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1. Introduction

The author once treated the dispersion of surface waves in hetero-
geneous half space’. Formulation was made in a general form, and a
scheme was presented for determining the structure of the medium
from the dispersion curve of Love waves. However, the assumption of
slowly varying material constants of the medium has prevented us from
applying the theory to many practical problems. The numerical example
at the end of [I], where the discontinuity structure was replaced by a
continuous layer, has to be understood as a mere trial.

In order to get numerically precise results, it might be most ade-
quate to divide the medium into several parts, each of which satisfies
the above mentioned assumption. ‘

As such we shall consider here the heterogeneous half space having
a homogeneous upper layer, and shall treat the dispersion of Love
waves.

Such a problem has already been solved by several authors” assum-
ing special functions for density and rigidity. Our treatment will be
nothing but the generalization of their results. We shall treat the case
when density and shear velocity in the lower layer are given only
numerically, and show that the scheme for the inverse problem still
holds under certain restrictions.
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Notations are as follows:
T vperiod
L wave-length
p=2z|T
f=2z|L
Vo=plf=L|T phase velocity
U=dpldf group velocity
V(z) amplitude
p(z) density
p(z) rigidity
v,(z)=1V"ulp shear velocity
£(2)=(vo/v,(2)) =p"plf 12
H zero point of k—~1. Then «k(H)=1,
or v,=v,(H) .
#(0), £(0) etc. are written merely as g, &, ete.

2. Recapitulation of the formulas of the previous papers
Consider the differential equation

1d [ dVN\, s vy
—;E—Z-(F‘FZ—)-{-JC(& 1)V=0, @)

where ¢ and & are slowly varying functions of z, and dx/dz is assumed
to be negative.

Then the approximate solution of (1) which is valid for large f and
converges to zero at z=o , is expressed as

_ —p 1/2 i
Ve=(—7) Kl=is) @

where K, means modified Bessel function of order 1/3, and ¢ is defined
by

c(2)=Ff S:H/F—sz : ®)

Next we introduce a function H(y):

Hi¢)= d‘i log {¢2Ky(—i¢)} . @)
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The asymptotic expression of H(¢) for large ¢ is

which is useful for.calculating higher modes.
From (2) and (4) we obtain
VI(O) —__ H ko _

V(0) 2t Hr—1)

fVk—1 H(g) , (6)

where the letters with prime are derivatives with respect to z.
When «, becomes very near to 1, equation (6) is transformed into

VO __ 4072004 f5(—y)"+1.10554 L (5=1)
V(0) 2t P . (=&
’Co,l+5f2("70—1)2 7
AT e )

where
0.72904=9""°I"(2/3)/1'(4/3) , 1.10554=9-"*{I"(2/3)/I"(4/3)}* .

Usually & is defined only for 2=0. Accordingly, if k<1, we
cannot ;determine H, and ¢(z) must have some expression other than
(8). (See Appendix.) The expression (7) is proved to hold both for
ko,>1 and k,<1 .

Lastly, if &, is fairly small as compared with 1, we can use the
asymptotic expansion of K, ,(]¢) and obtain

VO __m p——(1_ & B
O T ’“°< A=k 82f* (I—npy

1 &
) ®

3. Equation of dispersion

We shall discuss the theory of Love wave propagation in media
consisting of a homogeneous upper layer of thickness % and a hetero-
geneous lower layer, where rigidity and density are slowly varying
functions of the depth. The shear velocity is assumed to be increasing
with the depth.

The z-axis is taken vertically downward, and the origin at the
interface of two layers. Then the free surface is indicated by the
equation z=—"h .
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The letters with suffix 1, such as p, g, 5, and Vy(2) are used to
denote that they belong to the upper layer. Shear velocity in the upper
layer is expressed merely as v,. p;, &, & and v, are all constants, and
2,<72,(0).

The amplitude V(z2) of the Love wave satisfies (1). Then, in the
lower layer we can employ the expression (2).

