b

BULLETIN OF THE EARTHQUAKR
RESEARCII INSTITUTE

Vol. 38 (1960), pp. 1-12

1. Stability and Non-Steady State of Self-Exciting
Dynamos. 1.

By Takesi YUKUTAKE,*

Graduate School, University of Tokyo.
(Read Nov. 24, 1959.—Received Dec. 24, 1959.)

Summary

Time-dependent behaviours of two conducting spheres rotating
in an infinitely extended conductor are studied. Although it has
been proved by Herzenberg that such a system works as a- self-
exciting dynamo, the steady state of it turns out to be unstable for
small disturbances. In some special cases, a paradoxical result that
the magnetic field continues its growth in spite of non-rotation of
the spheres is obtained by the numerical integration of the non-
linear simultaneous differential equations with the aid of a relay
computer. This difficulty is caused by the crudeness of approxi-
mation for the electromagnetic coupling between the two spheres.
If we improve this point, it seems likely that oscillatory fields and
velocities could be found. It is intended to apply this study to
investigations of the magneto-hydrodynamic actions which are sup-
posed to be in the earth’s core.

1. Introduction

The possibility of reversals of the earth’s magnetic field is one of
the most conspicuous suggestions from palaeomagnetic studies which have
been flourishingly developing of late. In order to illustrate such re-
versals, a few theories have been put forward on the basis of homo-
geneous disk dynamo models. Bullard” studied a single homopolar dynamo
and found particular oscillations of electric current and angular velocity
but no reversal of the current. Rikitake®? examined two disk dynamos
that were coupled with one another and showed by numerical integration
that the current could change its sign at the initial stage. Using a
digital computer, Allan® confirmed such a reversal for a more extended
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2 T. YUKUTAKE

period of time. Since possible reversals of the earth’s magnetic field
have been demonstrated even by these simple systems of disk dynamos,
it is desirable to study a more complicated model in order to have a
better understanding of the dynamo action which is supposed to be
prevailing in the earth’s core.

Recently Herzenberg? has proved in a rigorous way that a system
composed of two conducting spheres rotating in a large sphere, which
is also conducting, works as a steady dynamo. Dr. Rikitake has sug-
gested to the writer that it would be of importance and interest to study
non-steady states of such a dynamo because Herzenberg’s model would
be more realistic than the disk dynamo models as far as its application
to the magneto-hydrodynamic actions supposed in the earth’s core is

concerned.
In this paper the stability of a steady state of Herzenberg’s model

is examined and, in some particular cases, time-dependent behaviours of
the system are traced by numerical calculation.

2. Equations

Suppose that two eddies, which are regarded as two conducting
spheres of equal radius in this paper, are located in some favourable

way, then it is possible for them to compose a system of self-exciting
dynamo in an infinitely extended conductor which is assumed to stand
still, the influence of the motion of eddies being ignored. It is intended
here to study how these two eddies are connected electromagnetically

with one another.
In the first place, induction due to the rotation of one sphere placed

in a uniform magnetic field will be examined. The magnetic field induced

by the rotation of a conducting sphere about an axis agreeing with the

direction of the external uniform field (H) is of the toroidal type or
T,-type. The r, 8 and @ components of such a field are written as

r 0 -

h= 0 r<a
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do
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4) A. HERZENBERG, Phil. Trans. Roy. Soc. London, A, 250 (1958), 543.
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respectively for the inside and outside of the sphere, where k*=4zmop.
The origin of the spherical coordinates (r, 6, ) is taken at the centre
of the sphere. ¢ denotes the electrical conductivity both inside and
outside the sphere and p is the operational representation of 8/t.

