22. Space and Time Spectra of Stationary Stochastic Waves,
with Special Reference to Microtremors.

By Keiiti AKI,

Earthquake Research Institute.
(Read May 28, 1957.—Received June 30, 1957.)

Introduction

Since the days of Wiechert and Galitzin, seismograms have chiefly
been investigated from the view point that they consist of successive
distinguishable phases, and the travel time curves for various phases
have been essential clues in revealing the structure and state of the
matter within the earth. This idea of ‘“ phase’’ is indeed very natural
and appropriate so far as the duration of shocks at their origin is
negligibly short as compared with the characteristic time of the strue-
ture, such as a crustal layer, through which the seismic waves are
propagated. Here the characteristic time of a layer may be represent-
ed by the ratio of its thickness to the velocity of seismic wave pro-
pagation in the layer.

There are, however, many cases in which the above assumption of
short duration of shocks does not hold. An example of such cases is
the propagation of seismic waves through a complicated crust. What
can be clearly identified on the records of seismic waves due to near
earthquakes such as those frequently observed in Japan is the initial
motion of P waves and at best that of S waves. The main remaining
part of such a seismogram has not been paid due attentions, if not
neglected, any information from this source regarding the nature of the
medium of propagation having been scarcely expected.

Other examples are the waves due to causes other than earthquakes,
such as microseismic waves closely connected with meteorological dis-
turbances, volecanic tremors, microtremors generated by traffic, and
other tremors of artificial origin. It is hardly possible to deal with
those waves from the standpoint of phases and to deduce from them
any useful travel time curves.

The object of the present paper is to develop a method for dealing
with those complicated waves in order that the nature of the waves as
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well as the nature of the medium of propagation may be revealed.
Since the method is based on a statistical investigation of waves in
time and in space, we need to assume that our waves are statlonary
in both. This assumption represents quite an opposite extremity as
compared with that underlying the phase method, and is certainly an
appropriate one for studying those complicated waves mentioned above.

It is true that many studies on such waves have been made by
various authors from the statistical point of view. But so far as the
writer is aware, those studies have been made for rather limited pur-
poses. For example, the study of spectral distribution of seismic waves
has aimed at either getting useful information for earthquake damage
prevention or investigating the dependence of the spectrum on the epi-
central distance, the earthquake magnitude and the nature of wave
paths and so on. Similar studies have also been made about voleanic
tremors as well as microtremors due to traffic origin, and the spectrum
of microseismic waves has been studied in reference to that of sea
waves which are believed to cause them. Also the object of the use
of filters in explosion seismology has been to secure a clearer identifi-
cation of phases on a seismogram.

Those studies have been primarily concerned with the spectrum of
waves in time, while the spectrum in space has not yet attracted due
attentions. The recent study by K. Akamatsu® (1956) of the autocor-
relation of microtremor waves in space is among the few made on the
latter subject. She has made clear the spatial character of vibration
of the ground. The process for obtaining the spatial autocorrelation
coefficient, however, consists of troublesome steps such as simultanous
recordmgs of vibrations at several points, readings of the recorded am-
plitudes, -and computations of the autocorrelation coefficient among the
waves to be studied. In order to secure rapidness and efficiency of
measurments in the study of this kind, K. Aki® (1956) .built a simple
automatic computer by which the computation of spatial autocorrelation
coefficients’ can be made without following individual steps stated above.

So far as the writer knows, the study to be reported here is the
first, specifically designed to elucidate the relation between the spectrum
of waves in space and that in time with reference to the nature of
medium of propagation. By means of the method presented in this
paper, the direction distribution of propagation as well as the mode of

1) K. AKAMATU, Zisin, [ii], 9 (1956), 22.
2) K. AxI, ibid. 9 (1956), 40.
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polarization of complicated waves can be learned as will be seen in later
chapters. Also we can obtain the dispersion curves for those waves
which are useful for deducing the structure of the medium. In ad-
dition to this, if the waves observed consist of partial waves having
different velocities, the power of each waves can be found.

In Chapter 1 will be given, some results of theoretical considerations
of stochastic waves which are stationary both in time and space, and
it will be shown what should be measured in order to find the disper-
sion curves, the mode of polarization, ete. of the waves. The instru-
ments designed specifically for this purpose will be deseribed in Chapter
2. They consists of filters of phase shift type and an automatic com-
puter of the correlation coefficient. _

Chapter 3 will be devoted to describing the results of application
of the present method to the study of microtremors due to traffic
observed at Hongo, Tokyo. The results obtained are as follows; 1)
those waves are propagating in every direction with almost uniform
power; 2) the horizontal component of vibration is strongly polarized
in the direction prependicular to the direction of propagation showing
that they are of Love type; 3) the dispersion curves have been deduced,
and the velocities of S waves at various depths calculated.

Chapter 1. Theory of stationary stochastic waves

The most fundamental material in the study of wave from the
standpoint of phases is certainly the travel time curve which indicates
the relation between the treval time and epicentral distance. It may
be expected that the corresponding fundamental material in the spectral
studies of waves will be a certain relation between the spectrum of the
waves in space and that in time. At first we shall look for this rela-
tion in the most simplified case of one dimensional waves, and at the
same time shall attempt to show the characteristics of stochastic waves
which are stationary in time and space.

1. One dimensional stationary waves having one single velocity

With the assumption that our waves travel with a single and de-
finite velocity ¢ independent of the frequency of vibration, our waves
u(x, t) can be expressed for the region =0~ X formally




418 K. AKL ’ [Vol. XXXV,
u(z, t)y=>, A, exp (ip,x) cos cp,t

+ 5_‘,% exp (1p,x) sin cp,t (1)
where

,o,,=2n)% (n=0, +1, +2,.--)

This is the solution of the one dimensional wave equation under the
initial conditions that

u(x, 0)=3] A, exp (ip,x)
u(w, 0)=3] B, exp (ip,x) .

(2)

Since u(x, 0) and #(x, 0) are both real, A, and B, must be the con-
jugate complex numbers of 4-, and B_, respectively.

Now let us find the condition under which the waves formally
given by Eq. (1) are stationary both in time and in space. At first,
we notice the initial state of our waves as given by Eq. (2). Here
w(z, 0) and «(x, 0) should be treated as stochastic variables with a
parameter z.

The Fourier coefficient A, of a general stochastic process which is
stationary with respect to a single parameter 2 for the region =0~
X is known to be written in terms of the corresponding Fourier
coefficient E, of the so called ‘‘ thermal or white noise’”” as follows;

A =E-GD(py), (3)

where G™®(p,) is not a stochastic variable. From the purely random
character of ‘‘ white noise’’, it follows that

E.,-E,=0, n+m=0,
4)
,_ dp, 1 (
E,-E_,=|E,|'=""=_,
I T X

where the bars represent the operation of average.
Using these formulas, we have




Part 3.} Space and Time Spectra of Stationary Stochastic Waves. 419

AA,=0, n+m=<0,
T 4
IAan=lG("(Pn)I2—2’»)” :

T

and in a similar way, (5)

B,B,=0, n+m=<0

BLF=IG () .
T

These are the statistical relations existing among the Fourier coefficients
A,’s and B,’s. Moreover, if the initial distributions of displacement
and that of velocity are independent of each other, we have

4,B,=0, (6)

for all » and m. From Egs. (2) and (5), we see that |G“(p,)? and
|G?(p,)|* represent the spatial spectrum density of the initial displace-
ment and that of the initial velocity respectively.

