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1. Introduction

The attenuation of seismic waves has been studied by many authors®,
and the present writer”, too, has obtained some results in that sphere.
Though the numerical precision of the information obtained is still ques-
tionable, it seems that the attenuation coefficient is almost inversely
proportional to the period of the wave, and not to the square of the
period, but, at the same time, it is slightly large for the waves with
short period and, perhaps also, for the waves with a period in certain
range. And examining various points noticed in the course of those
studies, it seems necessary to find out some other mechanism of the
attenuation of waves, in addition to the generally accepted ones. In
this paper, an idea is presented for the elucidation of the above-men-
tioned relationship of the attenuation coefficient to the period from the
stability of the wave through a heterogeneous medium, a preliminary
reasoning of which was once explained in a previous paper®. Some
allied problem was treated by Lord Rayleigh® soon after Hill studied
the differential equation that is called after his name. However, besides
that the main point of the problem, or in other words, manner of
applying the mathematical results to the physical interpretation, is
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different, the mathematical method is somewhat improved in the writer’s
studies by a reformation of the differential equation.

2. Recapitulation from previous studies with some extension

For simplicity’s sake in the mathematical treatment, it is assumed
that the property of the medium changes in one direction z, and a plain
wave is propagated in that direction: propagation of P-wave or SH-wave
of normal incidence applies to this case. The equation of motion of the

wave is given by,
pZ_ 0 (gou),
oT*  ox ox

where T is time-coordinate. E, elastic constant, stands for \+2p in
the case of P-wave, for g in the case of SH-wave, and is a function
of z; whether density 0 may be a function of = or a constant, it does
not affect the main part of the results of the discussion in this paper. u
is a component of displacement: x-component in the case of P-wave, and
a transverse component perpendicular to x in the case of SH-wave. The
velocity of propagation of the wave is

c(w)=1/§- (2)

(1)

Following the method of mathematical treatment developed in a previous
paper, the travel time, ¢, of the wave is used for space co-ordinate in
place of x, where ¢ is defined by,

_{da
t_gc_@. (3)

And putting v pcu=¢(t, T'), we obtain, from (1), a differential equation
for ¢ as follows:

62¢=02¢_a2¢’ (4)

where

WE d* Ve da?

ae_cq{Ldﬂl/_E—_ 1 d’\/_},

or, putting K=pc,
_elVod K _Jo & JK
‘C{ K do*v p 1/deﬂ/ p}' (5)
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In a heterogeneous medium, o® is originally a function of , and is
transformed into a function of ¢ in virtue of (3), and «’ vanishes when
the medium is homogeneous. If we neglect the change of a* from place
to place, the solution of the equation (4) is obtained,

o(t, T)=exp i(pTxVv p*—a’t) . (6)
So that,
__ 1 . ——s
%—1/77; exp i(pT+V p'—a*l), (7)

K=pc is called in acoustics specific acoustic impedance, and, when it is
constant, @ vanishes, even if the medium is heterogeneous; the results
from such an assumption, however, will have little importance in the
application to the study of seismic bodily waves. On the other hand, in some
cases, for example, when p=const. and c=a-+bx, o’ turns out a con-
stant, and (7) is a rigorous solution of the equation of motion (1); since
these assumptions are conventionally used and the solution is rigorous,
(7) will be useful in some future studies. a* effects a non-dissipative
attenuation of the wave, arising in nature from selective reflection:
reflection of this kind was studied by Matuzawa®.

One of the important problems related to the study of seismic waves
occurs when the medium has a periodic, or, in general, fluctuating
structure in a certain direction; though it is assumed in this paper to
set about the mathematical study of the problem that p=const. and
c(x)=a(1+b cos vx), the simplest of oscillatory functions, we may be able
to deduce some fundamental properties of the wave through the medium
in consideration.