On the other hand, we have the electric field induced by this field
as follows,

. ) T 8Ar-Y(kr)=Y2J;,(kr)Py0)
—roth=— 1 d -1/2 dPy(0) ,
P 1o o A7 W["’(k"') i, 5/2("77”)]—67 r<a
- 0
[ 6Br=i(kr) Y, ,(kr)Py6)
:_:l 1 d ~1/2 sz(G) r>a
P A? ar [r(kr) Ys/z(k"')]w‘
- 0

At the boundary-surface of the sphere or r=a, the normal component
of the magnetic flux density and the tangential component of the electric
field should be continuous. Thus we have

AJ,(ka)=BY,(ka) ,
[—3Ai-d_{o«(kw)-w,f,,,z(kr)}] —4roQHa
r dr a

—_ 1 d -1/2
=[ —8BL L (rler) Y uler)} |,

where Q represents the angular velocity of the sphere.

From these equations, we can determine the free constants 4 and
B, so that the maximum component of the magnetic field (k,) outside
the sphere is easily obtained as

h,= —%ﬂZGQHa’(ka)”z(kr)“/2J5,2(ka) Y, ulker) . (1)

In the case of a relatively slow change, ka and kr take small values,
so that the Bessel functions involved can be replaced by a few terms
of their ascending power series expressions. If we assume a sphere,
1000 km in radius, with a conductivity amounting to 10-®e.m.u., for
example, the following may approximate (1) well so long as changes
having a period larger than 2 x 10* years are considered.

2 droa? 4ror? “
h=2 roq’ -3[1— ]QH. 2
£ o i p+ e P (2)
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The magnetic field thus produced is the strongest on the circle of 0=7/4
on the sphere and penetrates into the outside of the sphere with its
intensity weakening.
Let us next study the coupling between two spheres. Far away
from one sphere (I), where the magnetic field (H,) produced by its
rotation may be regarded as uniform enough, the other sphere (II) is
revolving as can be seen in Fig. 1. Its axis of rotation, which is nearly
parallel to the field H,, can be
directed so as to let the direc-
) > H-) tion of the field H, induced
alike by sphere (II) almost
. g coincide with the axis of sphere
& \ \ (I) and reinforce the original
N field assigned parallel to its
Fig. 1. A system of self-exciting d&namo. rotational axis. If mechanical
energy that makes the spheres
rotate is supplied by some external force against the dissipation of energy
due to Joule heat, the magnetic fields of each sphere are maintained by
the above process. It should be noted, however, that if the field H, is
completely parallel to the axis of sphere II, sphere I comes to be placed
on the equatorial plane of sphere II where no field of H, can be induced,
and vice versa. Therefore the axis of rotation should be slightly inclined
against the direction of the field. In that case, some other components
of magnetic field necessarily come out. According to the studies® of
electromagnetic induction by a rotating sphere, it has been proved that
the fields induced in an asymmetric field do not grow infinitely however
large the rotation speed is. It is then obvious that, by making the
distance between the two spheres fairly large, only the fields induced
in the field symmetric about the rotation axes become important, the
other fields being possible to be ignored in an approximate study.
In the light of the above discussion, it may be allowed to describe
the behaviour of this system, using equation (2), as follows,

A,(0)=—2ro0r=| O B() +4mo( L)L, Hw) |, (3)

Ht)= —%naasf-ﬂ[m(t)m(t)+4zo(%2—1ii>gt_{92(t)m(t)}] . (4)

5) E. C. BULLARD, Proc. Roy. Soc., A, 199 (1949), 413.
6) A. HERZENBERG & F. J. LOWES, Phil. Trans. Roy. Soc. London, A, 249 (1957), 507.
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Attention should be paid to the fact, however, that (3) and (4) are some-
what idealized. In an actual case, the righthand members should be
multiplied by some factors less than unity according to the geometrical
arrangement. We may therefore consider (3) and (4) as the relationship
for the extreme case only.

When external torques G, and G, are being given to the spheres,
we have the following equations of motion for this system,

(7{£-—G 730MQ£E, (5)
age 8w

C, L=G,——0a"2,H; , 6
7t G, 750(1 H (6)

where C, and C, represent the moments of inertia of the spheres I and
II respectively. The second terms of the righthand side are the torques
due to electro-magnetic coupling. Solving the above four equations (3),
(4), (5) and (6) simultaneously, we may thoroughly observe how this
system behaves.