Defining the spatial autocorrelation funection ¢(&, £) of our waves
for a given time ¢ as

(¢, H)=ul=, thu(z+¢, ©) (7)
and using Egs. (5) and (6), we obtain

$(, )= 2bn { |G*(pa)I* cos® cppt + W sin® cm} exp (ip.€)
2 oy,
— L ({1641 cos? op,t-+ ﬁgﬁggﬁsinﬂ cput} exp (ip,E)dp (8)

From Eq. (8), we see that if

a0 2z |G2(Pa)
1G“(pu)l*= o

or (9)
@Al =|B.l",

where w, is the circular frequency and w,=cp,, ¢(¢, t) becomes indepen-
dent of time. Thus we can reasonably take Eq. (9) as the condition
for stationary stochastic waves. Eq. (9) can be considered as represent-
ing the law of equipartition of energy in the case of stochastic waves.
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Introducing this condition into Eq. (8) and dropping the suffix 4 we
get

W&, )= #(e)= L (G exp (ire)dp (10

We shall now proceed to investigate the relation between the
spectrum in space and that in time. For this we define the spectrum
density in time as

=i_ {Uc(wn)}2+ {Us(wn)}2
Don) =7 dwy[2n (1)

where U,(w,) is the Fourier cosine coefficient of u(x, ¢) with respect to
t and for a given x, while Uy(w,) is the corresponding sine coefficient,
It can readily be seen from Eq. (1) that

U(w,)=A4A,exp ('L%x) + A_,exp (— z%‘x)

(12)
Uyw,)= By, exp (z“ﬁ‘w)+&‘ exp ( - z&‘x)
w, c Wy c
and
2mc
A n= A =
on=0dpy=-"F
Inserting Eq. (12) into Eq. (11), we get
¢(")n)=
I:A,, exp (z‘i'ﬁx) +A_, exp (— iﬂx):lz+ I:& exp (zf‘ﬁ‘x)-k&?‘— exp (— i&x)T
(4 c Wy 4 Wy, c

44w, |27

By the use of Eq. (5) this may be written as

94, A_,+ 2B, B}

Plan)= 4dw, 27

Finally, inserting Eq. (9) into this, we obtain the following equation,
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_|G(p)I*dp|27 _|G(w[c)}?
O(w)= do2z ¢ (14

where the suffix n is dropped. This is the relation which connects the
spectrum density in space and that in time in the case of one dimen-
sional waves.

As will be shown later, as compared with Eq. (14), the following
equation which relates the spatial autocorrelation funection ¢(¢) with the
spectrum density @(w) in time is more convenient for the purpose of
the present study,

2= | o) exp (128 )do
or (15)
2= [ 0(w) cos (£¢)de

which can readily be obtained by Egs. (10) and (14).

2. Dispersive waves

We shall now proceed to the case of dispersive waves, and show
that Eq. (15) obtained above holds also in this case without any modifi-
cation except the substitution of the function c(w) of frequency o for
the constant velocity ¢. For this, we notice that if we take 4p, as
constant for all n, the interval dw, between consecutive w, is no longer
constant in the dispersive case and varies with n». Then we may
write

dw,= (((Zi;) )ndpn . : (16)

The equation corresponding to Eq. (14) is now written as

GGolo)l

(p( )= dowldp

€X))

Introducing of this into Eq. (10) yields the final formula,
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)dp dw

o=

=%_ 5 ?(w) cos (_c(%e)dw (18)

3. Spatial autocorrelations of filtered waves (1)

In this section the most essential part of our method will be il-
lustrated in the case of one dimensional waves. Corresponding to the
separation of a seismogram into successive particular phases in a study
of ‘“phases’’, the vibration of a seismograph is resolved into simple
harmonic oscillations; in other words, a Fourier analysis is applied to
the vibration in this method. TFor this purpose, we use electronic re-
sonators to which we shall refer in Chapter 2. If the filtration by a
resonator having frequency w, is sufficiently sharp to allow us to as-
sume the spectrum density of the filtered vibration to be

D(w)=P(o)d(—wy), ©>0 - (19)

where d(w) is the Dirac é-function, then the corresponding spatial auto-
correlation function (18) is written as

B(E, w0)=P(w) cos( (wo)s). (20)
Defining the autocorrelation coefficient as
g, ___¢'(E @)
P&, w) 50 )’
we may write it as
, W)= 21
P(&, wy) COS( (wo) (21)

The above formula shows that the dispersion curve i.e. the curve of
velocity c(w,) as a function of frequency w, can be obtained directly
from the measurement of p(&, w,). The measurement of this quantity
p(é, wy) for various frequencies w, and for a fixed distance & is therefore
the most fundamental in our method. But this is allowed only in the
case in which the waves concerned have a single velocity corresponding




Part 3.} Space and Time Spectra of Stationary Stochastic Waves. 423

to a frequency w.

Next, we shall consider the wave which is composed of partial
waves having different velocities. In this case if we are allowed to
assume that the component waves are statistically independent of one
another, we can separate the composite waves into the components by
measuring p(§, w,). Now we write the quantities related to the »’th
component wave by attaching the suffix n: for instance, the displace-
ment of the n’th component as w,(x, t) and the corresponding velocity

as c¢,(w). Then from the assumption of independence among the com-
ponents, it follows that

u(x’ t)=2| un(x’ t) ’

HO= S 0= 3 5 [0u(o) exp (50 6N,
P&, w)= Z P, () cos ( (wo) E)
p(E, wo)= 2 P”((a‘)‘:‘;) ( o (wo) 6) (22)

The last equation shows that the number N of components is,
finite, we can in principle obtain both the percentage of power of the
n’th component and the corresponding velocity from the value of p(¢, w,)
for a given w, and for (2N—1) different &’s.

Finally, there may be cases in which the wave can be assumed as
composed of component waves having continuously distributed velocity.
In this case, introducing the velocity distribution function defined as

p(w’ C)=P”(w)/ACn

and replacing the summation by the integration in Eq. (22), we have

P&, o )_13(_)S (o, ¢ cos (ﬁ E)dc : (23)

From this and using the Fourier transformation, we obtain

%=§S ple, o) cos (2 = Vi . (24)
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Therefore, if we find the values of p(¢, w) for =0~ o, we can cal-
culate the percentage of power of component wave having the assigned
velocity and frequency contained in the wave in question.

4, Two dimensional waves of a single velocity

Now let us investigate the case of two dimensional waves, in
which the reasonning is quite analogous to that given above for the
case of one dimensional waves, though there appear additional terms
such as the direction of propagation and polarization of vibrations. At
first we shall deal with those waves which are neither dispersive nor
polarized.

Assuming that our waves travel with a single velocity ¢, we write
them in the form

(@, ¥, £)=>.> Ann €Xp (ip,x cos 0,,+ip,y sin 0,,) cos (cp,t)

+>5 %exp (2ppx cos 0, +1ip,y sin 0,,) sin (cp,t) . (25)
CPn

This is the solution of a two dimensional wave equation under the initial
conditions that

w(z, ¥y, 0)=> A4, exp (¢p,x cos 0, +ip,y sin 0,,)
(26)
uz, y, V=35 B,,, exp (ip,x cos 0,,+1p,y sin 4,,)

Since w(x, ¥, 0) and #(w, y, 0) are both real, A4,, and B,, are the con-
jugate complex number of A4, ..o and By .y respectively, in which
(7) is a suffix defined by the relation, 0.,=n=.

Analogous to Eq. (6), the mean value of the absolute square of
A, . and that of B, , are written as

2 A 0 2pn40m‘dpn
Hanl'=1 G (o 01 2 80
(27)

B,.F=|Gp,, 0, 2 Pnd0n 4P,
1Bunl*=| G*(pny Ol @)

The spectrum density |G(p, 0)F in the above equation represents the
amount of power carried in the waves at the initial state per unit area
of the phase space which is formed by two dimensional wave numbers
A=pcosf and p=psind.
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Again corresponding to Eq. (5), we have

Anm'An’mT:O y 'nﬁ?‘n’, 7n#’)n’:i:(ﬂ)

- (28)
Bnm’Bn’m'=0 y B n,’ m =< m,i' (71‘)
and corresponding to Eq. (6),
Antn'm/=0 (29)

for all n, m, »’ and m/.

Using the above formulas we can write the spatial autocorrelation
function ¢(¢, 7, t) for the two dimensional waves in terms of their
spectrum density in space as

P, 7, ) =ulx, v, tyu(x+g, Y+, t)

— 50l lel(64p,, 0,01 co' erat)

+ I_C_;i(pny om)l_z

- sin? (cpnt)} exp (ip,& cos 0,,+1p,7 sin 0,,)
c‘{)n

From the above equation, it follows that the condition for a stationary
stochastic wave of two dimensions is written as

IG4(p, O)= IG”(p, O)I*
czpz
or (30)

w?zlAnle: anml2

Introducing this into ¢(¢, 7, ), we obtain

9, 7, 1) =d(E, v>=zz”i(‘12f;;’)#mlaé<pn, 0,1 €XD (ip4t coS Oy +ip,7 sin 0,

‘Replacing the summation by the integration and dropping the suffix A
we have

d(c, p)=i;SS|G(p, O) exp (ipé cos 0+ipy sin O)pdpdd (1)
(2n)

and accordingly we also have by the Fourier transformation

1G(e, 0= {46, 7) exp (~ipt cos 0—ippsin O)ded;  (32)
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On the other hand, the spectrum density in time of the wave is
written as

J)(w )—l (U ((U v‘)d):u'l"/(zg ((’)n)) ’ (33)

where U, w,) is the Fourier cosine coefficient of wu(x, y, t) with respect
to ¢ for given x and y, while Uy(w,) is the corresponding sine coef-
ficient. We see in Eq. (25) that

U(w,)= 2 A, exp( 1972 €0 0, +1 2y sin 0 )

c
Us((’)n)= 2 Bnm eXp( (Unx cos 0m+i9_’_’y sin Om) (34)
m Wy (4] c
WO ==C0y .

