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1. Introduction

We obtained theoretical formulae of the wave height produced by
a harmonically vibrating elliptic area of the bottom.” Then an asymptotic
formula of the wave height at a distant point from the elliptic wave-
generating source was given, whose variation versus direction for some
numerical values was also presented. In this paper more numerical
examples of the wave height in asymptotic form are shown for several
values of the major and the minor axes of the wave-generating ellipse.

The article entitled “On Water Waves Generated by a Vibrating
Bottom with an Elliptic Form” was reported in Japanese, so we give
outlines of derivation of the theoretical formulae of water waves produced
by the vibrating elliptic wave source in the following section.

2. Derivation of Theoretical Formulae

Supposing the water to extend to infinity horizontally and taking
the axis of x and ¥ on the undisturbed free surface of water and that
of z vertically upwards, we have, on the assumption that the motion is
infinitely small and irrotational,

p[p=09[ot+gz ,

where p denotes the pressure, p the density of water, g the constant'
of gravity and @ the velocity potential which satisfies the equation

40=0 . ; (1)

If ¢ denotes the elevation of water-level at the point (z, ¥, 0) and
at time ¢ above the undisturbed surface, then the pressure condition -

1) T. Momol, “On Water Waves Generated by a Vibrating Bottom with an Elliptic
Form?”, Zisin, [ii], 14, (1962), 9-22 (in Japanese).




(1) and the conditions (2') and (3') again degenerate into the next forms ;-
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to be satisfied at the free surface, supposing ¢ to be small, is

e=—1(22)
g ot /z=0

and the kinematical condition is

% _(22)
ot 5z Je=o

Hence, for z=0, we must have

ot " Yoz (2)

As the bottom condition, we have

(%%) =70, (3)

where H is the depth of water and 7, the velocity of bottom displacement.
If the problem is confined to the case of vibration, the equation
(1) and the conditions (2) and (3) can be reduced to the following forms ;-

49" =0 1)
a0/ +970=0 (=0) @)
‘%i’%’ (z=—H), 3)

where the primed functions disignate those from which the time factor
exp (—1iwt) is eliminated.

Now by separating the velocity potential as @'=¢@,,-@,’, where @,
and @, are respectively the functions of x, ¥ and of z alone, the equation

(_Q:: + i~ﬂ>¢zyl + a’2$zyl =0 ( 4)
ox* oy’
do,; .
=Tt =aq0, 5
dz (5)
do,;

—w%ﬁ,’-{-gd =0 (2=0) . (6)

z
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do’
dz

=7 (2=—H), (7)

where a is the constant of separation. v

Since we are treating the problem of an elliptic wave source, it is
more convenient to use the elliptic coordinates rather than the Cartesian
coordinates. The equation (4) becomes as follows in the elliptic coordinates

& 7);

(;; + g_;)@“’/ +2k*(cosh 26 —cos 29)@,,/=0 (8)

where 2k=ha and 2k is the interfocal length of the vibrating elliptic
bottom.
Expect for the conditions (6) and (7), the velocity potential must
satisfy the next conditions, i.e.,
i) ©@—0 at the infinite point of ¢,
il) &0, »)=@(0, —7) (continuity of pressure),

0 __ 0 _
'a?[¢(‘£:y 77)]5—»0"_ @E [(p(é’ 77)]5_’0

(continuity of the velocity of water particle)
on the interfocal line of the ellipse.
Under these conditions we obtained in the previous -paper? the
velocity potentials, @ in the region where the bottom vibrates and @®
in the region where the bottom is at rest, as follows ;-

‘ ’ on =e‘i""[{g,002n,0062n £, 90)Ces, (7, qo)} -cosh a(H+7?)
+ 55 ConsCents, )een(s, 4} -cos a,(H+2)
—iwDi(z+-L )] (9)
0 = {5 Mo oMe(E, acesn(s, 00} -cosh ar(H+7)