The boundary conditions are such that the stress shall vanish at
the free surface, and at the interface displacement and stress shall be
continuous with those given by (2). That is

Vi(—h)=0, )
and
V'(0) _ 1 V;(0) 10
T0) ~ mVi0) | a0
It is easily verified that in the homogeneous layer,
Vi(z)=Acos {fVk,—1(z+h)} 11)
is the solution of (1) which satisfies (9).
Substituting (11) in (10), we obtain
v’ 8 -
75—8;—=—% FVE—1 tan (fRVE—1) . (12)

This is the equation of dispersion, and has three different expressions
corresponding to the various values of &,.

i) k>1 (v>2,(0)) .
From (6) and (12) we have

— mViE—1 - 1 —_— P_O'_ p_ﬂ,
H(p)= £V tan (P, =T) o+ e { @k 2

HoV Ko— 0
(13)
To solve (13), we transform (13) into
H(g)=HVE—1 tan (gco M)
HoV Ko— 19
1 e _{ My } 14
e o Gl e 40
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where

p=plf=|vi-ldz.

When v,(7) is given, fix a value of v, and calculate @, &, and &,.
Assuming that /g, R, # /¢ and p//p, are all known, we can determine
¢, from (14), then f=¢/¢ is the wave number corresponding to v,.

A brief table of H(¢) for real ¢ is given in [II]. The more precise
one (Table 1) is calculated, using the table of Airy functions.”? (See
Appendix (A3))

Table 1
@ H(y) ¢H(p) ¢ H(y) ¢H(p)
.00 ) .16667 .50 .53195 .26598
.02 10.51098 .21022 .52 .49598 .25791
.04 5.81366 .23255 .54 : .46151 .24922
.06 4.15550 .24933 .56 .42836 .23988
.08 3.32878 .26630 .58 .39641 .22992
.10 2.73762 .27376 .60 .36553 .21932 .
12 2.35715 . 28286 .62 .33632 .20852
.14 2.07403 .29036 .64 .30653 .19618
.16 1.85316 .29651 .66 .27954 .18450
.18 1.67467 .30144 .68 .25065 .17044
.20 1.52635 .30527 ‘ .70 .22370 .15659
.22 1.40048 .30811 .72 .19729 ,14205
24 1.29166 .31000 74 .17141 +12684
.26 1.19622 .31102 .76 .14596 .11093
.28 1.11148 J31121 - .78 .12093 .09433
.30 | 1.03538 31061 .80 .09623 .07698
.32 96642 .30925 .82 .07185 .05892
.34 .90342 .30716 .84 .04772 04008
.36 .84543 .30435 .86 .02385 .02051
.38 79174 .30086 .88 .00018 .00016
.40 .74171 .29668 .90 —.02332 —.02099
.42 .69486 .29184 .92 —.04670 —.04296
.44 i .65077 .28634 .94 —.07996 —.07516
.46 : 60911 .28019 .96 —.09315 —.08942
.48 .56958 .27340 .98 —.11633 —.11400
1 1.00 —,13951 —.13951

i) k=1 (vg=2,0)) .
From (7) and (12) we have

ﬂfv/nl—'l 211

3) A. D. SMIrNOV, Tables of Ai'ry‘Funotio'ns (Pergamon Press, 1860).

’ e NI/3
tan (F1V/F—1) =12 {’“’0 +0.72904( ;)
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fl/a(’fo 1) &” +5/%(k,—1)
1.10554 (e — 10/ (—£)) + .. } . (1)
When k,=1 (vo=1,(0)), (15) becomes

_ hi(p ko o ( R(—& )\
5tans_ﬂ_(—°— 0.72904 0. 0 ) W, (16
o2\ 5(—’”o)>+ ( £—1 ¢ (%)

H

E=fhVk,—1 .
i) k<1 (v,(0)>v,>0,) .

From (8) and (12) we have

tan (fhV/ f—1)=2 1=K {1+ a]

— Kq
1/Iu1 2f1”01/1 —r,  4f(Q1 —’30)3/2
_ 5 Ko

S S S
32/ (1—ko)*  8f*(1—ro) } an
(15) and (17) are solved by iteration.

4. Explicit expression of ¢

Examples of the explicit expression of ¢ are given in this section

i) When p/¢ is a linear function of 2z, we put

ple=(plp)(1—£2) ,

or
k=k(1—p7) . (18)
From x(H)=1, B is expressed by H as
B=(k,—1r,TH . (19)
The calculation of ¢ is easily performed :
= Vi—Tde=2HVET (20)

We add expressions for d@/dk,, &, and &,”.

