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Summary

A theory, based on magneto-hydrodynamics, that the geomagne-
tic secular variations are caused by forced oscillations of small am-
plitude superposing on the steady state of the earth’s dynamo is
tried. With drastic simplifications, the driving force due to buoyan-
cy is obtained for hypothetical variations of a 100-year period. The
time-dependent thermal field responsible for such a force field is also
obtained. It is shown that the amplitude of the field would be
10-¢°C in order to account for the S;° field whose amplitude is assum-
ed as 1000 gammas at the pole.

1. Introduction

It has become widely believed that geomagnetic secular variations
are caused by fluid motions in the earth’s core wherein magnetic fields
are maintained by the dynamo action. Although it is not known whe-
ther or not the earth’s dynamo is steady or non-steady, it is possible
to study secular variations as small disturbances given to the dynamo
which is regarded as nearly steady during a period longer than those
of secular variations.

The first study in this line has been published by the present
writer” by taking Bullard’s dynamo® as the steady state. As far as
the influence of the Coriolis force due to the earth’s rotation is dis-
regarded, the study led to a conclusion that the dynamo, whose toroidal
magnetic flelds are as large as those estimated by Bullard, would not
be stable for small disturbances. It is also suggested that geomagnetic
secular variations might be explained by the free magneto-hydrodynamie
oscillations of the system.

1) T. RIKITAKE, Bull. Earthq. Recs. Inst., 33 (1955), 1.
2) E.C. BULLARD and H. GELLMAN, Phil. Trans, Roy, Soc, London A, 2477 (1954),
213,
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The above study would not be adequately applied to the earth’s
dynamo because the Coriolis force, which usually plays an important
role in studies of rotating fluid mass of large dimension, is completely
ignored. The present writer® extended his study to the case in which
the core is subjected to a uniform rotation. It has then turned out
that the influence of the Coriolis force is so strong that the dynamo
considered is stable for small disturbances unless the steady magnetic
fields are as large as 10°gauss or more. We therefore see that the
previous view that the secular variations might be caused by free
magneto-hydrodynamic oscillations in the core is not acceptable when
we take into account the effect of the Coriolis force.

In the light of the above, it is naturally required to suppose some
time-dependent driving force in order that we can account for the
secular variation as a result of magneto-hydrodynamic processes prevail-
ing in the earth’s core. The most likely cause of such a force would
be the buoyancy force of thermal origin. The purpose of this paper
is to study forced oscillations of the dynamo, of which the steady
state has been studied by Bullard and others, and also to investigate
the force field which gives rise to the dipole part of geomagnetic secular
variation. Owing to the mathematical complexity, however, only fluid
motion, driving force and thermal field which are related to secular
variation of the S? type will be taken into account.

2. Equations to be solved

Maxwell’s equations can be written as

I=c(E+VAH), (1)
curlﬁ:—@ﬁ/@t , (2)
curl H=4x1 , (3)

where f: E, EZ, o and V denote respectively the electric current density,
electric field, magnetic field, electrical conductivity and velocity of fluid
motion. The magnetic permeability is assumed as unity in electro-
magnetic unit.

Meanwhile the equation of motion can be written as

p0 Vot +p(V-grad)V+20(@A V)=IAH—grad P+G  (4)

3) T. RIKITAKE, Bull. Farthq. Res. Inst., 34 (1956), 283.
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where p, @,, P and G denote respectively the density, rotation vector
of uniform rotation about #=0 axis, pressure and non-electromagnetic
force.
Let us put
I=I,+i, E=E,+¢, H=H+h,

L. W o (5)
V=V,+79, P=P,+p, G=G,+y9,

in which the quantities with subscript 0 specify the steady state, while
those denoted by small letters are the departures from the steady state
and are regarded as the first order small quantities. Putting (5) into
the equations from (1) to (4), we have a system of linear differential
equations such as

i=0(@+AH,+V,AR), (8)

curl é = —0h/6t , (7)

curl h=4xi , (8)

070t +20(B, AD) =i A Hy+ I, Ak —grad p+3 , (9)

provided the second order small quantities are ignored.