Since it is too difficult to solve these non-linear simultaneous equations
analytically, the only way to tackle them seems to make use of numerical
caleulation. In order to make variables dimensionless the following trans-
formations are carried out.

Q=00 , H=9H',

where O=(rga®™, T=roa®, H’=Ga*=C|n*c%’. Substituting these into
the equations (3), (4), (5) and (6), and dropping primes, we have

t=2T¢t,

poignth o
%§“4 %%Hm“ (9)
%5“4 ;%Hm“ (10)

where e=a/r.
G,=G@, in the above calculation.

For simplicity,

is easily obtained as follows,

it has been assumed that C,=C, and
A set of solutions in the steady state
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51 15
P=mg g IR (11)
3
'on_‘_i% ’ I'Izﬁ——1—5i ’
2 ¢ 4 ¢

where ¢ is defined by the equation

Hl)z_&z 2
(HZ Q, T-

3. Stability of the steady state

If the initial state is taken to be H,=—H, and 2,=0,, that is
g=—1, the behaviours of the system I and II are quite the same, and
therefore the steady state is given by

Q0=_QIO:QZO:_5_£ , H3=H3=H;§=—]£83 . (12)
2 & 4
In this special case, equations (7), (8), (9) and (10) are reduced to the
following,

dH 3 ao
7 =l (00— hadenliy
2 7 {28( Q)+ T }H, (13)
dse H0
40 _, H4 14
dt H:0, (14)

On the assumption that the magnetic field and the angular velocity
deviates a little from the steady state, let us first examine whether
those deviations will grow or decay. Let the magnetic field and angular
velocity be

H=H0+h y .Q=QO+CU ,
where h and @ are small departures from the steady state. Substitut-

ing these into equations (18) and (14) and ignoring the products of these
small quantities, we have,

dh _2, 4, (ieﬂ—l)w ,
dt £, Qy\2 2,
da)=__._2_h_ 1

—w .

dt H,£ 0

Provided % and w are proportional to e*, two roots of A are easily ob-
tained from the above equations, N
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Vet (14vITI2E0) (15)
20,

of which one is positive real and the other negative real. The existence
of a positive real root indicates that the steady state expressed by (12)
is unstable for small disturbances. It is therefore doubtful that the
steady state of the dynamo investigated by Herzenberg® lasts over a
long period.

When a departure from the steady state is considerable, we cannot
examine the behaviour of this system by the above small perturbation
method. It may readily be understood that the initial state of the
system will play an important role in the determination of the variation
in the magnetic field and the change in the angular velocity. Let the
deviations from the steady state, regarded as appreciable at the initial
stage, be H, and 2,, then the magnetic field and the angular velocity
are written as

H=H,+H+h, =0+ +w,

where & and @ are small quantities of the first order which vary with
time. Substituting these into equations (13) and (14), we have the
following equations by ignoring the products of A and w,

dh
L =A+Bh+Cw ,
L +Bh+Cw

d (16)
%=D+Eh+Fw ,

where

__H+H (3 .0_ e
a=—24 {2890(1 +y—a}

0

B:-é{%s@o(l—y)—l-y—«?w?} ,

0

O H0+Hi(§€2_i)y2 ,

2. \z2= o
p=Ly-w,
y .
-2 =
Ho'i‘-Hz'U,
=%

0,
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x2= ('H'O_'l_-EI‘i):7
H;
9y
2+,

From these the following equations are obtained.

b

Y=

—(B—i-F)——[—(BF— CE)h+AF—-CD=0 ,

%%—(B+F) +(BF—CE)w+BD— AE=0 , 0
where
ere(Go-E)u(Se- .
Br-cn="{(5e -5~ (3¢ —,é)}
AF—Ccp=1h ;Ht{( )(y 2ty — s" w1},