Using Egs. (27), (28), (30), and (32), we can write the spectrum density
O(w) in terms of the spatial autocorrelation function ¢(¢, ) as follows,

Z |Anmlz+ |Bnm‘2/")3,

¢ )
(@n) 4dw, |27
1 SM ) &)
_ = 0) =2do
4drc (c ’ ) c
=1 S ”’"dﬁ“s‘b(é, 7) exp( "é cos — 3% "»7 sin 0>d5d77
4rc
(35)
Replacing (&, 7) by a circular coordinate (r, ¢) defined as
E=rcos¢
7=rsin ¢

and using the relation
S:ﬂdﬂ exp {—ipr cos (0—¢)} =2=J(pr)
we have from Eq. (35)

0tw)=L ([0, 9)aory2aray . (36)




Part 3.] Space and Time Spectra of Stationary Stochastic Waves. 427

If we introduce the azimuthal average of the spatial autocorrelation
funection, i.e.

5= Lo, 9rag (37)

we see that a one to one correspondence exists between this function
&(r) and the spectrum density @(w) as follows

D(w) =%wS:¢T(r)JU(%r)rdr (38)

a(r)=%5:(l7(w)¢70 (%r)dw (39

This last equation (89) is derived by the use of the Hankel transfor-
mation. It is clear that Eq. (39) corresponds to Eq. (15) for one
dimensional waves.

5. Dispersive waves of two dimensions

It will be shown in this section that Eq. (39) also holds in the case
of dispersive waves without modifications except the substitution of
the function ¢(w) of frequency « for the constant velocity c.

Taking the relation into account,

dw,= (Zz) dp,,

we obtain

O()— - &L Z\G(% o)f

240
C

corresponding to Eq. (35) of non-dispersive waves. From this and Egs.
(32) and (37), we have

@(w)=g’ﬂd_f’g Br) I =2 = )rdr.

)

Then the Hankel transformation yields the final result:
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=] L2 0@ )ty fodo
=%S0 o -2 o r)do . (40)

6. Spatial autocorrelation of filtered waves (2)

As has been mentioned in Section 3, the measurements in our
method are carried out in two steps; first, the seismograph vibrations
are filtered, and secondly, among filtered vibrations, the spatial auto-
correlation coefficient is computed. So far as we are concerned with
waves having a single velocity corresponding to a frequency w, the

azimuthally averaged autocorrelation function ¢(r) of the wave filtered
by a resonator of frequency w, is written from Eq. (40) as

B(r) =(r, w)= P(“’o)Jo( ) (41)

(0)

where P(w,) is the same as defined by Eq. (19). In consequence, de-
noting the corresponding autocorrelation coefficient g(r, w,), we have

B, @)= J( ) (42)

¢(ao)

This formula clearly indicates that if one measures p(r, w,) for a certain
r and for various w,’s, he can obtain the function c(w,), i.e. the dis-
persion curve of the wave for the corresponding range of frequency
wy.

Now let us proceed to the cases in which waves are polarized, and
later refer to the cases in which they are composed of partial waves
having different velocities and the above procedure cannot be applied.

7. TPolarization

As far as two dimensional waves propagating over a horizontal
plane are concerned, ,it is evident that there is no polarization with
respect to the vertical component of vibrations. On the other hand,
the horizontal component has two typical modes of polarization; namely
the vibration is confined either in the direction parallel to that of pro-
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pagation, or in the direction perpendicular to that. For instance, in
the case of seismic waves, P waves, SV waves, and Rayleigh waves
belong to the former, while SH waves and Love waves belong to the
latter.

In order to deal with those polarized Waves we observe the com-
ponent vibration u, parallel to and the other component u, perpendicu-
lar to the direction connecting the two seismometers placed, between
the vibrations of which the correlation is to be investigated. Denoting
spatial autocorrelation functions for these two components as

¢.(r, ¢) =u(x, Y)u(x+rcos ¢, y+rsin )

by(r, §) = uy(x, Y)uy(x+1r cos </J, Y47 sin ¢)

we have from Eq. (81) for waves of the parallel polarlzatlon

o.(r, §)= (2 : L ([ o 0—92G e, O) exp ipr cos (0—) pdpd0 1
(43)

bl )= o i 0= 01600, 00 ex tipr cos 0~ gD}parat |

)’

and in the same way we have for waves of the perpendicular
polarization

$.(r, )—m [[sint @©=9)Gee, o)1 exp ipr cos (9—g}pdpar
. (44)

pulr, )= - cost (0-9)I6(e, O)F exo Gipr cos (0-¢) pdpds

(2)°

The above equations show that in both cases the sum of two:com-
ponent autocorrelation funections

ool 9)+by(r, §)

is written in the same form as Iq. (81) for non-polarized waves

#ur, 9+, )= o [160e, O0F exp tipr cos (0~} pdpas . (45)

(2 y

Thus if we know the left hand side of the above equation, we can
obtain, by the use of the Fourier : transformation, |G(p, 6)]> which in-
dicates the distribution of direction of wave propagation,
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On the other hand, the mode of polarization is shown apparently
in the azimuthally averaged autocorrelation functions;

a)= = [otr, 912y
F(1)= o= |eutr, 91
From Eq. (43) and the following relations
Szﬂ cos® (¢—0) exp {ipr cos (¢—0)} dp=r{J(or)— Jpr)}

S:"sinz (¢ —0) exp {ipr cos (¢ — )} dd—=r (Ju(pr) +Ipr)}

we obtain for the parallel polarization,

)=+ iil? |16, 0 0r)— 2oy papac ]
. (46)
Blr) =+ o L ({166, 0 or) + 2o} pdods J
In the similar way, we have for the perpendicular polarization,
Plr) =5 oy L {16, orien + ey pdpas ]
(47)

31— % {160, O or) =) pdpa0 J

If the correlation is taken among the vibrations filtered by a re-
sonator of frequency w, we may write

SIG(p, O pdd=P ()3 p— o (48)

Then inserting this into Eq. (46), we have the corresponding azimuthal-
ly averaged autocorrelation functions for the parallel polarization,

‘-.b—r(’) wo)———P(wo){JO(c( o)> J(c((zjo)r>}

Pl “"’)__P( 0){Jo(c(wo) >+J2(c(62i)o)r>}
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Likewise we have for the perpendicular polarization,

ar, wo)—-—P(wo){Jo( o )+J(c(wo) )}

Pl w")_‘_P(")"){ (c(wo)r)—J2(cE:::0)T)}

From the above formulas it is clear that the measurement of

¢.(r, ) and Py (r, w,) will effectively determine the polarization of the
wave.

(50)

8. Special cases

In this section we shall consider the following two special cases;
(a) |G(p, O)I* is independent of 0, (b) |G(p, O)|* is zero except for =6,
and 0=0,+n~. For instance, the case of microtremors will be shown in
Chapter 8 to be of the former type, while seismic waves due to earth-
quakes may belong to the latter if observed at a point distant from
their origin. We shall call the former wave an ‘* isotropic wave ”’ and
the latter a ‘‘ plane wave ”°.

In the case of the isotropic wave, writing

Glp, O =1G()I*, (51)

we get from Eq. (81)
#tr, )= |16 eryodp . (52

Thus ¢(r, ¢) is independent of ¢, and it is clear that in this case we

can replace ¢(r) by ¢(r, ¢) for an arbitrary ¢ in the formulas obtained
previously, and we need not take the average of ¢(r, ¢) with respect
to ¢. This also holds for polarized isotropic waves.