3. Reasoning to apparent internal friction
Putting c(x)=a(l+b cos vx) in (2),

t 2 —1 1/1“_‘62 fo

= ta tan - ,
avy 1 —b n 1+b an 2
2 . 140 yatl 1—b

== tan™! t . 8
fy n V'1-b an 2 (8)

And, if we assume © constant, we have from (5),

5) T. MATUZAWA; “Reflexion und Refraktion der seismischen Wellen durch eine
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Ve & 3
a3=T CWc . (9)

Assuming c¢(x)=a(l+b cos vx), applying x—¢ relation given by (8), and
denoting vatv"I—0°/2 by 2, we obtain from (9),

c(x)=a(14b cos vx) —_a(=b)

1—bcos 2z’
az=M b{éb—2 cos 2z———b- cos 4z} . (10)
4(1—bcos2z)* 12 -2

So that, putting ¢(¢, T)=¢,(t) exp (ipT) in (4), p being a circular frequen-
cy of the wave, a differential equation for ¢,(t) is obtatined as follows:

d’p, {2 b(—5b+4 cos 2z+b cos 4z)} -0 : 11
FEa 2(1—b cos 22)° #=0, an

_ 2p ) _yatV 1-¥b
g=—T—; =10
avnV/ 1-b* 2

which is clearly on the lines of Hill’s equation, and, assuming that b is
small, (11) is transformed approximately to Mathieu’s equation. Since,

b(—5b+4 cos 22+ b cos 42) —b
2(1—b cos 22)°

{—%4—2 cos 2z+%b cos 4z+0(b2)} ,

it is approximately

&b, f . -
Lt {20 cos 22}, =0. (12)

Then we have a solution of ¢,(z), when z is large, in the form,

$1(2) = (2) exp (—p2), (13)

where r(2) is a periodic function of z. Therefore, the attenuation of ¢,,
which consequently applies to that of the wave is determined by ¢ in
(13). According to the theory of Mathieu’s equation, when b is fixed,
¢ is a function of ¢°, and the largest real value of u, for a range of
¢*>0, is

ym';%m , when q?':.l—%bﬂ . (14)

Under these conditions, the attenuation of the wave is given by
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exp (—|b|z/2). So that the apparent or mean attenuation constant of
the wave is |b|2/2¢, which is equal to |b|vat)/ T1=b*/4x, or approxi-
mately to |by|/4.

Suppose a wave of a certain period, then p is specified. And v-value
which satisfies (14) for the specified p is approximately given by,

q=1; y=2pla . (15)

If the wave length of the periodic structure of the medium is L, y=2x/L.
So that, from (15), the L-value that effects the largest attenuation to the
wave whose period is T=2x/p is given by,

L=at/2. (16)

It is a debatable point whether we have the L-value represented by (16)
in the actual structure of the earth for the wave of an assigned period
. If we assume that there is always, that means for any period of
the wave, or, at least, for a certain range of period of the wave, such
L-value that satisfies (16) in the structure, the attenuation constant of
the wave of the period of that range is |bv|/4, or, putting v=2p/a,
|b|zlar. Consequently, apparent, or say, equivalent, internal friction
on account of heterogeneity, 1/Q’ is

1/Q@'=|b] . a7

1/Q’ diminishes the wave amplitude in the course of its propagation,
and the attenuation effect is clearly additive to the genuine internal
friction, if any. The mechanism of the attenuation caused by 1/Q’ is
not, however, dissipative; it means that some part of the energy of
the wave is transformed into harmonic waves. Those circumstances will
be understood, also, from the results obtained in a previous paper® which
proves that there is a generation of a characteristic stationary wave and
diminution of the amplitude of the first shock. In this case, the harmonic
waves generated are given by each term in the infinite harmonic series
¥(2) of (18). Those harmonic waves will be studied in the near future,
and until the study is finalised some doubtful points will remain unsolved,
from a theoretical point of view, in the acceptance of formula (17),
because the solution of Mathieuw’s equation is too complicated to be easily
adapted to the mathematical description of the propagation of waves.
In spite of some uncertainties, we can assume that the order of magni-

