ao,) ’ Ru,o ’

(l=0’ 1, 2, 3,-- ) (19)
C«gg)s_”’a’s, 'Kﬂ(as,).Rﬂ.s ’
Cii=1ta, - I,(a))-R,., ,

(l—0123 )

s=1, 2, 3,

where R, , (I1=0, 1, 2, 8,---; u=0, 1, 2, 3,---) are given in (17) and
(18). Other constants are zero.

7. Theoretical Formulae of Wave Height

By virtue of (19) and the relation, ¢'= (6;;/) . &'=tlr,, C:
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wave height), we obtain from (11) and (14) the wave heights in
dimensionless form :-

v = 7

;‘e_fw!.[@;h)+¢;p)]z’=0 in Domain (I) ’

[¢;h)]z’ gl z(a/o r ) Cﬁ)o'COS 410-cosh aolH

,i s‘.. I(a/r)-C{,-cos 4l6-cos a,/H'" ,

o

[(D;p)]z':oz —iw >, >, Ay, rcos 410 Ty (2,.,7) - ]lzlg ’

I=0s=1 4l.8

c“w:fgﬂ,-e—fwt-[awm']z,zo in Domain (II),
[0, = 35 Hif(a/r")-Cif-cos 410-cosh o) H'

lZ, Z, K,(a/r')-Ci"-cos 410-cos a,/H' ,

where Cif’, (=1, II; =0, 1, 2, 8,---; u=0, 1, 2, 3,---) are given in
(19) and other constants are presented in the preceding sections.

8. Asymptotic Formula of the Out-going Wave

In this section we consider the asymptotic formula of the out-going
wave.

As mentioned in the paper T.M., the asymptotic formula of the
out-going wave is given as follows;

an w1y / 2 . . . {(__ ,_E)}
¢ p . cosh a,H- N(0)-expii| —wt+a,r i) (20)
where
N(O)=3,Cif cos 410 ,
=0
¢ . wave height of the out-going wave and the constants included in
the equation are given in the preceding sections.

9. Numerical Consideration of the Out-going Wave

In numerical consideration we adopt the following numerical
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value, i.e.,

amplitude of bottom displacement (D,,)=1cm,
depth of water (H)=31.2cm,

period of vibration (7')=1 sec.,

acceleration of gravity (g)=980.5cm/sec?.

Substituting these values into Airy’s relation, o’=agtanhaH, we
ascertain the value of wave number a, to be 0.045323.

For convenience of numerical consideration, let us rewrite the form
of (20) as follows;

L 1/1_/7 sin (wt—aor+%)ﬂ”’ ) (21)
where

. 2
;n) :.ﬂ. }/i'COSh a0H° N(o) y
g Ty

N(6)=3., C{-cos 410 ,
1=0

S
=70 g (ad) R (from (19),

w4 = ,
R, .= ww S Ay g w Ji(a ) LY, (from (17)
0= it Sar H 4+ 2l H Z oA (A w) Ly ( a7

L= Ml T Zm + {w*(cosh a/H’—cosh ,,,,H')
41,9 4l,u— Wo

+9'(—a, sinh ayH' 42, , sinh 4, ,H')},
(_w2+g’24z,u) ’ _(w2+gli4t,u)

M, .= e—)\u,uH’ , _eMl.uH' ’
BBl (o gigan. |7 N
Ay u= 1"\ vot)o cos 410:d0- Ju(Ag W) r'dr’ (from (6
i T[S g1 ) ] Jo 0 i) ( ©
— 854; * (Dlgot)o .1 (22)
”[J4z+1(l4z,u)]2 e

Lyu=3(—1)- U@L, u, t)- V(4l, ),
t=0

< 24! w )4l+2t ( 1 )2l+H—1
2 2

T tl@lty! 20@lttt1)

U@l, u, t)




282 T. Momol

2 2 2__02
V(4l’ t)=L2(2l+z+l)_(‘él') 'Jz(zz+z+1).z+ (4l) {(;il') 2} 'J2(2H-t+l).4

GG 5 R (CA S I S
6! ‘

/4
Y P =S cos~I®HtHl g.qd0
0

= 1 L QELH -1 221 +t+1)—2
22l+t+1)—1 2@l+t+1)—1

------

cLig(ar+e) 9

/4
J2(21+t+1) ’2p = S COS“’””““’ 0' sm""’ 0‘ dﬂ
0

_ 1
T 2p—2(2l+t+1)

......

( — 27D (22) - 1) * sz+:+1) . 2(p—1)) ’

Jz(zz+z+1) 0= Lzm+c+1) .