On the other hand, in the case of the plane wave, we may write

Gp, O)F=IG"(p)I*6(60—6,) (53)

and we have
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#(r, )= [ 16/ (P)F cos {or cos (9= 0} pdp (54)

If we observe the wave filtered by a resoné.tor of frequency a,, it fol-
lows from Eqgs. (48) and (53) that

(1660, yredn =16 oo = Pls(p~ 2 ). @B

cw,

Then the corresponding autocorrelation function ¢(r, ¢, w,) is written as

M0, ¢, ) =P(o) cos {0 cos (4= 00 (56)

and also the corresponding autocorrelation coefficient as

_¢’(Ir; ¢, wo)_ Wy _
plr, 9, ) = B0 28— cos {mr cos (9= )} (57)

CcoSs (¢"—00)= 1 {(_1)7; Cos-! P(T; Sb: w0)+ nﬂ} . (58)

c(wy) raw,

This last formula (58) shows that we can determine the velocity ¢(w,)
and the angle 6, of the direction of propagation by measuring p(r, ¢, w,)
at two different ¢’s, provided the value of » is known beforehand.

Likewise, in the case of polarized plane wave, we have, for instance,
for the parallel polarization

847, 4 )= cos* (B— $)P(e) cos {2 cos (4= 00}

C
. (59)

q'_>(,,(fr, ¢, w,)= sin® (6,— ¢) P(w,) cos { E"" )r cos (¢ — 0.,)}

clw

In this case, although the velocity and the direction of propagation can
still be known after the normalization which is needed to obtain the
corresponding autocorrelation coefficient, the mode of polarization cannot
be. Therefore, the polarization for an ideal plane wave is better deter-
mined by the ordinary method by investigating the amplitudes for
various azimuthal angles.

Our method will, however, be effectively applied to a wave com-
posed of two independent waves, which differ from each other in the
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mode of polarization and in the velocity of propagation. The general
nature of the plane stochastic waves will be given elsewhere in the
future in connection with seismic waves.

9. Velocity distribution

In this section we shall deal with two dimensional waves of multi-
ple velocities. Supposing that our waves are not polarized, and denot-
ing a quantity related to the »’th component wave by attaching the
suffix n, we write our wave in the form,

u=n2 un(x, Y, t) .

Assuming the statistical independence among the component waves
as in the case of one dimensional waves we get the following relations,

B, )= 4ulr, 9)
)= 5 8 (r)

§r, 0)=3Gulr, )= Z",P,,(wo)Jo( @y w)

cn(wﬂ)

! — Pn(wo) Wy
plr, o) =5 I ). (60)

This last equation (60) indicates that if the number N of component
waves is finite, we can obtain the velocity and the percentage of power
for each component by measuring p(r, w,) for a given w, and for (2N—1)
different »’s.

It may happen, as in the case of one dimensional waves, that the
veloeity of component waves is distributed continuously. For such a
wave group, we define the velocity distribution function by the relation,

p(wm cn)dcn= n(wo) s

and then we can write

H(r, w))= Sp(cuo, c)J0< c(w") r)dc . (61)

(O

From this it follows by the use of the Hankel transformation that
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”;“’;;,5) = ["3tr, w)a( o rYrdr . (62)

Thus we have the formula by which to determine the velocity distribu-
tion function from the value of p(r, w,) for r=0~ o in the case of
two dimensional waves. Eq. (62) corresponds to Eq. (24) for one dimen-
sional waves.

In the case of the polarized wave of multiple velocities, we see
from the results obtained in Section 7, that if we replace, for instance,

@(r, w,) by the sum of the component autocorrelation funections,

q_b;(rv wo)+¢.—¢(7" w,)

every formula in this section holds unaltered.

10. Discussions and summary

The results obtained in the preceding sections indicate that the
study of waves from the viewpoint of spectrum will give us additional
informations which have been neglected because of the lack of proper
method of analysis for the purpose. We have dealt with one dimensional
stochastic waves in detail, and extended the reasoning followed there
to two dimensional waves. It will be easy to proceed to the investiga-
tion of three dimensional waves, but this does not seem to be practical-
Iy necessary for our measurements of waves are usually confined on a
plane surface.

We shall enumerate here the principal results obtained in the pre-
sent chapter.

(1) The spatial autocorrelation coefficient p(&, w,) of a one dimen-
sional wave having a single velocity ¢ and being filtered by a resonator
of frequency w, is given by the relation,

p(&, w)=cos (?E) . (21)

This holds also for a dispersive wave with the substitution of ¢(w,) for
the constant velocity c.

(2) If we are allowed to assume a continuous distribution of velo-
city in a stochastic one dimensional wave, we can obtain the velocity
distribution function p(w, ¢) in the form,
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ey J, e, o0 cos { ey 1 “

(3) In the case of a two dimensional wave having a single velo-

city and being not polarized, a one to one correspondence is found
between the azimuthally averaged spatial autocorrelation function

#r)=o- o0,
and the spectrum density &(w) in time as follows,

@(cu)—————g ), (—«r)rd'r (38)

q?(r)=%8:(l7(w)Jn<%r)dw . (39)

(4) The azimuthally averaged spatial autocorrelation coefficient of
the above wave being filtered by a resonator of frequency o, is given
by the relation,

7, w0)=Jo(%r) : (42)

This holds also for a dispersive wave of two dimensions with the sub-
stitution of ¢(w,) for constant c. ‘

(5) In the case of a polarized wave, we observe two component
autocorrelation functions; namely, an azimuthal component ¢, and a
radial one ¢,. It was shown that the sum of these components behaves
in the same way as the autocorrelation function of a non polarized
wave does. The azimuthal averages of these two ¢’s for. the wave
filtered by a resonator of frequency w,, reflect its mode of polarization
and are written in the form,

Biry 0 =y Pl 2y m)=2( %, ’”>}l

Bolr, )= P(wo){,]o( o )+Jz(c(“c:fo) 7')} J

for the parallel polarization. These for the perpendicular polarization
are written as

(49)
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c(ws) >+J2(c(wT°o)r)} ’ 1

¢¢('r: wo)——‘P(wo){J()( o) ) J(c((:’o) ')‘)} . [

(6) The velocity distribution function for a two dimensional wave
is written in the form,

20_(1%)&%)=% S: A(r, a)o)Jo(

¢r(”‘ ") -‘—P(‘Uo){Jo(
(50)

o 'r)rdr : (62)

Chapter 2. Apparatus

Theoretical considerations in Chapter 1 have shown that the spatial
autocorrelation coefficient of the filtered waves plays an important role
in the spectral study of stationary stochastic waves. In order to obtain
the value of the coefficients with respect to a given wave, it is neces-
sary first to filter the vibration of every seismometer by a resonator
having a certain assigned fre-

LSt a1 |>{rR1 ] quency, and secondly to compute

c . .
[s2}~{42]>{r2 ! the correlation coefficient for
Fig. 1. Block diagram of apparatus, every pair of the filtered vibra-

tions. Fig. 1 is the block dia-

S; seismometer

A; amplifier gram of an assembly of apparatus
R; resonator corresponding to one pair of
C; correlation computer seismometers.

I; indicator

In the study of waves from
the viewpoint of ‘‘ phases’’, the recording of vibration is essential for
identifying the phases and for reading travel times. In our method, on
the other hand, what we need is not the original record, but the result
of the above described operations applied to them. Those operations
may be carried out manually, but it should be emphasized that the
troublesome labours involved in the manual operations make the appli-
cation of our method practically impossible. The present study has
been made possible by the automation of the operations. In fact, the
theoretical studies given in Chapter 1 were initiated after the comple-
tion of a correlation computer in our laboratory, though the use of
filters in our method was based on the theoretical results.

Of the elements constituting our apparatus shown in Fig. 1, seismo-
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meters and amplifiers are the ordinary ones, and we need not give any
detailed explanation about them. We shall describe in this chapter the
details of our filter and correlation computer.

1. Filter of phase shift type

This type of resonator is rather well known in Electronics. The
fundamental part of this circuit is shown in Fig. 2. If the resistance
r, is equal to 7, the ratio of the amplitude of output voltage to that
of input voltage becomes 1/2 independent
of the frequency of the input, while the
phase angle shifted by the circuit depends
on the frequency. This dependence is as
follows; the phase angle shifted for the -
zero frequency is =, that for the infinite
frequency is 0, while that for the frequency
fo=1/2zRC is n/2. Therefore, if two such
circuits are connected in series, the result-
ant phase angle shift will be nearly zero
for the whole range of frequency except
for the neighbourhood of f,=1/2zRC, where
the corresponding angle is nearly equal to
7. Putting the resultant output into a
phase inverter and putting the output of the inverter to the control
grid of the first valve of the phase shift circuit result in a positive
feedback for the neighbourhood of the frequency f; and a negative one
for the else. Thus the circuit as a whole works as a resonator of
frequency fi.