+f; {f; M., .- Me$)(§, q,)-ces(7, qr)} -cos a,(H +z)] (10)

r=1{n=0

where @, and ia, (r=1, 2, 8,---) are a real and an imaginary solution

2) T. Mowmol, loc. cit., 1).
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of the relation o*=agtanhaH; D,, is the amplitude of the bottom
displacement; ¢,=(ha,/2)’ and ¢,=~—(ha,/2) (r=1, 2, 3,:-+); ce.(7),
Ce.,(§) and Mel)(¢) (n=0, 1, 2, 3,---) are Mathieu and modified Mathieu
functions respectively ;
M, ,=—E% 'Ce;n(fo: Qs)/an,a
Con= — B M (3, @) Fer))
(n=0, 1, 2, 3,~--)
s=0,1, 2, 3,---

where
;iai’bi{_-‘{_ sinh a,H~ - (cosh a,H —1)}
Beg=_ % & %o AP
l( 1 sinh 2a0H+H> '
2\ 2a, L
 ZDiaf 0 o g 4 L (cos 0, H-1)
Bit=— 19 - A
‘< sin 2a,H+H)
2\ 2a,
(’)2,:0, 1, 2, 37"')
S :1’ 2’ 3’...
and

_ ' Me'g;)(sm Qa)r _Cezn(Eoy Qs) '
T Me®'(6n q.),  —Cenlén )

provided &, is the value of &, which discriminates the region
where the bottom vibrates and that where the bottom is at
rest, and Ay is the coefficient of the first term in Fourier
expansion of ce,(7) with regard to » in the range 0<7<2x.

From (9), (10) and the relation c:%(%f) we finally obtained
— 2=0

the wave heights ¢ in the region where the bottom vibrates and ¢®
in the region where the bottom is at rest as follows;

cw =—ig“-’ e-‘“[{gcmoc&n(é, o) ces.(7, (Io)} -cosh a,H

-+ i;'l{i;i) CZn,rCGZn(G‘y qr)ce’.’n(vy Qr)} - COS a'rH_ IiDX;ot ¢ i]

w
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C(z) =7’7 —iwt[ {Z MM . M62n’(§, qo)CGzn(% qo)} -cosh aOH

+5{8 Mo, Mo €, 0. )00, 0} -cos 0, H . (1)
r=1{n=

Next we consider an asymptotic formula for the out-going wave.
According to McLachlan®, an asymptotic form of the modified Mathieu
function Me is given by

Me(¢, q)~062n(0 Qo)j(‘jj;»(”/z » 40) - azR . gilagR-n/4) (12)
0

Me(e, gy 20 (el el lal) g o,m),  13)

where K,.(a.R) is modified Bessel function.
Making use of (12) and (13) we get the asymptotic formula of the
out-going wave from (11) as follows ;

C<2>~‘” 2. }/ “.cosh aH
7TC&0

Dy, { sinh QOH—-—(cosh a,H— 1)}

ay . g~ wt—aoR+x/9)
%(-21; sinh e, H+H )
i —Cea(éoy )cexn(0, go)cesn(n[2, q,) -7, q0) » (14)

F 2n,0
where

Meg) (&, q0) » “‘Cezn(so’ Q)
Meg»)l(so; q), —Ceun(é, )

R: polar coordinate which is related with elliptic coordinates
(6, 7) as follows ;

(15)

2n,0—

21/2(cosh 26+ cos 29)2.

Now let us treat the height of the out-going wave in asymptotic
form in numerical consideration.

3) N. W. MCLACHLAN, Theory and Application of Mathieuw Functions, 1947), Oxford
Press.
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3. OQutlines of Numerical Analysis

Modified Mathieu function Me® is related with Ce,, and Fey,, as
follows ;*

Melb =Ce.,+1Fey,, .
Consequently, the determinant (15) is reduced to

. Fey,, Ces, (16)

F.,,=—1
" Fey,, Ce.,

Next, Mathieu function ce..(7, ¢,) is expressed in Fourier form as
follows® ;

ce.,(7, qo)= Z:OAéi"’ cos 2779 (17)

where A% (n=0, 1, 2, 3,---) stand for Fourier coefficients, of which a
table for values of ¢, from 0 to 40 up to 2n=4 has been given by Ince.”

