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Summary

The writer deals with a model of strike-slip faults for the purpose
of studying the characteristics of crustal deformation when the dip
of the fracture plane is not given as 90°. The model is presented
on the assumptions which are similar to those in the previous paper,
but no assumption on the dip angle is made in the present one. An
orthodox analysis of such a model being very difficult even in the
simplest case, the writer reduces the problem to the Laplace equation
and solves it by the relaxation method as well as by model experi-
ments based on the electric-elastic analogy.

It is proved that the pattern of deformation is no more symmetric
with respect to the fault but the deformation on the side of the fault,
to which it dips, appears systematically larger than that of the other
side. The more the dip angle differs from 90°, the more remarkable
the asymmetry becomes.

We are able to point out some examples, the deformation in
which is likely to be explained more suitably by the present model
rather than by the primary one. However, definite conclusions on
that point will be postponed until we accomplish more detailed ex-
amination.

1. Introduction

It is widely accepted that the crustal deformation around an earth-
quake fault is closely related to the characteristics of the earthquake
origin. Notwithstanding a great store of geodetic data, however, few
papers have been written until L. Knopoff?, P. Byerly and J. DeNoyer?,

1) L. KNOPOFF, Geophys. Journ., R.A.S., 1 (1958), 44-52.
2) P. BYERLY and J. DENOYER, Contributions in Geophysics in Honor of B. Gutenberg
(1958), 17-35.
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and the present writer® worked out studies, in which physical condi-
tions of several faults were discussed on the basis of these observa-
tional data. Since it was hardly possible to deal with such complicated
features of actual faulting in detail, the above-mentioned writers took
very simplified models representing only the most predominant condi-
tions of strike-slip faults.

The present writer’s model assumed, for instance, the fracture plane
in the earth’s crust to be of infinite length and of finite (constant)
depth, in which the initial shear stress is liberated. For the sake of
simplicity in mathematical analysis, it was also assumed that the fault
appears with a dip of 90°. The foregoing analyses have proved that
the above-mentioned model can provide satisfactory explanation for the
most outstanding features of some actual faultings, so that it may be
accepted as a reasonable model in the step of first approximation.

It is needless to say that such a conclusion has been stated by dis-
regarding some sorts of discrepancy from the observational facts, which
should be taken into account when we undertake further improvement
of the model. One of the discrepancies is noticed in the diminution
curve of v,. The primary model concludes that the curves for both sides
of a fault are to be perfectly antisymmetric with each other, in the
absence of the distortion due to the elastic drift in the earth’s crust.
The distribution of v, on the east and west sides of the Imperial Valley
fault (or of the Fairview Peak fault) is likely to be represented more
suitably by the two curves of different diminution rather than by curves
of the same diminution (see Figs. 4 and 6 in the previous paper). Such
a tendency can not be explained so long as we take the primary model
which assumes the dip to be 90°. One of the way to overcome this
difficulty might be to do away with the assumption on the dip angle, so
that we are going to deal with the model improved in the following way.

2. Fundamental considerations

The model cited here is on the same assumptions as the primary
one except that on the dip angle (¢) of the fracture plane (Fig. 1).
Let us take the symbols for coordinates, displacements, and elastic con-
stants as same with those in the former papers, then the condition of
elastic equilibrium is given by the following equations,

3) K. KASAHARA, Bull. Farthq. Res. Inst., 35 (1957), 473-532; ibid., 36 (1958), 21-
53; bid., 36 (1958), 455-161. ,
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It is evident, from the physical considera-

tions, that the deformation is uniform in the
direction of y, that is, \\\ z\\

P Fig. 1. Model of a strike-slip
—=0. (2) fault.

Eq. (1) can be rewritten, then, as follows,

and,

(4 +2/1) +

=0,

(4)
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We know, therefore, that the fundamental equations are given for
u and w separately from that for ». Since the model assumes no ini-
tial stress except a uniform shear, Y,, it is only the stress component
relating to v that is liberated in the fracture plane, whereas no change
occurs in the other components relating to u and w, there. Taking
these conditions into account, we may take as,

u=w=0, (5)

which does not contradict (4) as well as the initial and the boundary
conditions stated above. That is to say, the deformation in the present
model is represented by a pure shear field.

Let us introduce the potential of the field, ¢, which satisfies the
Laplace equation,
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rip=0, (6)
and is related to v as follows.
v __8p v _0p
ox oz 0z ox (7)

This is also the relation between the stream function ¢» and the poten-

tial. The boundary condition for v or ¢ at the free surface is given,
then,

% _o  or ¢=const, (8)
on

where, n is the direction normal to the surface.