For the purpose of the present study we need at least two resona-
tors having the same characteristics, and moreover their resonance
frequency should cover a considerable range which depends on the nature
of waves to be studied. Since microtremors due to traffic will be the
first object of our study, the resonators were designed to have a fre-
quency range covering continuously from 5e¢/s to 80¢/s. The variation
of resonance frequency in the resonator was made by the use of wvari-
able resistances in the phase shift circuit.

A filter of this type is much easier to construct than a filter hav-
ing inductances, but the @ value attainable is rather low. In our case,
stable operation for a long time was not possible at a value of @ higher

Fig. 2. Circuit for phase shift.
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than 30.

At the time of observation, we must adjust the characteristics of
the two filters in order that the resonance frequencies and @ values of
both will be equal. For this purpose we are using a standard oscillator
and an oscilloscope as shown in Fig. 8. At first the frequency of one
of the filters is adjusted to be equal to an assigned frequency of the
standard oscillator by the aid of the Lissajous’ figure on the oscilloscope,
and then the frequency of the other filter is adjusted to be equal to
the assigned frequency in the same way. The @ value of our filter
depends on the feedback constant which is controled by a wvariable re-
sistance. In order to equalize the @ values of the two filters, we con-
nect the output of one of the filters to the horizontal input of the oscil-
loscope and that of the other to the vertical one, and observe the
response figure caused by the simultaneous application of an impulse to
both filters. If the response figure on the oscilloscope diminishes in
size keeping a similar shape, we regard that the adjustment is
finished.

2. Automatic computer of the correlation coefficient

A computer for calculating the correlation coefficient according to
the ordinary way needs the following parts; an input device such as
tape or card system, arithmetic elements to make additions and mul-
tiplications, and an output device such as a printing machine or some
other indicators. So far as we stick to this customary method of com-
putation, the computing machine will become a large one, which cannot
be very inexpensive. But if we use the simplified method proposed by
Tomoda® (1956), the computer will become a very simple one.

In the method due to Tomoda, the original stochastic variable is
replaced by +1 when it is above the mean value, and by —1 when it
is below the mean value. Then the computation of the correlation
coefficient in the ordinary way is applied to the resultant series of +1
and —1. If this value obtained is r, the true correlation coefficient p
is deduced by the following formula,

. T
=sn —7 .
e 2

Since the mean value of the deflection of a seimometer pendulum can

3) Y. Tomopa, Jour. Phys, Earth, 4 (1956), 67.




Part 3.] Space and Time Spectra of Stationary Stochastic Waves. 439

be assumed as zero, we can write the above r in the form,

7’L+—'n_
r—
N4 +n_

where n, is the number of sample pairs for which the deflection of one
of the seismometers has the same sign as that of the other, while n.
is the number of sample pairs for which their signs are opposite.

This simplified method was applied to seismograms in a correlogram
analysis by Aki® (1956) which proved its effectiveness. Akamatu® (1956)
compared the correlogram of a given time series obtained by this
method with that obtained by the customary method, and showed that
the agreement between them is satisfactory, as the wave form of the
given time series is not very complicated. The application of this
simplified method in the present case is justified because the computa-
tion is actually made with regard to the filtered vibration having an
almost sinusoidal wave form.

The parts of our computer are as follows; a generator of pulses,
circuits to compare the sign of the signal coming from one of the seis-
mometers with that from the other, and decatron which works as a
counting tube as well as an indicator.

At first we shall describe how to count the number of sample pairs
for which the signal from the seismometer S, and that from S, both
have the positive sign. Pulses from a generator, which is a one shot
multivibrator triggered by a thyratron oscillator, play the part of sam-
pling in the following way. If we use a frequency converting valve, e.g.
6SA7, having two control grids, of which one is fed by the series of
pulses coming from the generator and the other by the signal coming
from the seismometer S, as shown in Fig. 5, the output is a series of
pulses as shown in Fig. 4-c. The height of each pulse is now pro-
portional to the height of the signal from S, when the latter has
the positive sign. When it is negative, no output pulses will appear.
Therefore putting this series of output pulses into another one shot multi-
vibrator, we obtain the series of pulses which appear only when the
signal from S, has the positive sign. These pulses are now of the
same height as shown in Fig. 4-d. Finally, if the same operation is
applied to the above pulses and the signal S, as is done to the pulses
from the generator and the signal from S,, we have the series of pulses

4) K. Ax1, Jour. Phys. Earth, 4 (1956), 71.
5) K. AKAMATU, ibid., 81.
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which appear only when both the signals from S, and from S, have the
positive sign as shown in Figs. 4-e, 4-f and 4-g.

@) Lt
6)

c)

9 b eIl
¢)
)

9)

Fig. 4. Process of computation shown
schematically,
a) pulses from a pulse generator,
b) signal from the seismometer 1,
¢) and d) pulses which exist when the
signal from S1 is positive,
¢) signal from the seismometer 2,
f) and g) pulses which exist when the

signals from both seismometers are
both positive.

The series of pulses which ap-
pear when both of them have the
negative sign will be generated in
the same way as above except for
the use of phase inverters applied
beforehand to the signals from both
seismometers. The two series of
pulses thus obtained are counted in

XX

Fig. 5. 6SA7 as a multiplier.

Fig. 6. Block diagram of computer.

S;
A4;
I;
M;

PG;

OO

’

>

seismometer
amplifier

phase inverter
multiplier
pulse generator

; one-shot multi-vibrator

decatrons

a decatron circuit, and the number 7, of the sample pairs for which the
signs of the signals from both seismometers are the same is obtained.
Since we are using three decatrons in series, we can count up to one
thousand. The processes above described may be understood by the

block diagram in Fig. 6.

The counting of n- is carried out in the same way as that of n,
but with the reverse connection of the outputs of one of the inverters.

The result of counting is indicated on the decatrons. Photographs
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of our computer and the decatron indicator are shown in Fig. 7 and
Fig. 8.

3. Remarks

The choice of the time interval of successive pulses from the
generator depends on the nature of waves to be studied. Since our
primary object was microtremors of traffic origin, the time interval was
taken as 1/50 second considering that the predominant period of the
tremors is 1/10 second. Of course, not only the pulse interval but also
the frequency range of the resonator and the characteristics of the
seismometers should be appropriate to the spectral nature of the waves
concerned. The whole apparatus designed for microtremors will be ap-
plied without modifications to volcanic tremors or to ground motionsg
having rather high frequencies caused by some meteorological distur-
bances. On the other hand, in order to investigate waves having lower
frequencies, we need some modifications of the apparatus.

As far as we are concerned with almost perfectly stationary waves,
that is waves having sufficiently long durations that we can, not only
obtain the correlation coefficients from large samples, but also repeat
the measurement several times under the same circumstances, we need
only one set of apparatus, i.e. a pair of seismometers, a pair of filters,
and one correlation computer. There is, however, another important
class of waves having intermediate durations, which are long enough
for the computation of correlation coefficient, but nevertheless are too
short for repeated measurements. To this class of waves belong some
parts of the seismic waves of earthquake origin. The measurement of
this latter kind of waves will be very difficult without the use of stor-
age units such as magnetic tapes or magnetic discs. ,

We shall note some features of the apparatus which seem peculiar
to the present method. Since a very sharp filtration is applied to the
vibration, troubles with the noises in the amplifier such as caused by
the hum in the power source are considerably diminished. In addition,
since the correlation between the simultaneous vibrations at two points
is under question, the uneven phase lag and amplification as to the
frequency on the part of the seismometer and the amplifier cannot be
serious matters, for the pair of seismometers and also of amplifiers are
made to have identical characteristics.
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Chapter 3. Microtremors

In this chapter, our method described in the preceding chapters
will be applied to microtremor analyses. The microtremor studied for
this purpose is believed to be caused by traffic and appears as an un-
desirable background noise in many precise geophysical measurements.
The choice of this as our object is partly due to the handiness of its
measurement as a trial application of our method but also due to the
fact that the microtremor itself has formed one of the important
problems in Seismology, especially in Japan.

