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1. Introduction

Analyses on the long period surface waves have been attempted
by various authors for the purpose of obtaining useful information on
earthquake sources. These analyses aim at removing the effects of the
inhomogeneous wave media, the sphericity of the earth and the polar
phase shift from the observed seismograms, so that they can be inter-
preted by means of available theories on wave generation, which are
mostly concerned with the point source or finite source problem in the
homogeneous half space.

In the present paper, we shall confine ourselves to Rayleigh waves,
for which the theory of generation has been most extensively studied.
Also, we shall be concerned with the phase characteristics (of the
Fourier components) of the waves, the measuring of which is at present
done more accurately than the measuring of the amplitude spectrum.

Recently, a question was raised as to whether a quick analysis
of Rayleigh waves could be useful in Tsunami warning work. The
Tsunami may possibly be more effectively generated from a dip slip
earthquake than from a strike slip earthquake of the same magnitude.
As described in the next section, the difference in the phase angle of
(a Fourier component of) Rayleigh waves is expected to be #/2 between
these two types of earthquakes. Therefore, accuracy of at least =/4 is
necessary in order to distinguish them. We shall discuss later the
possibility of attaining this accuracy at present.

2. The theory of Rayleigh wave generation

Lamb (1904) solved the problem of Rayleigh wave generation from
a concentrated force applied at a point on the surface of a homogeneous
isotropic half space. If the force is of the form R exp iwt, directed
downward to the half space at ¢=0, r=0, the vertical displacement
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of Rayleigh waves at a long distance r, is expressed by his equation
(160)

=1/ 2 e (otmer 32) (1)
<K

In the above equation, = is added to the phase factor in Lamb’s original
equation, because the upward displacement is taken as positive in the

present paper. In this equation, the term ;£ K/ 2 s real positive
7 TEY

and does not produce any phase shift. Since t=w/c (¢ being the phase
velocity of Rayleigh waves) it is proportional to & in the case of the
homogeneous half space, and the term x» in the phase factor will

disappear if we choose the time variable t’=t—%. The only important

phase term in this case, therefore, is +3/4-z. We shall call this term
the phase angle of the source function and designate this by ¢. In the
case of progressive Rayleigh waves, the corresponding phase angle for
the horizontal displacement is related to that for the vertical, and it is
sufficient to define the phase angle only for the vertical displacement.

If the force at the source is directed upward, the phase angle of
the source function will be —=z/4, which is obtained by the addition of
—m to that for the downward force.

The case of the tangential force to the surface is also studied by
Lamb. If the force is directed toward the station, ¢ is —38/4-7, and if
it is directed away from the station, ¢ is +=/4. These results may be
easily obtained by an application of reciprocal theorem to the result of
the vertical source. According to Knopoff and Gangi (1959), under the
assumption of homogeneous boundary conditions, the displacement w,
at P due to the unit force f, at Q is the same as the displacement u,
at @ due to the unit force f, at P. In our case, P and Q are both on
the surface. Taking the cylindrical coordinates (r, z) with the origin
at the point where the force is applied, we may express the reciprocity
relation as follows,

u, due to f,=—u, due to f.

Here, z is taken to be upward positive and 7 is taken to be outward
positive. Since u, is advanced in phase by /2 from u, in progressive
Rayleigh waves from any sources, u, due to f, is advanced in phase
by =/2 from u, due to f,. The phase angle of u, due to f, is —x/4 as
shown before. Therefore, the phase angle of u, due to 7, is
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-+ —n =——%n‘. Thus, ¢ is —-%n for force directed toward the

station, and is -l——i’—n for the force directed away from the station.

Evidence from the fault plane studies and other sources favor a
couple or a double couple without moment x
as the force system at the earthquake

source rather than a singlet which was A : Pt
assumed in Lamb’s theory. /
Let us take the x, y axes on the surface

of the half space. If a singlet force, as
shown in Fig. 1A, varies as exp iwt, the
vertical displacement ¢ (x, y) of Rayleigh = 4
waves at a distant point P will be propor-
tional to

COS ¢ exp i (wt~w——4?.’~n) (2) B / P(z.3)

The corresponding displacement due to a *

couple, as shown in Fig. 1B will be ;//
(=22, )¢ (o4 2, 4) e
2 2 » cr_. t
0%

1~

=—— (3) Fig. 1. A singlet force (A)

ox and a couple (B). The =z,

. A y axes are taken on the
which is proportional to surface of a half space.

ik sin ¢ cos ¢ - exp 1 (wt—w—-i—n)

=% £ sin 2¢ - exp © (wt——w—%) (4)

Thus the phase angle is greater by /2 in the case of a couple than in
the case of a singlet. .