3. Solution by relaxation method

The fundamental considerations have shown that the problem with
which we are concerned is reducible to that of a potential field. The
solution for the problem should satisfy the Laplace equation within the
medium, and, at the same time, the conditions for a free surface in the
fracture as well as at the earth’s surface. With the aid of (8), it is
evident that ¢ is constant (we suppose it as 0) in these planes. From
the physical point of view, we also know that the value of ¢ approaches
Cz (C is a constant) at a great distance from the fault.

The relaxation method is useful for solving such a problem. In

case of ¢=60°, for instance, it is convenient to
\ / \ / deal with the numerical calculation with respect

to the triangular network (Fig. 2). The operator
/ \ / \ P* is expressed in polar coordinates as follows.

Vi po® 410 10
\/\/ 6r2+7' ar_l_rz 00* (9)

/ \ / \ Let us also take the expression for ¢ in the ex-
panded forms, that is,

Fig. 2. Relaxation net o(7, 0)=Ao(7")+%‘; {A,(r) cos nf+B,(r) sin nf} .
(N=6). (10)

Hence we get,
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172¢=A{,’+%A3+Z {(A;H—%A; —%An) cos nf
1

+(B,;'+_B,; —%—iBn) sin nf } , 1)
r 7
where, the symbols ’ and " denote 8/dr and 6*/0r®, respectively.

Let S (¢) denote the summation of ¢ at the nearest net points
a,N

which are at equal distances from the point 0, r=a (¢ is the length
of the mesh-side and a<<1), then, we get®,

L S @=4a)+0@) -, (2
and
. ”, ", o
A(r) =+ Z (7*d) + —GZ(V D)+ ’ (13)

where, the suffix 0 corresponds to the point 0 and N is the number of
the nearest network points (N=6 in the present case). Therefore, by
neglecting the terms of higher powers of ¢ we arrive at the following
relation,

1 .o 1

v — Q=% 3 - e :I . 14

§ S @-te={g| (6 + £070) &
That is to say, when the Laplace equation is satisfied by ¢, (6) is re-

duced to the following relation of finite-difference form, viz.,
1 _
S @) =0 (15)

In the relaxation method, we first assume the first approximation
values of ¢ for all the net points, and calculate the residual of the
left-hand side of (15) for each point. The residual is fed back, then,
to the assumed values at all the surrounding points in order to take
the second approximation values. Such a procedure is repeated until
we look for the most suitable values which satisfy (15) at all points.

In the present study we take the depth of the fault, H, as the
unit distance and the length of the mesh-side, @, as 1/8 of the unit.
Fig. 8 illustrates the relaxation net and the equal-value lines of ¢ in
relative values thus calculated. Since it is not ¢ but ¢ that corresponds

4) R. V. SOUTHWELL, Relaxation Methods in Theoretical Physics I (1946), p. 20.
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to v, we have to deduce the distribution of ¢ from the result shown in
Fig. 8. This procedure is easily accomplished with the aid of the
relation between ¢ and ¢ (cf. (7)), so that we finally obtain the pattern
for ¢ as shown in Fig. 4.
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Fig. 3. Relaxation net and distribution of #.
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Fig. 4. Distribution of ¢.

The distribution which is directly related to the faulting is known
as the difference of the pattern in Fig. 4 from the one before faulting.
We know, therefore, that it is only the part nearby the fault that is
subject to remarkable deformation, whereas the part away from there



Physical Conditions of Earthquake Faults IT 45

is unaffected as the distribution of parallel lines indicates. The lines
approaching the earth’s surface or the fracture plane are normal to the
respective boundaries, which means that the condition for the free sur-
face (8) is satisfied. The most notable effect is the asymmetric distri-
bution around the fault. It is evident that the deformation in the left
half part of the space is larger than that in the other half. This
tendency being in good agreement with the result of the following
model experiment, we shall discuss it in more detail in the next section.

4. Model experiment based on electric-elastic analogy

The relaxation method is applicable, in principle, not only to the
case of ¢=60° but also to the other cases. Numerical computation
would be, however, more complicated in such case, so that we shall
take another way in order to study the present problem easily.

L. Knopoff has shown that the analogy of an electrostatic field is
applicable to the problem of a pure shear field (see Table 1)”. Taking

Table 1. Two-dimensional analogies (after L. Knopoff).

Electric quantity . Elastic quantity
Electric field Rotation vector
Dielectric constant Shear modulus
Potential Potential

Stream function [ Displacement

Perfect conductor ‘ Perfectly weak crack

this analogy into consideration, we are able to find out, experimentally,
the solution for various values of ¢ by inserting a conductor of proper
shape into a uniform electric field and by tracing equi-value lines of
¢ around it. The technique using a thin layer of electrolyte has fre-
quently been applied to studies of electrostatic field around a conductor.
It is a necessary condition for the technique that the resistivity of the
electrolyte is far higher than that of the electrode which forms the
conductor under the test. Let us call such a type a conductor model
of the electrostatic field.