6) R. YosHIYAMA, ‘‘Elastic Waves from a Point in an Isotropic Heterogeneous Sphere.
Part 2,” Bull. Earthq. Res. Inst., 18 (1940), 41-56,
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tude of 1/@’ can not be much different at any rate from that set down
in (17), and the effect of the heterogeneity of the medium in the
apparent attenuation of the waves will not be negligible, since the
internal friction computed from the observations of seismic waves is
also a small quantity and does not exceed 9.10-% Of course, the above
stated results are worked out to apply to special bodily waves, but
will be applicable to some extent even to surface waves; at least, if it
is said generally, the attenuation effect will not be less than for bodily
waves. And the magnitude of b, that is a measure of the irregularities
of structure in the horizontal direction, as large as 10 will be reason-
ably presumable in any district, if it is expected to cover some hundred
kilometres, and if it is expected, also, in some range to have an arbit-
rary wave length, to effect the largest attenuation to the wave with
a certain period. On the other hand, the present writer expects the effect
of the heterogeneity of the earth’s crust of the order of magnitude 3—
5x107% at the largest, in 1/Q’, to fill up some part of the difference be-
tween the two internal frictions, one being obtained from the computation
of a surface wave with a long period which ranges from fifty seconds
to some hundreds of seconds, and the other from the study of “Maximum
amplitude and the Epicentral distance relation’’ of large earthquakes in
Japan, in which the period of the seismic waves ranges from a few se-
conds to several seconds.

For a given small b-value, real ¢ decreases very rapidly either for
@°>1or for ¢*<1, and, for a certain range of ¢°, ¢ is a pure imaginary.
So that, the attenuation of the wave, whose period is 7, by the periodic
structure of a wave length other than that which exerts the largest
effect and is obtained above in (16), is negligible.

4. Theoretical calculation and some remarks

As already mentioned, it seems to the writer that the solution of
Mathieu’s equation, hitherto obtained, is not satisfactory for a straight-
forward study of the propagation of waves; the solution implies insepa-
rable two sets of waves, primary waves and reflected waves. Though
the co-existence of the two sets of waves will be an important property,
utterly natural in itself, of waves through the medium with a periodic
structure, it gives rise to some theoretical difficulties, when we try to
interpret physically the solution for the elucidation of a progressive
wave. To remove those difficulties completely, analytical study of the
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solution, or reformation of the infinite series of the solution will be
necessary. However, it is not a problem to be solved easily. And, in
this paper, to remove a part of those difficulties and to arrive at formula -
(17), the following example is studied.

A three layered medium is assumed as shown in Fig. 1; two of the
three, I and III, are homogeneous, and the intermediate medium, II, is
the one that is considered with

a special interest in this paper, l " "l
h‘avmg. a periodic s.tructure.. A Ho mog. Hete rog. Homo g.
sinusoidal wave with a period C F C C
t=2z/p is propagated from lo 2 )P 3 ;.P
medium I tomedium III through C=Q(I+bcasjz)

mediur.n II; A, A, and A, are A ; - Az AB
the displacement vectors 1n B < B

each medium caused by the 7 2

wave propagated in z-direction, 7 Z(Z)
a-direction being assumed from /(21) Lo(Z5)
medium I to medium III; B, Fig. 1. Schematic illustration of the as-

and B,are those from the wave sumption and the notations.

in the opposite direction; clearly B; is zero. Then it follows;

_ A, . . _
I. A= Voo exp (ipT) exp {—ik,(z—=.)} , (18)
B, . —
B, = e exp (ipT) exp {ik,(x—x,)} ,
I A+B,= 1/20 exp (ipT){Anj(—2) exp (— )+ Bapr(2) exp (1)}, (19)
A . e
III. A,= VAT exp (ipT) exp {—ik,(x—)} , (20)

¢, and ¢, are constant respectively, while ¢,=a(1+bcos yz). There will
be no necessity to explain the notations in (18) and (20). The formula
in the bracket of (19) is the complete solution of Mathieu’s equation
(12); in (13), one of the two terms, which diverges at x=o, was dis-
carded and the study of theoretical basis of such discarding is one of
the subjects in this section.