Here we difine ¢ as “relative wave height”.

As to the integration of (22), reference should be made to the
Appendix, and 2,, (1=0, 1, 2, 8,--+; u=1, 2, 3,---) may be obtained
from the table of Bessel functions.

(I
IS

7 ro=T10cn

ro=60cm
/" ry=50cm
L /

v

05 1
0 8
-05 re=85cm
ro =100Cm
_IO 4

Fig. 2, The variation of the relative wave height versus the direction 6.
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Now by the use of the above mentioned values and relations, we
finally obtained variations of the relative wave height ¢ versus direction
6 for each value of 7, i.e., 50ecm, 60cm, 70cm, 85cm and 100cm
(Fig. 2). From this Figure we find that

(1) the relative wave height in the direction 6= 0 is generally
larger than that in the direction 6==/4,

(2) the phase difference of the waves in the direction §=0 and
0=n/4 becomes more remarkable, as the diagonal length of
the square bottom increases. And they are finally in inverse
phase.
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Appehdix

Here we will consider the method of integration of (22). Firstly,
Bessel function is expressed as an ascending series?, i.e.,

(—l—z)nﬂr

By virtue of this expression, we have

’ . 7 /= — t.—__—__
U Ty =2 (D
where J,(2) is integrable term by term, so Ju(d..7")r is also integrable
term by term.
After integration, (A, 1) becomes

patatdy (A, 1)

141 41428
»8

1/4/3) sec oo (1/y/3) secd
X( 2 2 S

0

S“’m o Ty dr =3 (= 1) UL, s, )-sec®+0 , (A, 2)
i=o

z 41+2t
( 41,8 >
2 2—(Zl+t+l)

t1-(A+9)! 2@I+t+1)

2) G.N. WATSON, Theory of Bessel Functions, (Cambridge press, 1922).

0

U4l, s, t)= (A,3)
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/4
Consequently, applying the operator, S cos4l0-df to (A,2), it
]
produces

(1//3)secg

S"“cos 4la-dag T )rde’ =S (— 1)~ U@L s, 1)- VAL, 1) , (A, 4)
0 0 t=0

n/
V4l, t):S ' cos 410-sect D 0. 49

0

Here cos (410) can be expanded to the following series,

cos 4l0=1—% - sin? 0+ 4y {1(44})2_22} sint @

_ (- {4y -2} {41y —4)
6!

sin®@+..-,
or
cos 4lf-secwr+tn g—_ 1 (4l  sin’6
cos!+Ea g 21  coglitin g
L@@ —2) sin'g
4! cos i+ g

_ (AP {l)—27} {4l —4)  sin%0
61 cog i+ /]

Foee,

Integrating the last equation from 0 to 7z/4 with regard to 6, we
have V(4l,1).

V@l t)=Lal+2t+2)— 40 5

2 1 (41+2¢+2), 2

\2 2o
+W'J<4z+zz+z>.4

+ 41y {(4l)2_221} - {4y —43 a6

Foeee ] (A, 5)
where

/4
L(4x+2;+2)=§0 cos™ D §.df

/4
J(“.l+2§+2).2p=g cos~ WD §.5in* 0. d6 .
[1}
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The latter expression can be reduced to the former by the next
recurrence formula,

1
2p—(41+2t+2)

{—2@rth=r 2p—1)J yra40, 2p—2} s

J<4z+2z+2>. 2p —

......

/.
Jrsarin, o= g 4 cog~ W+ g, dg
0
=L(4l+2t+2) .

Accordingly if we can evaluate L(41+2t+2), (A,5) or (A,4) can
be integrated analytically. The evaluation of L(41+2t+2) will easily
be done by recurrence formulae as follows :

1 - (41+2t)
L4l 2t 2= ‘2(H) ‘L4 ’
(+2i+2) (4l+2t+2)—1 (4l+2t+2)—1

10. EBoER UEET AKIC L2 TR 3hiz Water Wave %
> — XA =D — IS BB

wEwEn ke H 5 %

FEHBINCEROWE LB X0 T2 SNBKERRD IR — BRI EE BA L,
R TR, ERIZOFEREFHOES, —FRENE L oCTRETAEAICER LCRE.
FOFERRD X 5 InfEim e B, Tihbb,
() F4:3 % Water Wave 13, EHHOTICEERHHTCEEIRAE <, EHUORAR
. TBETE, ERHAS,
(@) LT, #h, EFFOLCEARFNELRARHEDO Wave o phase 43, EHHORG
MORINKEL B ONTARLEDTL 5,