The technique applied in the following study is the one using an
insulator model, in which the objective is not given by a conductive
electrode but is represented by an insulator of the same shape. As is

5) L. KNOPOFF, loc cit., 1).
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well-known, the equipotentials of an electrostatic field (or of a field of
stationary current) are normal to the stream lines, and the former
is normal to the boundary of an insulator as the latter is, to a conductor.
Therefore, the pattern of the stream lines in a conductor model must
be identical with that of the equi-potential lines in an insulator model,
when the above-mentioned correspondence holds between them.

TFig. 5 illustrates the labo-
ratory set using an insulator
model. A sheet of paper resistor
(26 cm x 37 c¢m) is in contact with
the electrodes at its ends, to
which D.C. voltage (100V) is
supplied. Then the potential is
vivwM of a constant gradient from one

electrode to the other, and the
Electrode equi-potential lines appear nor-
mally to the upper rim of the
paper resistor, which corre-
sponds to the surface of the
earth. This represents the
initial state of the earth’s crust being subject to uniform shear stress,
Y.=S.

Production of a fracture is represented by applying a narrow cut
from the upper rim of the resistor to a certain depth. This cutting
causes distortion of the equi-potential lines, which are traced with a
VIVM connected to a potential divider as shown in the same figure.
Since the input resistance of this apparatus is extremely high, we can
trace distribution of the potential ¢ without disturbing the condition of
the field. Uniformity of resistivity in the test paper has much influence
upon the accuracy of the experimental result. Facsimile paper is used
in the present experiment, as it shows uniform and suitable resis-
tivity. This method of experiment being very simple in its treatment,
it could be conveniently applied to the other sorts of problems which
relates to the Laplace equation.

I DC.IooV

W

Divider

ooEﬂ

Paper resistor

Fig. 5. Laboratory set of model experiment.

5. Result and discussions

We worked out the model experiment for the cases of ¢=90°, 80°,
70° and 60°, where the depth of cutting was kept unchanged (H=10cm).
The results are shown in Figs. 6~9. The lower part of each figure il-
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lustrates the distribution of electric potential in the insulator model, so
that it should be understood as the distribution of v in the elastic model.
The pattern itself indicates the deformation due to the faulting over-
lapped by the initial deformation, so that we have to subtract the latter
effect in order to see the former effect only. The curve in the upper
part of the figure is for one which illustrates the diminution of », with
dimensionless distance x/H.

First we see Fig. 6, in which is shown the distribution pattern
when ¢=90°. This is the case that has been discussed in the previous
papers. The pattern is symmetric with respect to the fault. It also
indicates that the maximum deformation appears in the uppermost part
of the fault whereas the maximum stress is at the bottom. It also
shows that no remarkable deformation appears at points apart from the
fault, say @#/H=1 or more. The diminution curve drawn in the upper
part of the figure is of the same tendency with that obtained from the
former analysis.

The distribution pattern is no more symmetric in the case of ¢=80°
(Fig. 7). The deformation in the left half space, to which the fault
dips, is more remarkable than that in the opposite side one. This tend-
ency of asymmetry can be seen more concretely in the diminution curve,

Fig. 10. Diminution curves for various values of ¢.

the ordinate of which is scaled taking the value of v, at =0 when ¢
=90° as the unit. The more the dip deviates from 90°, the more re-
markable the asymmetry becomes. Such a tendency can be seen clearly
by drawing the curves for various values of ¢ in the same coordinates
(Fig. 10).

We have mentioned, in the first section of this paper, a notable
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characteristic of diminution curves in the cases of the Imperial Valley
fault and the Fairview Peak fault. In each of these cases triangulation
stations on the east side of the fault shifted more than those on the
opposite side (see Figs. 4 and 6 in the previous paper). It is needless
to say that this tendency can not be attributed to the elastic drift
in the earth’s crust, because the interval between the surveys before
and after the faulting was very short in the said cases and v, approaches
0 with the increase of x. The asymmetric distribution of v, concluded
from the present model is likely to provide a more reasonable explana-
tion for the mentioned effect. Especially in the case of the Fairview
Peak fault, a notable data has been reported by C. Romney, who in-
vestigated the fault-plane solution for the earthquake®. According to
his result, the fault plane is likely to dip as much as 65° to east. This
sense of dipping to east agrees well with the above-mentioned tendency
of the diminution curve, although the larger angle (80° or so) is likely
to be concluded from the present model. We would not like to develop
further discussion here, as we have no more concrete data for comparison.
Definite conclusions will be postponed until we accomplish detailed ex-
amination in future.
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6) C. ROMNEY, Bull. Scis. Soc. Amer., 47 (1957), 301-320.
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