On the assumption that H, V, I, and &, are known, we are going
to solve these equations under suitable boundary conditions. The only
difference of these equations from those treated in the previous paper®
is the point that the non-electromagnetic force ¢ is not ignored here.

We may further assume that the fluid is incompressible, so that

divy=0. (10)

By taking curl of (6) and eliminating € with the aid of (7), we
obtain

curl fzo{—DZ+curl (5Aﬁ0)+curl(170/\};)} ) (11)

where we write D in place of 8/6t. On the other hand we have from
(3

47 curl s=curl curl = — V’}_i , (12)

because div 2=0.
From (11) and (12), we can eliminate i getting
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{D—(4ro)'p} h=curl (V,Ak)+curl G A H,) . (18)
We also have from (9)
pD+2p(3, \V) = (4=)" {(curl EAH,)+(curl H,AR)} —grad p+7 . (14)

(13) and (14) are regarded as the simultaneous equations for % and 3.

3. Solution for pressure

Let us assume that ¢ is the buoyancy force. In that case it is
obvious that its & and ¢ components are to be zero, the radial com-
ponent of g being written as g hereafter.

If we make div of (14) we obtain

o= —(47:)‘1(12,- 172724-75- 172fL—|—2curl - curl I—Z,)
2,
4203, curl 3+7,_2§(7_g) (15)

dr
because of (10). curl@,=0 which is derived from the condition of
uniform rotation is also taken into account.

In general, k is to be expressed with the sum of poloidal and
toroidal magnetic fields of various degree. As has been done in the
previous papers”®, however, we shall assume % is of the S¢ type and
ignore the fields of other type which will appear in the righthand-side
of (13), otherwise the problem becomes far from tractable because
many fields of various type come out through the induction processes.

If we take only the S? field, we may write as

—2s(1)P; h
- ds apP,
h= ( d'r+2 ) dao
0,
0
> 0
curl A=
(7 X ds)dP (16)
dr? dr/ df
ds , 4ds
— P,
<d7'2 T ” d1)
7h= (..’ ds 4ds\dP,
(7 dr® +6 d7~+7d7>d0
0.
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As for the steady magnetic fields and fluid motions, we take the
simplest combination of Bullard’s dynamo®, so that the motion consists
of the T and S types while the magnetic fields contain the S3, T,
T% and T2 types. It then follows that

H=H+H+H+H,,
} Qa7
Vl): Vl+ Vz )
where
—28,(r)P,
R
0,
0
= 0
curl H =
( d&)dp (18)
dr/ df
dazs, |, 4 dS,
< ar? s 7 dr) !
p*H, = dS, | .S, , 4 dS,
— 6
(T ar ar Ty >d0
0,
0 .
=i dP.
e ()22
(rfa)Tyr) 20
( —6a~*T,P,
curl = { —a™ dT‘+3T> (21; (19)
0,
0
= 0
y*H,= .
_2(d‘T2 6qu> dP.
a g
art v dr/ do’




250

]

curl ﬁ3 =

curl IZ =

T. RIKITAKE

0

—(rjayT 3(r)w)

n 004
(rfay Ty E2 08 29)
00
—6a~T,P} cos 2¢
— 8T g7, 8(P] cos 2¢)
¢ <Tdr+3 3>T 30

—a-z(r‘%Jr 3T3)r6————(‘: m";’; ¢2¢’)
0
_ _2<d2T3 L8 6 dT3> O(P3 cos 2¢)
dr*  r dr sin 6o¢
(ST,
0

~ oy TR )

(rjay T EEE2S)
00
—6a-rT,P;} sin 2¢
dT4 &(P; sin 2¢)
3T, )y 222 49)
AT
—¢ ( dr ar ) sin 06¢ ’
0
_2<d2T 6 @)Tza(Pg sin 2¢)
dr* o dr sin 00¢
(dZT 4+ 6 6 dT) 0(P; sin 2¢)
ar*  r dr 00

’

0
0

(r/a) Vl(r)%

(20)

(21)

(22)
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—6(r/a) V,P; cos 2¢
_ dV, 0(P? cos 2¢)
= 0 a)< +37)) 20 28)

_ dv, 9(P3 cos 2¢)
(r/a)( 2y 3V, )—__Sin oab).