It is well known that the characteristics of the ground are reflected
more or less in its vibration whatever the origin of the vibration may
be. This fact was noticed early in the beginning of this century by
K. Sekiya and F. Omori who made a comparative study of seismograms
recorded at Hongo and Hitotsubashi, both in Tokyo. Later, many
Japanese seismologists studied ground vibrations from the view point of
frequency spectrum. Among them, M. Ishimoto® (1937) made a systema-
tic study both of vibrations due to earthquakes and of the background
tremors, and proposed a hypothesis that the predominant period of
vibration due to earthquakes coincides with that of the background
tremors.

Though some negative results against the above hypothesis have
been obtained by P. Byerly” (1947) and by K. Aki® (1955), the spect-
ral study of the background tremors was succeeded in by various
authors.

Y. Tomoda and K. Aki” (1952) made a frequency analysis by the
use of a spectrometer, and confirmed the fact that vibrations having
frequencies higher than 1c/s are due to traffic. K. Kanai, T. Tanaka
and K. Osada'” (1954) made an extensive study and showed that the
form of the spectral distribution of microtremors coincides with that of
earthquake motions, and that it depends on the geology of the place.
K. Akamatu™ (1956) investigated the tremors observed at Hongo in
more detail from the view point of correlograms in space and time.

6) M. IsuiMoTo, Bull. Earthq. Res. Inst., 15 (1937), 697.

7) P. BYERLY, Bull. Seis. Soc. Amer., 37 (1947), 291.

8) K. AKI, Zisin, [ii], 8 (1955), 99.

9) Y. TomopA and K. AKI, Zisin, [ii], 5 (1952).

10) K. KANAL T. TANAKA and K. OsADA, Bull. Earthq. Res. Inst., 32 (1954), 199.
11) K. AKAMATU, Zisin, [ii}, 9 (1956), 21.
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Ishimoto’s hypothesis implies a resonance phenomenon in the surface
layer, and this problem has been attacked theoretically by various
authors. In the following section, we shall refer to some of them as-
suming the hypothetical wave type of the microtremors.

1. Preliminary discussions

It will be useful to make a preliminary consideration about the wave
type of the microtremors. It may be assumed that the type is one of
the following four.

A. A surface wave in a narrow sense; this terminology is due to
Y. Sato™ (1954), and represents the wave having an apparent velocity
along the horizontal surface which is determined if the frequency is .
given. If we apply our method to the wave of this type, we can obtain
a definite velocity corresponding to a given frequency of the resonator
by which the vibrations are filtered. And the autocorrelation function
will take the form of Eq. (41), Eq. (49), or Eq. (50).

B. The vibration of a soft surface layer due to a vertically incident
bodily wave such as that dealt with by R. Takahasi and K. Hirano™
(1941); it was shown in their paper that the vibration of this type
shows predominant amplitudes at the frequencies, f=V/4H, 8V/4H,
5V|4H, ete., where V is the velocity of bodily wave in the layer and
H is the thickness of the layer. It will be expected in this case that
the spatial autocorrelation coefficient with respect to the vibration filter-
ed by a resonator having the predominant frequency, becomes indepen-
dent of the distance » and is equal to unity.

C. The vibration of a surface layer due to an obliquely incident
bodily wave which was studied for instance by G. Nishimura and T.
Takayama' (1939); a kind of resonance phenomena is observed in this
case. We assume that the microtremor belongs to this type, and con-
sists of various vibrations resulting from waves of different incident
angles. The vibration of this type is evidently not the surface wave in
the narrow sense difined by Y. Sato, because the apparent velocity of
this wave along the surface cannot be definite even if the frequency is
given. If our method is applied to the wave of this type, a continuous
distribution of velocity, that is described in Sections 3 and 9 of Chapter

12) Y. SATO, Bull. Earthq. Res. Inst., 32 (1954), 161.
13) R. TAxAHASI and K. HIrANO, Bull. Earthq. Res. Inst., 19 (1941), 534.

14) G, NIsHIMURA and K. TAKAYAMA, Bull. Earthq. Res. Inst., 17 (1939), 253, 308,
319,
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1, will be observed instead of definite velocities.

D. The vibration due to a periodically distributed surface distur-
bance such as that illustrated in the paper of K. Sezawa and K. Kanai®
(1937); it was shown that a resonance phenomenon occurs when the
frequency of vibration is equal to the solution of the characteristic
equation of a surface wave for the wave length which is equal to that
of the distribution of given disturbance. In this case, the form of
spatial autocorrelation coefficients with respect to the vibrations filtered
by resonators of various frequencies will be independent of the fre-
quency, and will be determined by the spatial pattern of the given dis-
trubance.

Bearing the above four types in mind and applying our correlational
analyses to the microtremor at Hongo, in Tokyo, we shall be able to
determine its wave type together with its several important characteristics.

2. Microtremors at Hongo

The measurement was made in the yard of the Geophysical Institute
of Tokyo University, of which a map is shown in Fig. 9. In this map
are shown the lines along which
the spatial autocorrelation is obtain-
ed, three wooden buildings by thin
line rectangles and an abandoned
tennis court by a dotted line reec-
tangle. This is the same place
where K. Akamatu (1956) studied
the spectrum of prevailing miecro-
tremors. The predominant fre-
quencies of the tremors were found
by her to lie at 83 ~4c¢/s and at
T~10c/s. In the present study, Fig. 9. Map showing lines of measurement.
we shall deal with the vibrations
having frequencies higher than 5 ¢/s, leaving the vibrations having lower
frequencies including 8 ~ 4 ¢/s to a later study.

Seismometers used in the present investigation are all of the mov-
ing coil type; a pair of horizontal ones having the free frequency of
10¢/s, a pair of horizontal ones of the frequency of 4.5¢/s, and a pair
of vertical ones of the frequency of 4.5c/s.

~o

15) K, SEzAwA and K., KANAL, Bull, Earthq, Res, Inst., 14 (1938), 1,
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The observation of the tremors was usually made during the night
time from 18h to 22h, because the daytime observation is disturbed
severely by the noise due to persons walking in and around the place.

At the time of measurement, one of the pairs of seismometers is
set up along the line of measurement, and the signals coming from them
are sent through wires to the amplifiers placed in the laboratory to be
analysed by the resonators and the correlation computer. The correla-
tion coefficient obtained from the sampling during a short period varies
notably with time, for instance, 50 second sampling yields the correlation
coefficient, for a seismometer pair 20 meters apart from each other,
varying from 0.5 to —0.9. Therefore a sampling time of at least five

or ten minutes is needed, this corresponding to the sample size of more
than five thousands.

3. Direction of propagation

Fig. 10 shows the autocorrelation coefficients measured along the
lines B, C, D, and FE in Fig. 9. In this measurement, horizontal seismo-
meters havmg the frequency of 10c/s are used and filtration is not
1.0 applied. Since the curves in the
figure differ only slightly from one
another, we may regard the micro-
tremor as being propagated in every
direction, each with almost uniform
power. Thus it may be allowed to

Fig. 10. Autocorrelation coefficients for replace the azimuthally averaged

various directions. autocorrelation function by the

autocorrelation function taken along any line having an arbitrary azimu-
thal angle. (See Section 8, Chapter 1.)

4. Horizontal heterogeneity

It was found, however, that the autocorrelation coefficient taken
along a segment of a line sometimes differs significantly from that taken
along another segment of the same line. An example is shown in Fig.
11, where the dotted curve represents the autocorrelation coeflficient
taken along the line segment PQ, and the other curve shows that taken
along QR. In both cases, the horizontal seismometers are set up in
such a direction as to be sensitive to the vibration which is perpendi-
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cular to the line, and the signals from them are filtered by resonators
of frequency 9.0c/s. This fact evidently shows that the wave in ques-
tion is not stationary in space and can not be adequately dealt with by
the present method. We can, however, partly get rid of this difficulty
by dealing with the wave within
smaller confined areas individually. ;0
This may be justified by the fact
that the above heterogeneity is due
to the existence of the abandoned
tennis court convered by a hard ©
surface soil. The fatal difficulty ) .
was cased by this heterogeneity in % 1L Comrin of swoceraui
the reduction of the velocity dis- 4 oF.

tribution funection which was in-

troduced in Sections 3 and 9, Chapter 1, because for its reduction the
values of correlation coefficient between two seismometers reasonably
apart from each other is needed.