The double couple without momoment will show the same phase
angle of Rayleigh waves as the single couple.

It has been emphasized by Honda (1954) that a double couple is
equivalent, in the wave radiation pattern, to a radial force distributed
on the surface, within a small circle around the origin, in the form of
sin 2¢ as the function of the azimuthal angle ¢. The Rayleigh waves
from such a source were studied by Nakano (1930). Nakano showed
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that the vertical displacement (we shall take the upward positive) at a
long distance r, due to a radial force distributien of the form sin n¢
exp 1wt will be proporticnal to

. . n 5
sin n¢ - exp t t—x7‘+—-z—~x} 5
¢ - exp {w 27 (5)

If n=2, the phase angle of the source function becomes —=/4, and is
equal to that for the single couple (Eq. 4). Thus, a single couple, a
double couple, and a radial force of four-lobed distribution give the same
phase angle pattern, and we can not separate these three types from
Rayleigh waves.

Lamb’s source, which takes the form R exp twt, represents the
Fourier component of an impulse exerted at ¢t=0. If an earthquake is
a release of accumulated tectonic stress, a step funection in time should
be a better approximation than an impulse. Since the Fourier component

. R . R . T
of a step function is of the form o XD wtzj exp 1 <wt_E)’ we

must subtract =/2 from the phase angles for impulse source.
From the foregoing, we obtain the
pattern of the phase angle of source
¢--3 functions as shown in Fig. 2A for a
horizontal couple, which is a step func-
tion in time. We assume that this
source represents a strike slip earth-
quake.
$=-31 ¢+ In the same manner, we obtain the
pattern of phase angles for a dip slip
earthquake as shown in Fig. 2B.

It is implicit in these patterns that
the faults are vertical. Further, we
¢ = -7 must take into account the effect of

focal depth as well as of the finiteness
DOWN of the source, if necessary.

-
"
+

Rt

p=+3 h
Fig. 2. Azimuthal distributions 3. Two methods of the phase
equalization

of the phase angle of source
function for a strike-slip model . . .
(A) and for a dip-slip model (B). The vertical displacement of Rayleigh
waves from an earthquake may be ex-

pressed as
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#() =171 X@)] cos (t— 27—, + Tt do, (6)
7 Jo ¢ (w) 2
where,

|X(w)| : the absolute value of the Fourier transform of (%),

X(a))=r (et dt,

c(w) : the phase velocity,

r : the epicentral distance,

® . the angular frequency, 2x/T,

ﬁz—) : the phase delay due to propagation,

Pin . the instrumental phase delay

”—237r : the polar phase advances introduced by Brune, Nafe and

Alsop (1961), m being the number of polar or antipodal
passages which the waves made, '
¢ : the phase angle of the source function.

Brune, Nafe and Oliver (1960) and Brune (1961) use the term
“initial phase of Rayleigh waves.” Since they reduce the problem of
the wave generation in three to two dimensions, a phase advance of
w/4 which occurs when the waves leave the source is taken into account.
This initial phase ¢, is related to our phase angle of source function ¢
by the following formula,

¢0=¢'_Z (7)

Two methods have been proposed for the phase equalization of the
observed record x(t) to obtain ¢ or ¢, One is the Fourier analysis
methed, in which the Fourier analysis or the stationary phase analysis
is used to obtain the phase angle ¢ of Fourier components of

x(t):lg”]X(w)i cos (wt+¢) do (8)
T JO
The comparison of this with Eq. 6 gives
pt2nr=—"2" ¢, +%7 10 (9)
Cc (a)) 2

This equation gives us ¢ directly, if the phase velocity, the epicentral
distance and the instrumental phase delay are known. This method has
been used by Sato (1955, 1956), Brune, Nafe and Oliver (1960), Brune
(1961), Brune, Benioff and Ewing (1961) and others.
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The alternative is the source function method, in which, first, the
impulse response seismogram g(t) is computed according to the equation

g(t):%-gmgcos (wt—-—w%;—— Din +1’2L—7:>dw (10)

i wy

The source function ¥(z) is, then, computed by

y(o)= S:g(t)x(t +o)dt
1

s

S | X()|cos(wr +¢)dew 11)*

et §

Since [X(w)| is real positive, and usually uniform over the selected
frequency range (w,, w,), it is pecssible to learn the value of ¢ with
reasonable accuracy, by a visual inspection of the shape of y(z). This
method is a natural extension of Tukey’s (1959) black box method, and
has been used by Aki (1960a, 1960b, 1960c).