With the above expressions, the first three terms of the righthand-
side of (15) are calculated as follows;

iR 1)

() (B ) e )

- d’s d*s |, 4.ds\p.
+ 20 T*(r 23 4622 4 £ L) pr in 29

— 2072 T r&5 4 ds\ps 24
2072 T (rdrs +6dr~ += d> cos 2¢ , (24)

- SES)S0e Y )

PR (2B )

+2a’2( dde +6r‘%)(r‘dii + 2s>P§ sin 26

—2a‘2< ATy | 6y %{i)(r% + 2s>P§ cos 2 , (25)

azS, , ,dS, )(Td%: 4 ds)

ar +4E dr* ' dr

SO GH g )

—|—2a‘2<'r2 ‘ZS+37 T )( 43%)1)2 sin 2¢

curl - curl Ho— E(

—2a'2<7'2og“+31 71.)( Eid—+4g_f)13 cos 2 . (26)
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We thus see that the electromagnetic force considered gives rise to
pressure of which the distribution is described with spherical surface
harmonics P,, P,, Pjcos2¢p and P?sin 2¢.

In the next place, we have to examine the role of @y-curl .  Since
the velocities that give rise to the S? magnetic field through curl (17/\1170)
in (18) are only the SS9, S and S¥ types, it is sufficient to consider the
following velocities;

D=0, 47,47, , (27)
where ‘
—6&,(r)r P,
o) _(r 5. )P
B={ —(r s g, a0 28)
0,
—6&°(r)rP3 cos 2¢
A&’ | asc),O(P;cos 24)
3 0172 COS 2¢)
o= ( dr + 5) 00 (29)
dEy 2\..0(P3 cos 2¢)
3 2 2
( dr +E> sin 06
—6&(r)rP; sin 24
. ( asx +3égs) O(P3 sin 2¢)
V= o0 (30)
( gy’ +3:2s> w
sin 00¢p
In that case, we obtain
@, curl 3,=0 ,
- o E"’” 6 d&r
@y- curl v, =2wr? P;sin 2¢ ,
N w ( ar > sin 2¢ (31)
- . d*; 6 d&y
. 19, =—2 2 2 2
- curl v, wr<d9-+fr an >P cos 2¢ .
Finally, § may be assumed as
§=61+§2+§3 ’ (32)

where
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F(r)P,
.61 = 0
0,
F(1)P} cos 2¢
§z= ) 0 (33)
0,
F¥(r)P3 sin 2¢
53: ) 0
0,

while forces of other types have nothing to do with the present
problem.

Introducing (24), (25), (26), (31) and (33) to the righthand-side of
(15), we obtain the differential equation for the pressure as follows;

p=Ff,+ P13 P} cos 2¢ + 3 P2 sin 2¢ (34)
where

oty ds (T8 g 8 ds
Jo=—(m) g (d3+7dr2+o~d1~)’

4 d’s d""s 4 .ds\ , d(r*F})
fi=—(n)" S, _2dsy, el
(=)’ ( dar d'r2 r dfr>+ r’dr

()= w2125+ ) @

@er L 6 d dF)

ar? r dr rdr
Fdpw +

&y | 6 d&r d(rF'y)

dr? r dr rdr

in which it is assumed, for the sake of simplicity, that S, T,, and T,
are independent of 7.

The solution of (84) can be expressed as
p= 3 ¢r(n)Y% , (36)
where

Y2 = P?(cos 0) g?: mo .
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Since 7*p can be written as

LA ()t D ey,

Vip= §3 {
we have a set of ordinary differential equations such as
1 d(pdyp
rdr\ dr/ "

1d/,d\ 6 ¢\ [/ (37)
{7* dr( dr>‘p} g |=|r¥|. I

2¢ 28
g 2

The solutions of (87) which remain finite at »=0 are given as
0_ -1} 70 ds
gh=(m) 18— 5 (ra—+ 85)}

di= )y {rlayLs + £.8.052)

1 2 _z -3 3
+g{3r So Fudr+2r S Fdr}, - (38)

()=t {rar (1) (g (a2 raan)]

F dpwr (g )+ {37‘ So '2(2‘2 )dr—{— 27"35 <§: )d?"} )

where L8, L%, L and L are constants which shall be determined by the
boundary conditions.