Under this circumstance the distinetion between the type 4 and C
mentioned in Section 1 may fail to be drawn clearly. We may, however,
identify the type of our wave as A4, if a wave having a single and
definite velocity is predominant in the wave and the obtained correlo-
gram has a simple form.

5. Horizontal motions

Before presenting the result of measurements, we shall look back
at the theoretical considerations given in Chapter 1. If a certain type
of polarized wave is predominant in microtremors, the autocorrelation
function with respect to the wave filtered by a resonator of frequency
w, will be given either in the form (49) or in the form (50), depending
on the mode of polarization. Since we can assume that both ¢,.(0, ¢)
and ¢,(0, ¢) are independent of the azimuthal angle ¢ in this case, we
have the following autocorrelation coefficients for the parallel polarization,

e, 0)=I{ )= ")

eur, w=I o)+ (s r)

(63)

while for the perpendicular polarization,
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o, w) = I )+ T %)

c(wy) c(wy)
po(r, w)= Jo( c(‘:,) r) - J{ﬁ;r) ,

where p,(r, w,) and py(r, w,) are the autocorrelation coefficients for the
azimuthal and radial components of vibrations respectively. In Fig. 12
the curves Jy(x)—J(x) and J(x)+J(x) are plotted. With the aid of a
table of Bessel functions, the argu-
ments giving the zero, maximum
and minimum values of the above
curves together with the wvalues
of the maxima and minima can be
obtained as given in Table I.
First will be given the result
of measurements along the line
segment QR in the map in Fig. 9.

(64)

Fig. 12. Curves of Jy(x)+Jo(x) and Jo(z)
—Jz(w).

Table I. Arguments giving the zeros, maxima and minima.

T Jo(@) — Jo () x Jo(@)+ Ja(x)
1st zero 1.85 0 3.9 0
1st min. 3.50 —~0.85 5.1 -0.14
2nd zero 5.35 0 7.0, 0
1st max. 6.75 0.62 8.5 0.07
3rd zero 8.55 0 10.0 0
2nd min, 10.1 -0.5
4th zero 11.7 0

The azimuthal component of autocorrelation coefficient of the horizontal
motion of frequency 9e¢/s along this line segment is already given by a
full line curve in Fig. 11 in the preceding section. This curve resembles
as a whole Jy(x)—J,(z) in Fig. 12 in form, and the values of the maxima
and minima for these two are almost equal except for a notable differ-
ence in the 1st minimum value. Since the correlation coefficient is
obtained in such a way that one of the pair of seismometers is fixed at
the point @, while the other is moved along QR, this difference may be
attributed to the effect of the hard surface soil of the tennis court
shown in Fig. 9.

If we measure the correlation coefficient for various frequencies w,
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and for a fixed distance », we have the result as shown in Fig. 13,
where the distance is 25 meters, and the direction of vibration is per-
pendicular to QR. This measurement was repeated three times, each
on different days but at

almost the same hour. 0
Fig. 13 shows that the 7
autocorrelation curve is - \ g\

1 K Y ,‘.n LI i / :\ s 1 LK__
Yvell reproducible. Also o N c\g/ S 15 e
it can be seen that the N

first maximum of the Fig. 13. p(mo: 7), for »=25m, plotted against wp.
curve appears at the

frequency of 6.4c/s, and the maximum value amounts to 0.66 which is
almost equal to the corresponding value of Jy(@)—dJ(x).

These facts suggest that we may assume that the predominant wave
in the horizontal motion of microtremor is the one having a single de-
finite velocity and being polarized in the direction perpendicular to that
of propagation. Then we can obtain the velocities for various frequen-
cies by identifying the zeros, maxima and minima of the curve in Fig.
18 with those given in Table I. For instance, we have the following
equation corresponding to the first maximum,

2n.6.4(c/s)-_2%@=6.75 .

6.4

Thus the wave velocity for the frequency 6.4 c/s is obtained as 148 m/s.
The velocities for various frequencies are plotted in Fig. 17 by the

mark O,
A similar measurement is made for the seismometer pair 15 m apart

from each other. The resultant autocorrelation coefficient is plotted

against the frequency of resonators in Fig. 14. The wave velocities are
obtained from this curve

in the same way as
stated in the preceding

/A\, 0 paragraph, and are
O\ > 5 ers plotted also in Fig. 17
\/\/\ by the mark e. A

good coincidence is ob-
served between the

velocity values obtained from two independent measurements as shown
in Fig. 17,

1.0

Fig. 14. p(wo, 7), for r=15m, plotted against wo.
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Fig. 15 shows the result of a similar measurement in which the
distance between the seismometers is 7.5m. Since in this case the
seismometers are placed too near the tennis court covered by hard
surface soil, the departure of the autocorrelation curve from the theoreti-
cal one, Jy(x)—J x), is considerable, and the velocities cannot be
deduced.

A similar measurement is also made about the radial component of
the autocorrelation coefficient of the horizontal motion, and the result
is shown in Fig. 16 by a full line, where the distance between two

seismometers is 25m.

1.0 It is confirmed, by ob-
serving correlations for

) M a fixed frequency and

o) N various distances, that

the maximum which
Fig. 15. p(wo, 7), for r=7.5m, plotted against wp. appears in Fig. 16 at
the frequency of about
7.3 c/s is the first maxi-
mum. Therefore the
extrapolation of the
curve toward lower fre-
quencies as in Fig. 16

. . . . is justified at least as a
Fig. 16. Comparison of correlation curves for azimut 1 d .
hal and radial components. general trend. It is

clear from the figure
that the value of the first maximum is very small compared with that
for the azimuthal component which is shown by a dotted line, and
slightly larger than that of J(x)+J(x) which is theoretically expected.
Moreover, the argument giving the first maximum is evidently larger
than that for the azimuthal component, strongly confirming the assump-
tion that the horizontal motion is polarized perpendicularly. By identify-
ing the zeros, maxima and minima of this curve with those of Jy(x)
+Jy(x) given in Table I, we ean obtain wave velocities for various fre-
quencies as shown in Fig. 17 by the mark x.

Fig. 17 clearly indicates that all the points obtained from three in-
dependent measurements are concentrated fairly well to form a. single
smooth curve. This fact shows the validity of our assumption that the
predominant wave in the horizontal motion of the microtremors is the
one having a single definite velocity for a given frequency and being
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polarized in the direction perpendi- a,s
cular to that of propagation. In r
short, the predominant wave is of
Love type and the curve in Fig. 17
is its dispersion curve.

1501

6. Vertical motions

A similar measurement as ap-
plied to the horizontal motion is
made about the vertical motion also
along the line segment QR. It is |
evident that there is no polarization L
with respect to the vertical motion 4 g w 12 ¢/s
in the case of two dimensional waves, Fig. 1.7. Dispersion curve of horizontal
Therefore, if a wave having a de- motion.
finite velocity corresponding to a given frequency is predominant in the
vertical motion, the autocorrelation coefficient will take the form,

100 ° °

p(r, w0)=J0( C(Cf:o) 'r) ,

which was derived in section 6, Chapter 1. The zeros, maxima, and
minima of Jyx) are given in Table II.

The result of measurement is shown in Fig. 18, where the correla-
tion is taken between two vertical seismometers placed along QR and

1.0

A L
05 \/ LV oo

Fig. 18. p(wo, ) of vertical motion, for #=25m, plotted against wq.

25 m apart from each other. It is confirmed, by observing correlations
for a fixed frequency and various distances, that the maximum of the
correlation curve of the wave at the frequency 9.5¢/s is the first max-
imum, and the minimum at 7.0 ¢/s is the first minimum, From the
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figure it can be seen that the values of the first maximum and the
first minimum are almost equal to those of Jy(x). Thus we may
assume that a surface wave in the narrow sense is predominant in the

Table II. Jy(z).

] x I Jy(x) ] ' x ‘ Jo(w)
1st zero ' 2.40 0 2nd min 10.18 ~0.250
1st min. | 3.83 —0.403 4th zero 11.79 0
2nd zero ‘ 5.52 0 2nd max. 13.33 +0.218
1st max. 7.01 +0.300 |  5th zero 14.93 0
3rd zero i 8.65 0 i
ot vertical motion as well as in the
horizontal motion. By identifying
/ the zeros, maxima and minima of
2000 / the curve in Fig. 18 with those
of Jy(x), we get a dispersion curve
iromesnseeeenee @8 Shown by a full line in Fig. 19.
wp T If the vertical motion is a
g surface wave in the narrow sense,
it is most natural to regard it as

- 5 ) +—& of Rayleigh type. It is remark-
Fig. 19. Comparison of dispersion curves of able that the wave velocity for
vertical motion obtained from experiment the vertical motion identified as a
and theory. (Abscissa is wave length.) Rayleigh wave is about twice as
large as that for the horizontal motion identified as a Love wave, as
indicated in Figs. 17 and 19.