The Fourier analysis method is quantitative and straightforward
in the determination of ¢. On the other hand, the accuracy of visual
determination of ¢ by the source function method, will not be better
than =/8. However, the source function method has the great advan-
tage that error in epicentral distance has very little effect on the
determination of ¢. Error in epicentral distance can be a very serious
problem if the Fourier analysis method is used. A comparison of the
errors liable in both methods is given in the next section.

4. Comparison of errors in the Fourier analysis method
and the source function method.

The principal sources of errors in the determination of ¢ or ¢, are
the phase velocity and the epicentral distance. From Eq. 9, we have

=25r—Lrsc (12)

This is the error formula in the determination of ¢ by the Fourier
analysis method.

The source function will take the following form, when there are
errors in » and ¢ used in the computation of the impulse seismogram

g(?),

¥ The derivation of this equation is given in the Appendix.




Accuracy of Rayleigh Wave Method for Studying Earthquake Mechanism 97

y(r)z;lr—S:le(wM cos{ wf—l—(f)-i‘—wa(%)}dw (13)

The r/c in the above equation is the time required for travelling with
the phase velocity, and may be called the phase delay time %, of the
wave medium. The ¢, is related to the group delay time ¢, (the time
required for travelling with group velocity) by the following relation.

t, :/]'M,
w
dt,
do ’
dt
=t — pd 14

If we expand 6(1) in Eq. 13 into a Taylor series of the variable

T around TO( T being the centre frequency of the range (w, a)z)) we

0
d(ot
have a(§)=(atp)w,,+ 40L) p_pyy.,

Neglecting the terms hlgher than T'—T,, we have

d(at,,) d(dt,)
(c) -

d(at,)
, aT
The first term on the right hand of this equation is the error in the
group delay time at T=7, Since this term is constant, the effect of
this error is simply to shift the position of () on the time axis with-
out any change on its shape. Accordingly, this part of error does not
affect the determination of ¢ by the source function method.

Putting <’ equal to r-+4t,, we have from Eqs. 13 and 15,

N , d(ot,)
y(z-)——ﬂ—gwllX(w)] cos{wr +¢+27r—d—T~}dw (16)

Thus, the error formula for the source function method corresponding
to Eq. 12 for the Fourier analysis method is

d(ét,)
arT

()

=(0te)p-ro + T (15)

0p=2n




98 K. AKI

:__2,.‘.{_,1, _dc_ar+371_d9_ac— T 5( de )} (17)

¢ dT ¢ dT c aT
By the use of these formulas, we shall compare both methods in
the following four cases.

Case 1. Rayleigh waves which made two round trips of the earth,

T=9250 sec ¢=4.91 km/sec %:0.59 510~ km/sec? r=80,000 km

Case 2. Rayleigh waves which made one round trip of the earth,

T—150 sec ¢=4.30 km/sec %€ =0.48 x 10~* km/sec® r=40,000 km

dT
Case 3. Rayleigh waves which crossed the Pacific ccean,

T=T5sec ¢=4.06 km/sec —(%%:0.22 x107* km/sec® »=10,000 km
Case 4. Rayleigh waves which crossed North America,

T=25sec ¢=3.73 cm/sec ~3%=2.4 x 10~* km/sec? r=38,000 km

Table 1 shows the deviations in the epicentral distance, in the phase

velocity and in _ZiT which independently produce the deviation of -+=z/4

in the value of the phase angle of the source function ¢ or of the
initial phase ¢,. From this table, it is clear that a small error in the
epicentral distance will affect the determination of ¢ by the Fourier
analysis method. For instance, in case 2, in which the waves make a
round trip of the earth, the ellipticity correction to the epicentral

Table 1 The deviations in epicentral distance », the phase
velocity ¢ and 'Ell%’ which independently produce

the deviation of =/4 in ¢.

Fourier analysis method Source function method

: . N ; NT AN
_ or TN - o . 0e "(«TT)
in km | in km/sec in km | in km/sec in km/sec?

case 1 I 153 © —0.0093 =500 |,  0.0157 —0.38x10-*
case 2 81 ~ —0.0086 | —482 ' 0.0258 | —0.58x10-+
case 3 38 —0.015 | -9 | 0.19 —2.1x10-4
case 4 12 | —0.05 | —73 | 0.048 —5.8%10-+

distance may become necessary. The difference between the meridional
circumference and the equatorial one is 67.3 km, which is comparable to
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the value 81km listed in Table 1.