4, Velocity and magnetic field

Since we can obtain the solution for pressure, we go back to (14)
in which grad p is calculated from (36) together with (38).

If we ignore the T°, T3, T% and T% velocities which are derived
from curlﬁo/\};, (14) leads to the equations for the 79, T3 and T3
velocities which are readily obtained as follows;

Dpé,,—(tlua)"( L°—§ @Sy “Zj)Jfg(So 2 dq—r“"s PF, dr),

(39)
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Dpeio=(4na?)- ( L“+2T4r‘5g r sdr) —3—pw< ‘ff? 138 )

1" apmee g, _5ST3 2¢
+€<Sor Fedr—r Oferdr>, (40)

Dy =(47ra,2)'1(%L§s - 2T3r"5S:9~*sdr> +%pw( CZ‘H 861

1 r—: 2s ._—5r323
+§<Sor Fidr—r Soer dr) . (41)

It is also easily seen that the pressure gradient which does not
depend on 6 and ¢ is cancelled by the electromagnetic force derived

from curli:/\ﬁl. L8, L* and L¥ are to be determined by the conditions
that the normal component of the velocities should vanish at »=0.

If we calculate curl(f}o/\i—i) and curl (?)’/\ﬁo) and pick up only the
S¢ magnetic field, (13) gives

Ds—(tao)(F8 4 4 D) 85, (48 e ) BOqosere—1isr).

o dr d

(42)

The equations (39), (40), (41) and (42) can be regarded as the simultane-
ous integro-differential equations for &, &°, &° and s.

5. Approximate solution of the integro-
differential equations

Since the integro-differential equations are complicated, it seems
unlikely that exact solutions can be obtained. As has been done in
the previous papers®?®, let us assume

s=Sa,0la), =5 A0/0r, &=SBrlay.  (43)

We shall further assume F,=F%#=0. Since the steady state in-
cludes the S%¥* motion, the assumption may be justified if we emphasize
small fluctuations of the force which drives only the S motion. F'I¥ is
also assumed to be expressed as

=5 tulrfay (44)
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When we introduce (43) into (42) from which &, has been eliminat-
ed by use of (39), we obtain

= tena) (134 (L) - B )).
(45)
From (40) and (41), we also have
Dp 3% 4n( L)' =(@ray (L2, 30 (L))
oo BB () Do (2
(46)
Dp 5 B,( L)' =(truy (G Ly —21, 3 (1))
+2 003 m+3)4,( L), “n

in which we can write Lj, L;* and L} in a form of series with respect
to a, by applying the boundary conditions. Eliminating L), L¥* and L,
the above three equations become

=28t S afs—mr3)( L) n

216(4 7pDa) (T, A, TB)( ) (48)

I s

_§(4npwa2)}; Bn{(n+3)<‘£‘>n_n}

+4n a:“%i_&{@')"q}, (49)
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e () =m0 ()
+2 trpon) S a0 +3( L) =n. 50

By equating the coefficients of the corresponding terms of both the
sides of these equations, we obtain

4rnpD*a’ay—10pDo'a,= —16Sa, ,

drpDia?a,— 28pDo-'a, = uzsm —?E(mazp)(zmo T.By),

drpDarA,= —2T4(“72+%*) —%(47rpa)a'“’)(3Bo— 2B,—4B,)
(C 24 € 4)
14" 36
rpDarA,=2T, % 10Uz pwer)B, + 470 &
7 3 14 (51)
drnpDatA,=2T, 5——-~(4npwa2)B 4 4~a,3cé

4rpDa*B,= 2T3(a72—|-%‘->+%(4rrpwa,z)(3Ao—2Az——4A‘) ,

47pDaB,= —2T3%+173(.’(47mwa=)Az ,

dnpDa?B,= — 2T 2 + (47rpwa,')A;,

where a,’s, 4,’s, B,’s and ¢,’s for n>4 are ignored. It is easily seen
that a,’s, A,’s, B,’s and ¢,’s for odd » vanish. It should be also not-
ed that ¢, is taken to be zero in order to avoid the term for n=0
which otherwise becomes indeterminate.