7. The velocity of S wave at various depths

Recently T. Takahashi® (1955) studied the dispersion of Love type
waves propagating over a heterogeneous medium, and gave a method
of determining the structure of the medium from a given dispersion
curve. According to him, if the derivatives of density and rigidity are
zero at the surface, the depth z at which the velocity of S wave is
equal to a given Vg can be found by the formula .

o= g 1]

16) T. TAKAHASHI, Bull. Earthq. Res. Inst., 33 (1935), 287.
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where T is the period of wave, Vy(T') is the phase velocity of wave
corresponding to a period 7', and T is the period for which V(T) is
equal to V.

Introducing the phase velocity of the horizontal motion given in
Fig. 17 into the above formula, we get the variation of S wave veloci-
ty with depth as shown in Fig. 20.

In this calculation, the surface ™
values of the velocity and its deri-
vative are assumed as 75m/s and
zero respectively. From Fig. 20 it
can be seen that there is a rapid
increase in velocity at depths from
2m to 3.5m, and above and below
these depths the velocities are
nearly constant respectively. This : . 5 ; —
fact suggests a discontinuity of TFig. 20. Velocity of S wave at depths.
substance at the depth of about

2.7m.

The dispersion curve of Rayleigh waves propagating over a layered
surface was discussed by K. Sezawa' (1927), and was shown graphical-
ly in the case of A=p, ¥’=p/, and p=p’. If we assume a layer having
thickness of 2.7 m with the velocity of S wave of 75 m/s, and a sub-
stratum with 160 m/s as suggested from the curve in Fig. 20, an ap-
plication of Sezawa’s result to such a structure yields a dispersion curve
for Rayleigh wave as shown by a dotted line in Fig. 19. The figure
shows a considerable discrepancy between the curve obtained by the
measurement and that expected theoretically from the structure which
is determined by the use of the dispersion curve of the Love wave.

This discrepancy may be attributed either to the difference between
the velocity of the SV wave and that of the SH wave, or to a mis-
identification of the type of wave. _

A similar phenomenon is reported in a paper by J.E. White, S. N.
Heaps, and P. L. Lawrence™ (1956) in which a surface wave identified
as Rayleigh wave is shown to have group and phase velocities about
twice as large as those for Love wave.

100}

17) K. SEZAWA, Bull. Earthq. Res. Inst., 3 (1927), 1~18.
18) J.E. WHITE, S. N. HEAPS, and P. L, LAWRENCE, Geophysics, 21 (1956), 715.
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8. An example of anomalous dispersion

In this section will be given the result of measurement along the
line segment PQ in the tennis court as shown in Fig. 9. As has often
been mentioned previously, this place is covered by hard surface soil.
1.0 Fig. 21 indicates the autocorre-
lation coefficients with respect to
waves filtered by resonators hav-
ing frequencies 7.5, 13.6, 14.6
and 21.2c¢/s. In this case the
coefficients are plotted against the

Fig. 21. Autocorrelatioﬁ coefficients of hori-

zontal motion along the line PQ for distance between the seismometers.
wo=7.5 ' The seismometers used are of
wg=13.6 ———, .
wp=14.6 —————- : horizontal type and are placed so

and wp=21.2 as to be sensitive in the direction
perpendicular to the line PQ. Accordingly the autocorrelation curves
shown in Fig. 21 correspond to the azimuthal component. If such a
polarized wave as found in the horizontal motion along the line seg-
ment QR is also predominant in this case, the form of the curves in
Fig. 21 must coincides with that of Jy(x)—J(x). This coincidence,
however, is not well established, perhaps due to the horizontal hetero-
geneity of the surface soil.

The most striking fact revealed by this measurement is that the
general trend of the curves or the distance giving their first zero is
almost independent of the frequency. This fact reminds us the type D
illustrated in the preliminary discussions. But to be consistent with
the existence of wave of type A at a near place, it may be more na-
tural to attribute this fact to the effect of hard surface soil and to
assume an anomalous dispersion in which the wave velocity increases
almost proportionally to the frequency of vibration.

The autocorrelation coefficients 1.0
of vertical motions having fre-
quencies of 7.0 and 13.6c/s are
plotted against the distance in
Fig. 22. Although the curve for ©
the frequency 138.6¢/s indicates the
existence of waves having shorter cal motion along the line PQ for
wave lengths, the general trend wy=13.6¢/s ,
coincides with that for the fre- and we=7.0¢/s -——-—-- .

Fig. 22. Autocorrelation coefficients of verti-
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quency 7.0 c/s, also showing an anomalous dispersion.

From the comparison between the curves for the horizontal motions
and those for the vertical motions, it can be seen that the velocity of
the latter is notably larger than that of the former, and this is the
very fact observed along the line segment QR.

9. Unusual behavior of vibration of 6.0¢c/s on a storm day

On March 9, 1957, when it was stormy due to a low pressure passing
near the east coast of Japan, filtration and correlation analyses were
applied to the vibrations of two horizontal seismometers placed at the
points S and 7' in Fig. 9. The

range of the resonator frequency 4-0
was from 5.5 to 10.0¢/s. The
correlation coefficients obtained
are plotted in Fig. 23 against the K
frequency of the resonator. oL~ L . ' ,'F ' N
The dotted curve in Fig. 23 S ... 1/ 9 €/ s
indicates the correlation observed B ol
on a calm day. The coincidence Fig. 23. Comparison of correlation curves
. . measured on a storm day and a calm day.
of these two curves is fairly good
in the frequency range higher than 7.5 c¢/s, but the value of correlation
coefficient for the storm day at the frequency 6.0 ¢/s amounts to more
than 0.9, while that for the calm day is below zero. This high value
was unexpected, for the distance between seismometers is about 14 m
which is long enough for a considerable decrease of correlation with
respect to vibrations having higher frequencies than 5.0 c/s. Also this
fact is interesting because the frequency of 6.0 ¢/s is just twice as
large as the most predominant frequency of microtremors at this place,
and it suggests to us a possibility that the vibration of type B men-
tioned in the preliminary discussions might be generated under some
circumstances. Further study of this problem is being prepared.

10. Discussions and summary

The application of our method to the microtromors has satisfactori-
ly revealed the nature of microtremors in the frequency range higher
than 5.0 ¢/s, and yielded the following results.

1. In the horizontal motion of microtremors a perpendicularly po-
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larized wave is predominant. Both the horizontal and vertical motions
can be regarded as having respectively a single definite velocity cor-
responding to a given frequency.

2. Identifying the horizontal motion as Love wave, we have obtain-
ed the velocity of S wave at various depths.

3. The vertical motion also shows a definite dispersion. But if we
identify it as Rayleigh wave in a layered medium, the obtained phase
velocity becomes about twice as large as that expected theoretically
from the velocity of S wave at depths which is determined by the use
of dispersion curve for Love wave.

4, The microtremors show a marked anomalous dispersion at a
place having hard surface soil.

It may be noted that the value of velocity obtained by our method
is that of the phase velocity, so that the corresponding dispersion curve
indicates the local structure of medium at the place of measurement.
In addition, there is no such ambiguity in our method as that encounter-
ed in the determination of travel time of surface waves by the customary
method.

The results obtained in this chapter strongly show the efficiency of
the present method for the analyses of complicated waves. We shall
note here several ways of its application to other waves appearing in
Seismology.

Our method will be most effectively applied to the microseismic
waves, and will clarify its wave type, the direction of propagation, and
the structure of medium at the place of measurement just in the same
way as in the present study of microtremors. The location of the origin
of voleanic tremors is a very interesting problem in physical volcanology
and can be most easily and precisely made by the direction determina-
tion by our method. In addition, the coda part of seismic waves due
to an earthquake will be another important object to be studied by our
method. The investigations of this coda part will give us additional in-
formations about the structure of medium through which the wave is
propagated. ,

Another important problem is the location of the epicentres of very
small earthquakes. The direction of wave propagation determined by
the present method together with the time of P-S duration will enable
us to locate epicentres from observations made at a single station.
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