3. Note on a Paper by Satô.*

By Hansjürgen DÜRBAUM,

Amt für Bodenforschung, Wiesenstrasse 72 Hannover, Germany.

(Read Oct. 25, 1955.**-Received Oct. 25, 1955.)

1. Satô¹⁾ has been led to consider the roots of the cubic

$$f(\tau) = \beta(\beta - 1)\tau^{3} - \beta(2K + \beta - \alpha)\tau^{2} + K(K + 2\beta)\tau - K^{2} = 0$$
 (1)

where α , β and $K=\alpha\beta-(\gamma-2)^2$ are positive real numbers. He needed the proof that (1) has only one real positive root which is smaller than K/β in this case. The proof for this fact as given by Satô was not a complete one, as he himself remarked in a footnote. As such a proof can be given simply, it is outlined below.

2. From f(0) < 0 and $f(K/\beta) > 0$ we can conclude at once that there exist either one or three roots with the properties mentioned. We shall make the tentative hypothesis that three roots exist between 0 and K/β and show that this leads to a contradiction thus allowing just one root in the interval. Under this hypothesis $\beta > 1$. Furthermore each root is smaller than min $(1, \alpha)$. As the last coefficient $K^2/(\beta^2 - \beta)$ of the normed equation (1) is equal to the product of the three roots, it follows that

$$K^2/(\beta^2-\beta) < 1$$
 and so $K < \beta$ (2)

As $(2K+\beta-\alpha)/(\beta-1)$ is equal to the sum of the three roots, we have furthermore the inequality

$$(2K+\beta-\alpha)/(\beta-1) < 3K/\beta \tag{3}$$

3. The zeros of $f(\tau)$ are just the common points of $f_1(\tau)$ and $f_2(\tau)$ where

$$f_1(\tau) = \beta(\beta - 1)\tau^3 - \beta(2K + \beta - \alpha)\tau^2$$
, $f_2(\tau) = K^2 - K(K + 2\beta)\tau$.

^{*} Communicated by Y. Satô.

^{**} Read by Y. Satô.

¹⁾ Y. SATô, "Rayleigh Waves Propagated along the Plane Surface of Horizontally Isotropic and Vertically Acolotropic Elastic Media," *Bull. Earthq. Res. Inst.*, **28** (1950), 23.

 $f_1(\tau)$ is a cubic parabola with a relative maximum at (0, 0) and its point of inflection is at the abscissa $\tau = (2K + \beta - \alpha)/(3\beta - 3)$.

 $f_2(\tau)$ is a straight line with negative slope which goes through $(K/(K+2\beta) > 0, 0)$ (see the sketch).

4. If there is a straight line with the just mentioned properties of $f_2(\tau)$ which has several common points with $f_1(\tau)$, then besides the abscissa-axis, there can be drawn two tangents t_1 and t_2 to the cubic parabola through $(K/(K+2\beta), 0)$. We now see that this is impossible.

Because one tangent, the abscissa-axis, is known, one can easily derive the condition for the existence of other tangents under the condi-

tions mentioned. Using the abbreviations

$$\tau_0 = K/(K+2\beta), \quad \tau_1 = (2K+\beta-\alpha)/(\beta-1)$$

the condition for existence of tangents is

$$au_1^2 + 9 au_0^2 \ge 10 au_0 au_1$$

which is equivalent to $\tau_1 \geq 9\tau_0$ as the alternative, $\tau_1 \leq \tau_0$, is impossible. But from $\tau_1 \geq 9\tau_0$ it follows by using (3) that

$$9K/(K+2\beta) < 3K/\beta$$
 or $K > \beta$

which contradicts (2). Thus the proof is completed.

3. 佐藤の論文に関する注意

Amt für Bodenforschung, Hannover, Germany Hansjürgen DÜRBAUM

地震研究所彙報 第 28 号 (1950) に載せられた佐藤の論文 "水平等方弾性体を伝はるレーリー波"の中の証明についての注意をのべた。 (佐藤泰夫抄)