In cases 3 and 4, the accuracy of the epicentral location is required
to be 38km and 12km respectively. This high accuracy seems difficult
to obtain in most areas of the earth, except where a network of local
stations is established.

On the other hand, when the source function method is used, the
permissible error in the epicentral location is so large that the result
of a rough preliminary determination can be safely used. This also
permits us to use a small number of impulse response seismograms in
the application of this method to many earthquakes.

As shown in Table I, the accuracy requirement in the phase velocity
¢ is more severe in the Fourier analysis method than in the source

function method. However, the accuracy requirement in % is very

strict in the source function method. Therefore, if the value of ¢ is
accurately known for a certain frequency, the application of the Fourier
analysis method to that frequency component is recommended. On the

other hand, if for some reason, the value of.%1 for a certain frequency

range is dependable, the source function mothod is recommended. In
any of the cases in Table I, the accuracy requirement to the phase
velocity data is very strict.

5. Discussions on some previous results

In a previous paper (Aki 1960b), the source functions of about 50
circum Pacific earthquakes were obtained from Rayleigh waves recorded
at Pasadena. In the computation of the source function, the phase
velocities for case 8099 of Dorman, Ewing and Oliver (1960) were used and
the Pacific ocean is assumed as being uniformly covered by this model.
The source functions are interpreted according to the simple: generaliza-
tion of Lamb’s result as described in the present paper. We found that
the result of the interpretation is consistent with (1) the abundance of
strike slip earthquakes as revealed from the fault plane works, (2) the
greater amplitude ratio of G waves to Rayleigh waves for strike slip
earthquakes than for dip slip earthquakes, and (8) the so called “San
Andreas hypothesis” of the circum Pacific tectionics.

We extended our method (Aki, 1960c) to the records of many IGY
stations equipped with the Columbia type long period seismographs for
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three earthquakes in the circum Pacific belt, and we found that the
azimuthal distributions of source functions are quadrant as expected.
Additional data from the aftershocks of the Chilean earthquake of May
22, 1960 also supported the “San Andreas hypothesis.”

Recently, it was recognized that the curvature of the earth affects
appreciably the phase velocities of Rayleigh waves even in the short
period range. Bolt and Dorman (1961) studied this effect in a period
range from 300 sec to 25 sec for various models of a spherical gravitat-
ing earth. They give the following convenient formula for the curvature
correction,

c¢=c;(1+0.000167) (18)

where ¢ is the phase velocity for the spherical gravitating earth model
and c, is that for the flat earth model with the identical layer para-
meters. According to Bolt and Dorman, this equation allows an estima-
tion of ¢ within 19 for 100<7T< 300 sec from values computed for a
flat earth model.

Case 8099 of Dorman, Ewing and Oliver, on which our previous
study of the source function is based, is a flat earth model, and must
be corrected for the curvature effect. Since our source functions were
obtained for 35<T< 150 sec, a slightly different formula of curvature
correction is used. The formula is

¢=c¢,(1.00344-0.000127) (19)

which was obtained to fit the values obtained by Bolt and Dorman for
the above period range.
The correction to ¢, according to Eq. 19 has negligible effect on the

phase angle of the source function, but the correction to g;’; cannot

be neglected. From Eq. 19, (d—(il;TcL)) is deduced as being about 5 x 10~

km/sec®. This is about twice the value for case 3 of Table I which is
the most representative of those studied in our paper (Aki, 1960b).

Since Table I shows the deviation in %% which produces the deviation

of +=/4 in the phase angle, the curvature correction to the phase angle
of our source function amounts to —=/2. Old values of phase angles
must be reduced by about =/2. This should lead to a serious modifi-
cation of the conclusions given in our papers. We have reinterpreted
all the source functions previously obtained, taking the curvature cor-
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rection into account. We found that the new result is inconsistent with
our generalization of Lamb’s result, and the azimuthal distribution of
the source functions does not show the quadrant pattern expected from
a simple theory.

There is, however, one possibility for avoiding these grave modi-
fication in the conclusions. That is, the possibility that the phase
velocities for case 8099 (flat earth model) may be closer to the true
velocities than those for the curvature corrected 8099. Tig. 3 shows

T

—_—— phose and group velocity curves
which gives almost same
source functions as those for uncorrected
8099 in the period rvonge 40 to 80 sec.