Making use of the above-mentioned Fourier coefficients A$” (r=0,
1, 2, 8,---, =0, 1, 2, 3,--+), modified Mathieu functions Ce..(¢, g,) and
Fey,,(¢, q,) are represented in Bessel series,” that is to say,

Cewlt, q) = U2 9) § (— 1745702k, cosh ) (18)
0 =
Foy (¢, q)= G120 $1 (—1y A0 V. (2h, cosh © (19)
0 r=
(cosh¢>1),
where
kozh_;o_

Although modified Mathieu functions Ce.,(¢, ¢,) and Fey,,(¢ q,) are
represented by hyperbolic series, the above expressions (18) and (19) in
Bessel series are recommended for more rapid convergence.

4) N.W. MCLACHLAN, loc. cit., 3).

5) N.W. McLACHLAN, loc. cit., 3).

6) E.L. INCE, “Tables of the Elliptic-cylinder Functions”, Proc. Roy. Soc. Edinburgh
(1931-32), LII, p. 355.

7) N.W. MCLACHLAN, loc. cit., 3).
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Now substituting (16), (17), (18) and (19) into (14), we finally get,
after some computations,

(o Ly in (ot nR= ) <2

where only the real part was taken and

__ ‘”D‘m‘{ ’_sinh a,H— ﬁ(cosh aH— 1)}
£2):g)_.2‘/__2_.cosh aoH._¥ o’ Ay
g o l( 1 sinh a, H+H )
2\ 2a,

_j8

AP Cezn(o qO) Z( 1) AR, 2In(a/0h cosh 50)'0321»(77, QO)

n= 0
oo

Z, (=1 A" Y, (a.h cosh &) , i (—1)y A, (ah cosh &)
r=0 r=0

HM8

2 (~ 1745 Vi e cosh &), S5 (— 1y AR J, (s cosh &)

Here, we define ¢® as “relative wave height”.
Now in the next section, let us see variations of the wave height
¥ versus a direction for several values of the major and the minor axes.

4. Computation and Discussion

We used Ince’s table® for the coefficient A" (r=0, 1, 2, 3,.--,
n=0, 1, 2,--+) and Bessel’s table® for Bessel functions. Other used
values are given as follows ; '

depth of water (H)=381.2¢cm,

acceleration of gravity (g)=980. 5cm/sec

period of vibration of the bottom (7')=1 sec.
By the use of these values and the relation w*=a,g-tanh (a,H), the wave
number of the out-going wave (a,) was obtained as

a,=0.045323 .

For six pairs of values of half lengths of the major and the minor
axes, which are denoted by x, and y, respectively, the relative wave
height {;” versus a direction, which is denoted either by ¢ or 7, is shown

8) E.L. INCE, loc. cit., 4).
9) G.N. WATSON, Theory of Bessel Functions, (1922), Cambridge Press.
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in Fig. 1. The angle of polar coordinate (f) is nearly equal to the
elliptic coordinate () for large ¢ by virtue of the relation tanf¢=tanh¢
-tan p=tan %.

Now let us consider features of the wave heights given in Fig. 1.

1 (2)

nt "

5_..

0 6

e I
(3)
_5 I
(2)

-0 (n

Fig. 1. The variation of the relative wave height versus the direction o.
(1) The case where the half lengths of the major axis (x,) and the
minor axis (y,) are 264.76cm and 261.06 cm respectively;

(2) The case where 2,=264.76cm and y,=225.01cm;
(3) The case where 2,=264.76cm and y,=210.02cm;
(4) The case where 2,=254.76cm and y,=195.40cm;
(5) The case where z,=264.76cm and 9,=176.49 cm;
(6) The case where 2,=264.76cm and y,=150.00cm,
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In this computation the half length of the major axis is fixed at
%,=264.76cm. As the minor axis gradually decreases in length from a
circle, the relative wave height in the direction of 6=1/2.7 (minor axis)
decreases once, then gradually increases until it comes up to the maximum
on the positive side of the relative wave height. Then it decreases
again, being superposed by a small undulation.

If we start at =0 and move counter-clockwise round a circle
(R=const.) at a distant point from the elliptic source, the wave height
undulates in such a way that it takes a negative value in some cases
(e. g., the case where y,=216.06, 225.01, 210.02cm) and in other cases
negative and positive values occur alternately. (e.g., ¥=195.40, 176.49,
150.00 em).

These undulations seem to be caused by the interference of wavelets
generated at each elementary portion of the wave-generating ellipse.
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