1 21
7 dr, 2(c—1) =
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__ICO' =ﬁ= ﬁ:o_l ICO//’———O .

iy When 1V¢/p is a linear function of 2, we put

Vielp =V ulp(1+712)
or

E=ry(1+72)"".
From x(H)=1, r is expressed by H as

r=(V&—1)H".
If we put

1V k% =cosh @,
the calculation of @ is easily carried out:
¢=H(0, cosh §,—sinh 0,)(cosh 0,—1)* .

We add expressions for de/dk,, &, and &,”.

g _H____4,
dk, 2 cosh 6,(cosh 6,—1)’

R 20 K _ 6 1y
e T L

ili) When g/p is a linear function of z, we put

#lp=(polpo)(1+62) ,
or

E=k14062)7" .
From k(H)=1, ¢ is expressed by H as

o=(r,—1)H™.
If we put

3——1=cos o,
K

the calculation of & is easily performed :

(22)

(23)

(29

(25)

(26)

@7)

(28)

(29)

(30)

(31)

817
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¢=H(w,—sin wy)(1—cos w,)™" . 32)

We add the expressions for d¢/dx,, &, and &,".

d¢ _H sin w,(1+-cos ) (33)
de, 2 1—cos w, ’ '
~Ky _ Ko—1 Ky <I€o—~1>2
=2 =2(2~) . 34
Ko H Ko H (34)

5. Group velocity

We have only to differentiate the period equation with f in order
to obtain the equation for the group velocity U.
From the relation

ko o< P[f?

we obtain

Vq

v df & df & df f

Then the differentiation can be carried out easily, and only the results
are listed.
i) When x,>1, we have from (13)

lde 1 ds _ 1 dn"_2(U__1‘)'

U_q_ —V'k,—1 4H Co—V k—1 H(g,) + /5 —1 (tan £+ £ sec &)
Vq d¢ ¢ b4
0 0

de dH [ .
= 2fk 1V Fo—1 2% — °__H
{ SV ko dk, dg, Vk,—1 ()
4+ B (tané&4-Esect s — (=#) } . 35
Ho Vg, —1 ( ¢ 2f(k,—1) #)

When 2 has explicit expression, d¢/dx, can be computed easily. How-
ever, in case @ is obtained by numerical integration, it would be better
to give up the use of (35) and return to the usual method of numerical
(or graphical) differentiation of v,.

ii) When £,=1, we have from (15)

K/ 2h o ( N1 an et sec?
e =1 {0.729043 ( > = (tan £ ¢ sec s)}

.7
M YK
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/3 1
~{1.10554.2nFo (LY t 1ol . (36
{ () et esto) - 69
iii) When £,<1, we have from (17)

U_. N LA T2 s
By T i e et 4 g R e TR

’

L 2 Holoq Ky
- t
{ml——l {(tan ¢+ sec E)+1/1—n0 +2(1-—IC0)2

4 5k0° (4+k)) | K" (2+4r,) .
321 (1—ko)”  8f (L—ry)"

37)

6. Numerical results

As an example of calculation, it will be desirable to take up the
case when the distribution of shear velocity is given only numerically.
And a knowledge of the accurate results, if we could have them, would
be useful for checking our calculation.

N. Kobayashi and H. Takeuchi” treated the dispersion of mantle
Love waves. Their computation was based on the method of variation
which is considered to have fairly good accuracy, therefore their results
would be able to be taken as our criterion.