BD—AE= ——ez(l—y)(l—i—-—) (1—_2)2 :
2 ¥/ 9 Y
It should be noticed that the last terms in the equations (17) do not
appear in the case of the previous small perturbation method. These
depend only on the initial state of the system and have effects of a
kind of an external force exerting the system as in the case of a forced
oscillation. This may be understood when we consider that at such a2
state the couples produced electromagnetically by the magnetic field do
not balance themselves with the external torque accelerating the sphere,
which consequences to reinforce or diminish the magnetic field and the
angular velocity.
The solutions of the equations (17) are,

h=h,+ Mef*+- Ne* |
W=0;+ Pet 4+ Qe ,
where £ and 7 denote the solution of homogeneous equations of (17) and
H+Ht 22( 2 - 2 2}
hy= o {26 i (a?—1)— ( o )(y x?)

0

ws=%eﬂ(1~y)(1 +§)+%0(1—?°>2 .
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When both of & and » have negative real part, ~ and w approach the
values &, and w, respectively. Therefore if &, and w, are equal to zero,
the state in question is one of the stable steady states. Or otherwise,
it may be regarded as unstable, so long as %k, and w, take some definite
values even if real parts of £ and % are negative,

y
2
\\
\\ w0
I 5
=N u hy0
\\\‘ 'u) ) ‘ s ,
0 1 2 3 5 x*
/
/
/
/1 W0
/ BF-CE=0
/ (3)
/
. . I . cons o Hot+Hi \?
Fig. 2. Ordinate: y—ﬂo_'_m, Abscissa: x2= -————HO )

e=1/10%,

Region 1: ¢>0, 7<0.

Region 2: &<0, 7<0.

Region 3: ¢ and 7 are complex.

In Fig. 2 curves of zero lines of %, and w, are shown. The steady
states are represented by the intersection points of these curves, 17.e.,
2*=1, y=1 and 2*=0, y=0.

Provided that

3 . 4902) (3 . 1 F 8902(3 2 1)
g = e - — =t—— 0
{(2 0,/ \2 Q)y to gt T V<
which is shown in Fig. 2 as the inner range of a hyperbola (8), £ and 7

become complex. In this range & and @ are oscillatory with diminishing
amplitudes and tend to %, and w,. When

(G- e 3hF 5230 oo

£ and 7 are real, According as BF—CE <0, that is,
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3x%/2,— (3/2)¢
(3/2)2—1/2, ’

one of the roots has the positive sign and the other negative, or both
of them are negative. To the former case does the first steady state
(1,1) belong, and therefore it is looked upon as an unstable saddle point.
To the latter belongs the other steady state (0, 0), and it is the only
stable node.

y=z—

y /%no
B
2 \‘\ .
— - - —
N st -
Pl
(4 7
pA
/
PIARN o
% ~
o 1 2 3 4 5 X2
v
-l 7
'
Fig. 3. Trajectories of representative points
e=1/10% ,

A: H1=0.1, Hz=—'0.1, .91=.92=25.
B: H;=1.0, Hy=-1.0, 2,=02,=9.375.

Taking equations (13) and (14) into account too, the trajectories
of the representative points on x’—y plane are schematically drawn in
Fig. 3. As for some particular cases, equations (7), (8), (9) and (10) are
integrated numerically, using the relay computer FACOM-128B. For
examples, three of them are shown in Fig. 4, trajectories of which
are also depicted in Fig. 8 with dotted lines. From these we see that,
if the magnetic field and the angular velocity whose values belong region
(2) are given initially «* and y approach themselves to zero, namely the
angular velocity increases indefinitely while the magnetic field decreases
monotonously. The sphere will be infinitely accelerated by the external
force that has nothing to do with the generation of magnetic field while
the magnetic field dissipates its energy as Joule heat. Perplexity occurs
when values of the magnetic field and the angular velocity belong to
region (1). The growth of the magnetic field is accompanied by the
decrease in the angular velocity because the electromagnetic coupling is
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w
450
H
w
0.10
4140
0.05}
430
H
L 1 1
b 0 10 20 t
Fig. 4-1. e=1/103,
Initial values: H;=0.1, H,=-0.1, 2,=0,=25.
" H w
10.0 1100
501 150
w
1 1 1 3
0 10 20 t

Fig. 4-2. e=1/103,

Initial values :

Hl':l.o, H‘2= —1.0, .91:.92’-:9.375.