We have one more equation

3a,+5a,+7a,=0, (52)

which is deduced from the condition that the magnetic field is continu-

ous at r=a.
Since the force is regarded as that caused by buoyancy, it must
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be zero at the boundary of the core. This implies &, +¢&,=0 for the
present approximation, so that

()P}

Now we are in a position to solve (51) together with (52) in regard
to ay, &, @, Ay A,, A,, B,, B, and B,. After some calculations we obtain

a/OC’J(D)ao—'9[54<DT1 10 T3)<D z+< )1)

3
—3(1,— Yor) (D4 (X)) ..
, 3 3
(54)
azzgrc'lDao R
5
;= _<‘§—+%N—1D>ao )
where
o(D)=D+ 5D+ (200 ~ ST T 1o )y
9 35 mpa® 2
+N(148O 2+§ T2+€§)Dx
9 pa
19600 15168 13+ 7' | 740 .
% — 3 4 w? D?
+< 8L " T 315 @ 3" )
98000 200 T:4-T7% 16000
D 2 4
+(81 Sl —— >“’ T (55)
and .
k=(mzoa*)™ . (56)

In the calculation, S, is assumed as zero, because, in the earth’s
dynamo, the toroidal fields are believed to be larger than the poloidal

one.
The equations (54) seem still complicated. We shall make further
simplifications on the basis of physical consideration. We may first put

T.=T,=T (57)

for the order-of-magnitude estimate. Taking w=7.5x10"°sec™’, a=3.5
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x10%¢m and p=10 g/em?®, we see that the relation

o> L (58)
npa?

holds for T<10° gauss. Since T is thought to amount to the order of
10 gauss in the core, (58) is safely assumed.
If 0=10"%¢.m.u., which is usually believed for the core, we have

£=2.6x10""2sec™?,
hence

0S5k . (59)

Let us consider a variation of a 100-year period. In that case, we
may put

D=ia «a=2.0x10"°sec™*, (60)
whence we see that
a>k. (61)

Taking into account (57), (58), (59) and (61), the solutions can be
simplified as

a,=0,

11y, 82,5, 404 . 3640 ,
W 6TT 21 9 27",
2= 2
Bap ( 996 ., . 19600 ,\ . (62)
(D 2w + 250 a))

a,= '—%az .

If ¢, is given as a function of time, the second equation of (62) is
the differential equation of forced oscillation for @,. As is well known
in the case of forced oscillation of a simple pendulum, a, is obtained
by putting D=ia when the free oscillations are damped out. Assum-
ing a 100—year period, we obtain

la,|=1.3 x10* T¢. (63)

where |a,| denotes the modulus of a., while a and p are taken as before.
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6. Driving force and thermal field

Now it is possible from (63) to obtain the coefficients of the driving
force which causes the 100-year period secular variation of the S°
magnetic field. (63) leads to

£,=7.9% 10-*% . (64)

In the following, let us estimate the order of ¢,. First of all,
la.] should be estimated. According to the repeated analyses of the
earth’s magnetic field, it is well known that the strength of the earth’s
dipole underwent a decrease amounting to 0.5 x10% e.m.u. during the
past 100 years. Although it is not known whether or not the change
is periodic, we may, for a rough estimate, suppose that there is a 100-
year period secular variation of which the amplitude is 0.01 gauss at
the pole. In order to have this order of magnetic field at the earth’s
surface, an amplitude of 0.07 gauss should take place at the core-mantle
boundary. This figure must become slightly larger if we take the shield-
ing effect of the mantle into account. Accordingly, s in (16) takes a
value around 0.09 gauss. From the third relation of (62), a, is then
estimated at 0.3 gauss.