Table 2

case T Vg vg* U U*
65.5 4.35 4.36 3.95 4.01

1 174.0 4.76 4.80
2 181.2 4.76 4.82 4.29 4.24
3 176.7 4.76 4.81 (4.33) 4.23
4 175.5 4.76 4.81 4.26 4.23

1 346.6 5.32 5.41
2 330.6 5.32 5.36 4.37 4.36
3 312.8 5.32 5.30 (4.46) 4.34
4 306.6 5.32 5.28 - 4.29 4.33

vg* (or U*) means phase (or group) velocity read from the results of Kobayashi and
Takeuchi.

case 1. o is calculated numerically.
case 2. ézg—H/xq—l

case 3. ¢=H{(6, cosh g,—sinh 6,)/(cosh §,—1) , cosh 6=y
2
case 4. @=H(wo—sin wq)/(1—cos wy) , cos wozT—l

0

4) N. KoBAYASHI and T. TAKEUCHI, Zisin (Journ. Seism. Soc. Japan), 13 (1960) 232.
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We performed the calculation using the same data as theirs for
the case of the Jeffreys-Bullen’s model, with the homogeneous upper
layer of h=35km, v,=3.5km/sec and p=2.7 gm/cm®. The results are
shown in Table 2.

We choose the values of v, equal to those of shear velocity at
depths as 35km (interface), 300 km and 500 km. Besides the values of
¢ obtained by numerical integration (case 1), we tentatively made use
of the explicit expressions given in section 4, using the value of H
gained from the given data (case 2, 3 and 4).

Group velocity was calculated from (35) or (36). However, the use
of (36) can not always be appropriate for the present treatment, where
the structure is not precisely the same as assumed in (i), (ii) or (iii) of
section 4.

We see from Table 2 that, for v,=5.32 km/sec, the error of case 1
is greatest and reaches nearly 295. As we understand, cases 2, 3 and
4 are only approximation of case 1, so that the above result seems to
be somewhat queer.

Presumably, it might be that we have reached the limit of our
theory, which clearly does not hold for extremely long waves.

7. Analysis of the dispersion curve

Assuming that p, m, po #, p/ # and L are already known, we
can determine the function v,(z) from the dispersion curve. The process
is essentially the same as the one discussed in [I].

For an assigned value of vy, f is determined from the dispersion
curve. And, after calculating the right side of (13), we obtain ¢, from
the table of H(y). After all, we get ¢=¢,/f as a function of v,:

o= (-

which is the same integral equation as I(26). Its solution was given by
1(30)-(32).

For relatively short wave-lengths, assuming that we can use the
conventional calculation of ¢ as in the case 2 to 4 of the former section,
the approximate value of H is immediately determined.

For example, using the formula of case 2, we have
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J— 3 —1/273;
H _-2—(1c0——1) Q.

As vo(H)=v,, the function »,(2) is fully determined.

The present research is carried out as a continuation or completion
of the previous work.” We hope it might include practically useful
results.

We acknowledge kind assistance of Mr. Rinzo Yamaguchi in the
numerical calculations.

Appendix

We shall give the expression of our dispersion equation making use
of the Airy function.
The Airy function may be defined as

A== A CK( 20) . (A1)

For real arguement we have the expression
_1{ 1.
Afx)==\ cos{tx——¢t*}dt . (A2)
T Jo 3

From (Al) we easily obtain

' H(¢)=dilog (9K n(—i0)}
¢

12y i(ze) T (43)
« 6 6

3¢

Putting (A3) in (6), we get

VO b SVRST /T (2 a{(3e)
S (o))

3¢,
(A9

5) An interesting paper of L. Knopoff appeared recently which treated the perturbation
in the dispersion curves of Love waves due to an additional inhomogeneity of density or
modulus:

L. KNOPOFF, Geophys. J., 4 (1961) 161.
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The left side of (A4) being replaced by the right side of (12), we have
the dispersion equation.
Now we can write

IC—AO+ZA0,+%-AO"+ ...... )
and
1=x,+ Hk, + }é A

By the iteration method, we solve the last equation for H

_ (ko— 1)'”0"
H_
) 5y

From these expressions, we obtain after some calculation

— __2__ (ko— 1) 2 (Ko —1)k,"
So vicTa=2 =) {1+5 e } (A5)

Then we can deduce the following expression of (A4), valid when &, is
near 1:

-

Vi) _ ’ ol 2 1 (5—1) a{(5e)}
o~ o 1o e 15—(7)—}@

(AS)

In [II] we defined ¢, for x,<1, as
" 2'Lf(1'_"0)3/ {1___2_ (I —ro)ry” AT
I e e (A7

If the use of (A7) is understood, (A6) can be applied for £,>1, k<Ll
and x,=1. We observe that (A6) is the refinement of (7).
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