1“°‘\)‘
Observed Pphase velocity (Aloska -Perth, Alaska-Lwiro great circle) o o s
N M N (Assam -Posadena  greot circle) /
Observed group velocity {north Pocific ) M 7% / "l‘ ~
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Fig. 3. Group and phase velocities of Rayleigh waves. Observed phase velocities are
obtained by Brune (1961) and Brune, Nafe and Alsop (1961). Observed group velocities
are obtained by Sutton, Major and Ewing (see Dorman etal (1960)). It seems that
the observed phase velocities lie more parallel to, and also closer to, the curve for
the uncorrected 8099 than for the curvature corrected.

the phase and group velocity curves (solid line) for both cases. Since
the group velocities differ only slightly between them, only those for
the flat earth model are shown. Observed phase and group velocities
are also plotted in the figure. The observed group velocities are for
the north Pacific, but the phase velocities are for several great circles.
It can be seen that observed phase velocities lie more closely to the 8099
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for the flat model than to the 8099 with the curvature correction. As
stated in the preceding section, the only serious source of error in the

de

source function method isﬁT' The fact that the observed points (except

for the Assam Pasadena great circle) lie nearly parallel to the phase
velocity curve for the 8099 without curvature correction suggests that
old values of the phase angle of the source functions may be nearly
correct. This implies that the layer parameters in case 8099 should be
modified so that the phase velocity with curvature correction agrees
with the observed.

The dashed phase velocity curve in Fig. 3 is drawn parallel to the
curve for the 8099 without curvature correction, in the period range
35 to 80sec. Since the spectrum of our source function is mostly in
this period range, this curve also gives the source function as almost
the same as the 8099 without curvature correction. The corresponding
group velocity curve is also shown by a dashed line, and agrees with
the observed as well as that for 8099. If the true phase velocities lie
parallel to and between the dashed curve and the curve for 8099 with-
out curvature correction, we need not modify our conclusion given in
the previous papers. At present, however, we cannot draw any firm
conclusions on this problem, because we do not have a precise measure-
ment of phase velocity for the purely Pacific path.

Brune’s (1961) result on the radiation pattern of Rayleigh waves

* from the South East Alaska earthquake of July 10, 1958 do not agree

with our generalization of Lamb’s theory.* He suggests that the earth-
quake source may be an impulse rather than a step function in time.
However, the accuracy in his determination of the initial phase seems
not high enough to draw a definite conclusion on this problem. (His
case corresponds roughly to cases 1 and 2 of Table 1)

The high accuracies required for the phase velocity data as shown
in Table I may seem formidable, and one may suspect that it is
impossible to gain an accurate determination of the earthquake mecha-
nism from surface waves. However, these high accuracies have been
already attained in the P travel times. We may, therefore, expect
that a proper network of long period seismograph stations would give
us the required accuracy in the phase velocity data.

* Recently Brune (personal communication) has found that a revision of the result on
this earthquake is necessary, and the revised result agrees with our generalization of

Lamb’s theory.
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If the earth’s surface is so far from uniform that the use of
surface waves in the determination of the mechanism is impossible
for those cases listed in Table I, we may still apply our method
to the waves of shorter epicentral distances, because the errors in the
phase angle of the source function are proportional to the distance.
The writer believes that study on the long period Rayleigh pulse from
near earthquakes, for which the fault plane solutions are known from
P waves, will, give us another way to the solution of our problem.

Appendix

Since g(t) and «(¢) are real and their Fourier transforms X(w) and
G(w) satisfy the following relations,

X(—o)=X*(w),
G(—w)=G*(w),
where G*(w) and X *(w) are the complex conjugates of G(w) and X(v)

respectively, we have the following formulas from the theorem on the
Fourier transform,

g (t) :%STWG(w)e“" dw:%S:IG(wN €08 (ot +¢y(w)) do
% (f)= %SLX(@)W deo :%SJX((U)] cos (wt+ i) do

G(w):]G(w)le“"l“‘”:r g(t)e—fwtdt=§°° g(t) cos wt dt——irg(t) sin wt dt

Kw)=|X@)e s ="

o@eidt={" a(t) cos ot dt——-irx(t) sin wt dt
Eq. 11 can be obtained as follows,
v@=|" 9(t) at+o) at
=%Sfmggggﬂflw cos{w(t+7)+ ¢ w)} do
= L{" I X@16(0)] cos 0)-c05 (wr-+ )+ Gl sin o)
sin(wr 4 ¢ (w)} dw
= LIX@) 6@ cos (wr-+0) (@)

=2 1) cos(r +gi(w))do.
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Thus, the absolute value of the Fourier transform of y(z) is the product
of those of x(¢) and g¢(t), and the phase angle for y(z) is the difference
between those for x(f) and g(f).
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