As for the steady magnetic fields of the earth’s dynamo, Bullard®
estimated that the 7' field amounts to 480 gauss. On the other hand
the S} field would be only a few gauss. The T% and T%# fields would
take intermediate intensities. From these considerations, a probable
estimate of |a,|/T would be

la.l/ T~10"%, (65)
6x10%°C
5 |
al
u 3 r
o b
s
0z 04 06 08 10
r/a

Fig. 1. The distribution of .
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Fig. 2. The distribution pattern of temperature departure in the ¢=0 meridian plane
in units of 10-4°C,

:0

Fig. 3. The distribution pattern of temperature departure in the equatorial plane in
units of 10-4°C.
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so that (64) gives
£.~8x107° dyn/em? (66)

and, from (53), we obtain

.\ 3 2

Fra8x 10—6<’_) {1— (i) }dyn/cm3 : (67)

a a

If we identify the driving force as the buoyancy one due to the
temperature inequality in the core, F'¥ is given by

Fy=prur (68)

as discussed by T. Namikawa®, where u is the temperature departure
from the steady state and

y :%ﬂpkza’ . (69)

k* and « denote respectively the universal constant of gravitation and
coefficient of cubical expansion, the latter being estimated by Bullard®
at 4.5x107°°/C. From (67) and (68) together with (69), « responsible
for the secular variation considered is obtained as

U2 x 10-4(L>2{1—<£)2}°c , (70)

a a
so that the periodic thermal field is given by
P} (cos 0) cos 2¢ .

The distribution of » against »/a is shown in Fig. 1. Meanwhile
the distributions of temperature departure in the meridian plane ¢=0
and equatorial plane are respectively shown in Figs. 2 and 3.

7. Discussion

Bullard® has estimated for his steady dynamo that the temperature
difference between the top and bottom of the core would be 450°C.
However, the difference in temperature between rising and falling con-
vective currents has been also estimated by him at 3x10-*°C from the
consideration that the buoyancy forces must be comparable with the

4) T. NAMIKAWA, Journ. Geomagn. Geocleetr., 9 (1957), 182,
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electromagnetic forces. The figure was also approved by examining
thermodynamical efficiency of the dynamo. Even if we assume that
most of the heat generated in the core is carried by convection, the
temperature difference amounts only to 6 x 10-*°C?,

It is noticeable that the magnitude of the time-dependent thermal
field studied above is of the same order as the temperature difference
of the steady dynamo. Hence, it might be possible to expect such a
fluctuation in the thermal field. In that case, there arises a time-de-
pendent forece due to buoyancy, which drives the fluid motion causing
the geomagnetic secular variation as we have been discussing in the
foregoing sections. If we consider a secular variation of longer period,
1000 years say, the amplitude of the thermal field would become smaller.

The magnetic lines of force of the secular variation are easily
obtained with the coefficients given in (62). In Fig. 4 are shown the
magnetic lines of force of the S? field ignoring the shielding effect in
the mantle. The pattern should grow and diminish with a 100-year
period. It is also possible to obtain the fluid motions though no at-
tempts of that sort have been made.

Earth's surface

Fig. 4. The magnetic lines of force of the S? field.

No account is taken of the cause of the time-dependent thermal
field supposed here. It might be due to oscillations caused by couplings

5) E.C. BULLARD, Proc. Roy. Soc. London A, 197 (1949), 433.
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between magnetic fields, fluid motions and heat conduction. This point
should be studied later.

8. Concluding remarks

A theory that the geomagnetic secular variations might be caused
by forced oscillations of magneto-hydrodynamical nature is tried in this
paper. The oscillations are treated as small perturbations superposing
on the steady state of the earth’s dynamo which is at work in the
core. From an extremely simplified treatment, the buoyancy force
which gives rise to the hypothetical 100-year period secular wvariation
of the SY field is obtained. If the amplitude of the S! field is assumed
as 1000 gammas at the pole, the corresponding temperature departure
from the steady state must amount to the order of 10-*°C at its maxi-
mum. This figure may be acceptable if we take into account the
thermal state of the steady dynamo as has been discussed by Bullard.
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