3. Note on a Paper by Sato.*

By Hansjiirgen DURBAUM,

Amt fiir Bodenforschung, Wiesenstrasse 72
Hannover, Germany.

(Read Oct. 25, 1955.**—Received Oct. 25, 1955.)

1. Sato” has been led to consider the roots of the cubie
S(@)=p(B -1 —PR2K+ L —a)r*+ K(K+2p)r— K*=0 (1)

where @, f and K=af—(r—2)* are positive real numbers. He needed
the proof that (1) has only one real positive root which is smaller than
K[f in this case. The proof for this fact as given by Saté was not a
complete one, as he himself remarked in a footnote. As such 2 proof
can be given simply, it is outlined below.

2. From f(0) <0 and f(K/B) >0 we can conclude at once that there
exist either one or three roots with the properties mentioned. We
shall make the tentative hypothesis that three roots exist between 0
and K/f and show that this leads to a contradiction thus allowing just
one root in the interval. Under this hypothesis £>1. Furthermore
each root is smaller than min (1, a). As the last coefficient K (F—p)
of the normed equation (1) is equal to the product of the three roots,
it follows that

K(F—F)<<1 and so K<P (2)

As (2K+p—a)/(B—1) is equal to the sum of the three roots, we have
furthermore the inequality

(CK+p—a)/(8—1)<BK/R (3)

3. The zeros of f(z) are just the common points of fi(r) and Sa(o)
where

Fie)=F—1)7 —PEE+f ), fi(r)=K—K(K+28).

* Communicated by Y. Satd.

** Read by Y. Satd.

1) Y. SATG, ‘“ Rayleigh Waves Propagated along the Plane Surface of Horizontally
Isotropic and Vertically Aeolotropic Elastic Media,”” Bull. Earthq. Res. Inst., 28 (1950),
23.




20 Note on Paper by Saté.

fi(z) is a cubic parabola with a relative maximum at (0, 0) and its
point of inflection is at the abscissa r=(2K+£—a)/(33—3).
f(7) is a straight line with nega-
tive slope which goes through
(K/(K+2B)>0, 0) (see the sketch).
46 4. If there is a straight line
with the just mentioned properties
of f.(r) which has several common
points with fi(z), then besides the
abscissa-axis, there can be drawn
two tangents ¢, and ¢, to the cubic
parabola through (K/(K+2p5), 0). We
now see that this is impossible.

Because one tangent, the abscis-
sa-axis, is known, one can easily
derive the condition for the existence
of other tangents under the condi-
tions mentioned. Using the abbreviations

ro=K/(K+2p), u=@2K+p—a)/(f—1)
the condition for existence of tangents is
24975 > 10747,

which is equivalent to r; >9r, as the alternative, r; <17, is impossible.
But from 7, >9¢, it follows by using (3) that

OK|(K+28)<3K|f or K>f

which contradicts (2). Thus the proof is completed.
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