When ¢*:=1 and b is small, the function in the complete solution of
Mathieu’s equation is given by,

() =sin (z—0)+8; sin (32— o) 21)
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where 6=x/4, s,=b/8 and p;=b/2, regardless of the sign of b. Yr(—2) is
obtained by putting 6=—=x/4. Boundary conditions at the two interfaces,
that imply continuity of displacement and stress, assign four simulta-
neous equations to determine B, A, B, and 4, in A,. Those equations
are obtained in the following, being only assumed that density o is
constant throughout the whole medium:

B, +4, +B, +4,=4,

—1, Vg (~z)exp(—pz), Vemp(z)exp (1), 0, 1.

1, iafr.F(—z)exp(—pz), iclv.F(z)exp (1z), 0, 1.

0, Yr(—2,) exp (—pz.) , Yr(z) exp (p2,) , —Vey, 0.

0, V2l (—2,) exp (—pz,) , Y2k (2,) €xp (12,) , e, 0.
(22)

where ,, or 2, and a,, or 2, are the x- or z-co-ordinates of the two
interfaces as shown in Fig. 1; co=1/ca=c)jc, at x,(2), cxy=1/e,,=ce,
at @,(2,); v.=vav 1—b2/2k102(m1)’ 732:7611/ 1_b2/2k302(x2);

2 —d 1 i)
F(z)_{(m]/ 1-b Ve dx 1/?2+#}¢(z)+ dz
)= 2 @ 1 ) di(—2)
B z)—{m Ve, dzxv'e, ;,e} =2+ dz (23)

Considering the limited purposes of our study at present, we may
assume for the sake of mathematical simplicity the following: 1) origins of
| I ” 2- and z-co-ordinates are at the

I interface of the I and the II me-

00 dium, i.e., ,=2,=0, then we may
' /\\ IO put z.=2,; 2) ¢,=¢,; 3) velocity of
“\/\/ /\/—ﬁ— propagation and its gradient are

b>0 : continuous at the interfaces. After

all, our assumption on the velocity

C QrQ(/*bmr/d C distribution throughout the whole

>0 75 / medium is such as shown in Fig.

- €N/ 92: then the co-ordinates of the in-
(Z=0) (Z= )

terface between II and III is x, =
2nz[y, or z,(2,) =nw. From these
assumptions, it follows, putting z,=0, 2(20) =n7:

Fig. 2. Velocity distribution, assumed.
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P(2))= '—(1"‘33)/1/?: _"‘P(—zl) ,
P =(—1)""(1+s)V 2 =—(-2)
Fe)y=Q1-s)V2=F(-z), 249
Fz)=(—11—s)[V 2 =F(-2) , s;=b/8
Ciy=Cy=Cpn=Cn=1,
‘712:732:')’(1/1/_1:?/21) .

For the wave, to which this structure, assigned by a,b and v, effects
the largest attenuation, va1/1—0°/2p=1. Substituting (24) into (22)
and solving the equations, we obtain A, A,, B, and B;:

A____CW )
A, cosh pz,—21s, sinh 1z,

ﬁll: (1 _ 33) - @(1 + 33) R exp gﬁzo) (26)
A, cosh pz,—2is, sinh pz, V2

_B_.Z..z —(1—s)—1(1+sy) , €xp (:ﬂzo) @7
A, cosh pz,—2is, sinh pz, V2

B, _ —1 sinh (7, (28)

A, cosh pz,—2is, sinh 1z, '
(1=0b/2, s;=b/8)

2, is proportional to the thickness of the medium II and, accordingly,
to the distance over which the wave is propagated through the medium
of a periodic structure. From (25), when 2,=0, A,JA,=1; and when 2,
is large,

A, _2exp(—|¢l2)
A i-mis, )
Therefore, at large distances, |A4;| decreases as exp (=1t 2,); this result
may be interpreted to support our reasoning based on (13). At the
same time, however, we must notice, that if the amplitude at the origin
is estimated by (13) from observations at large distances, it will be over-
estimated almost twofold, chiefly because of the difference between
exp (—|¢12) and 1/cosh pz;; the non-dissipative attenuation concerned
contrasts in this point with the ordinary dissipative one, in which we
have two linearly independent particular solutions with exp (=] p¢l2) and
none with exp (| ¢£|%).
Concerning A,+B,, according as b>0 or b<0, there is a slight
change of the notations in the following description, which clearly never
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affects the main point of the discussion. We may assume, for the present,
b>0. The wave motion in medium II, when z,—z, which is always posi-
tive in medium II, is large, contribution to A;+B, from B, vanishes,
and the wave motion is expressed by A, only. So that, when z, is large,
while z is fixed,