1100

195

0-

Fig. 4-3. e=1/103,

Initial values :

Hi=,/3/8, Ha=—14/3/8,
21=92,=100

90

strengthened by the in-
crease in the field and the
decelerating torque will
come to overwhelm the
driving force. It is in-
comprehensible, however,
from the physical point
of view, that the diminu-
tion of the speed of rota-
tion continues endlessly,
as is shown in Fig. 3 and
4. It is probable that this
difficulty might be origi-
nated in the crude appro-
ximation such as (2),
where the second order
terms of p are ignored.
A better approximation of
the magnetic field might
exclude this unreason-
ableness.

4. Concluding remarks

It is clarified in this
paper that a steady state
of the dynamo with two
rotating spheres in an in-
finitely extending conduc-
tor cannot be stable for
small disturbances. If the
magnetic field decreases
by chance below a certain
value, the coupling torque
is weakened and the
spheres come to rotate
with infinitely  rapid
speed. If the field is

strengthened, the speed
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of rotation diminishes owing to the increase in the decelerating force.
It is also anticipated that the magnetic field would reach its maxi-
mum value and begin to decrease, though an approximation of higher
degree is needed to describe the electromagnetic coupling between two
spheres in order to attain such an oscillatory field. It is not known
whether or not we observe reversals of magnetic field in this system
until we perform such a study.

In conclusion, the writer expresses his sincere gratitude to Dr.
Rikitake who gave him kind direction and advice.

1. JEEHE A+ (1)

WIRAFERER: = =p
wabpman 11 K 2

13T, Herzenberg 1 X2C, 3k BRodCHllEd % 24 /AR, self-exciting dynamo
FHELT, WA TEX 22 EANMEMI &R, ST, CheFlo model Z vy, F0Y%5E
PRI bR T, 163k, FEE AL FTOWFRIE, M4 F 2% HioThINTEE.
DR, 27 OFABAA4 FERHEEIRT, TINPAEEOME A, HIETHZLERLTWAS,
B 5 WIS OMIEO AT REMEN E @ X 5 7efijiiiZs model X LGRS nicBIfETIL, SERIORE
e, X Y BFENAL model AFGT, FEH LA FTEHTTH &nHITh B,

Z O T, IR O WASTT R AR AL LT, 4RIR 503 ARk T, 24 O RHAIRNIE
LThBEAERE 2, C OISHFHE NS0, (GHE O EINE{L 2 Ii~%k. Z o model it LT,

HRBRELHTRE D2, ToX 5 eEHIREIE, DMNEFLCH LT, EhD TRRETHHI L
PERENDG, BWEHTHEMNGT, BENCLTEDOR 2k THEH, ZoRpiMios x5
roT, 2 0EET 5.

1) REEHERCEA L, MEESA—RR T 5846, SHIIBERA LT, SERE ML
X5 LT AMRAEEINTE 5L, BRoMIENRGE k), MELLERS =515 —23, £
R = 2V F — iR S BAETH 5.

2) IHFREEANEA L, RORAME T ANE. REEALAME v RELS LD X, EiGA M
LX52TATMRMESHY, MIRIRAT 325 HeiTbioid, ROEERREDHRLE &
wish, LaL, OEEEUeid L, o e i k9% X ) 2 Blgud, YA i mae
ThD, BFELL, MEEOHD LT, LR TIRRE ORE ik, M3 BfRREs & Tl
INBM, TR FOY SRR E D ok, FHRE O ELU N5 Tl 2307 iad T
HA S, HPOEREGD S Z LI XoTC, RMEORE MIOh A b0 LfFEn 5.