A, +B,=4, “"%’:ZT) V2 {‘11‘};;8:‘” g~z exp (—p2),  (30)
A,+B, in (30) expresses clearly a stationary wave, whose amplitude
decreases as exp (— [2); it was already pointed out by Rayleigh that the
wave propagated through the medium of a periodic structure is ultimately
totally reflected back to the origin, and here obtained result also indicates
the same conclusion. The behaviour of the primary wave apart from the
reflected wave must be studied by the solution where z,—z is not large,
the intense effect of the reflected wave being avoided there. And, since
#>2,—2>0 in the medium, exponential factor of B, is transformed,

exp (—{z,) -exp (122)=(1—8) exp p(z,—2) , 1)

where 0 < & < 1; =0 when p(z,—2)=0, =1 when H(z,—2)=0; and the
problem to be studied is the case when 6<£1. So that,

_ 4 exp (1pT) . exp (z,—2)
A+ B =4, 0:C, cosh pz,—2is, sinh pz,

X [exp (—172)—s, exp (iz) +s, exp (—i3z) —{-1/—8—.2_{(1 —8)+i1(1+ sa)}a,!r(z)]. (32)

We can see in (32) the primary wave progressing in -+« direction with
a small quantity of its reflected wave, the 3rd harmonic wave in the
same direction with the primary wave and stationary wave whose ampli-
tude is proportional to 8; phase velocity of the 3rd harmonic wave is
one third of the primary waves.

Concerning the reflected wave in medium I, as z, tends from zero
to infinity, | B,/A,| increases from zero to 1/v/'14+4s;, almost equal to
unity, but that it is less than unity altogether implies that some energies
are kept as a stationary wave in medium II. If we take simply b =0,
sinh ¢2,=0 then | B,/A, |=0, but, if we take 2,=1/b*and b—0, then | B,/A, |=
1. Here we have a special type of total reflection, the phase angle being
shifted by z/2.

It is to be noted especially that we have harmonic waves neither in the
refracted wave through medium 1, nor in the reflected wave through
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medium I. Therefore, considering the complicated structure of the earth,
it will be understood that those harmonic waves are important not so
much in themselves as in their absorbing effect on the energy of the
primary wave. The energy absorbing mechanism is clearly one of those
by resonance effect of oscillators, the wave-mechanical elucidation of
which being given by the formulas (30) and (32). Examination of the
transient aspects of the wave motion from 4,+B; to A, by (80) and (32),
also, seems important at this stage of the studies, in which a fundamental
problem of the apparent internal friction is taken up. However, for
the study of the principal part of the seismic waves, the formula of A,
(25) will be more seismologically significant than (30) or (32).

From the results above obtained, we are lead to the conclusion, for
the present, that the effect of the periodic structure on the amplitude
A of a progressive wave is represented by A=1/cosh pz in stead of the
simple exponential function which is used in (13). Therefore, apparent
internal friction 1/Q’ caused by the periodic structure should be estimated
somewhat smaller than [b| that is obtained by (17).

Approximate attenuation formula of the seismic waves with the
period 7 =4n/ay through a medium with a periodic structure whose
constant of internal friction is 1/Q will be represented by the expression,

N S
" cosh (wbx/at)

Estimation of b, or, generally b, in the earth’s crust when we put ¢(x)=
a(1+ b, cos7,x) is a problem to be studied from observation in future. If

. exp(—rnx/Qart) . (33)

|, | isnequal to a constant | b | for any 7,-value in a certain range such that
v, <7,<7, then the apparent internal friction of the medium for the
seismic waves with a period 7, such that 4xfav, > 7> 4rlay, is, at a large
1
Q"
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distance, approximately |b|+
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