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Summary

Finite magneto-hydrodynamic oscillations of perfectly conducting fluid
sphere are studied. No motion and no magnetic field are assumed at the
equilibrium state. Ignoring higher spherical harmonic constituents, only
the field that gives the dipole-like one outside the sphere is considered.
Although it seems difficult to solve the non-linear integro-differential equa-
tions which are deduced from the fundamental equations of electromagne-
tism and fluid motion, a crude examination of the equations suggests that
there exists a finite oscillation of a special type. The result also suggests
that the earth’s dynamo might perform a finite oscillation even though
the small oscillations of the dynamo are unstable. In that case, it is of
interest to note that one might expect reversals of the earth’s magnetic
field.

1. Introduction

Magneto-hydrodynamic oscillations of small amplitude have been in-
vestigated by M. Schwarzschild?, V. C. A. Ferraro®® and others with
applications to magnetically variable stars, while the present writer"®
has been investigating possible oscillations of the same sort in relation
to the stability of the earth’s dynamo. All of these studies dealt with
small oscillations about a steady state. The steady state has been as-
sumed to be a magnetic field uniformly given from the outside to the
conducting liquid body in question, or a magnetic field given by a
magnetic pole at the centre of the body, or one generated by the self-
exciting process with suitable fluid motions. The writer’s investigation
has suggested that the steady state of the earth’s dynamo considered
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by E. C. Bullard and H. Gellman® would be unstable for small dis-
turbances. According to Bullard, however, the earth’s dynamo might
perform a finite oscillation though its steady state is unstable for small
disturbances. Bullard’s discussion” is based on possible analogies
between homogeneous and homopolar dynamos, and finite oscillations of
the latter are fully studied by Bullard himself. However, in order to
see whether or not the supposed earth’s dynamo performs oscillations
of such sort, it is highly desirable to investigate the possibility of
magneto-hydrodynamic oscillations of finite amplitude in the earth’s
core. This sort of oscillation would be, if it does oceur, closely related
to the hypothetical reversals of the earth’s magnetic field in the past.
It will be of great difficulty to establish, in a complete form, the
theory of finite magneto-hydrodynamic oscillations of a conducting body
because it has been shown that even small oscillations are quite com-
plicated. In order to render the problem tractable, it is assumed here
that the fluid has no motion and no magnetic field at the equilibrium
state. It is also assumed that only the S} type field may be taken into
account, the fields of other types being ignored. Non-linear integro-
differential equations concerning the radial part of the fluid will be
obtained from Maxwell’s equations and the equation of fluid motion.
The equations thus obtained will be solved with rough approximation.

2. Theory

Since we assume that there are no fluid motion and no magnetic
field at the equilibrium state, the fundamental equations can be
written as

E+VAH=0, (1)
cur11_2)=—al_{78t, (2)
—_ —
curl H=4r 1 , (3)
7 — — — —
p{%+(v-grad)v}=1 A H—grad p, (4)

- o — — . .
where I, E, H, p, p and V denote respectively the electric current
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density, electric field, magnetic field, density, pressure and velocity. It
is also assumed that the magnetic permeability is unity in electromagne-
tic unit, that the non-electromagnetic force balancing the pressure
gradient at the equilibrium state is not dependent on the time, and that
the fluid is perfectly conducting. The fluid is also assumed to be in-
compressible, whence we have

div V=0. (5)

If we eliminate ? and E from the equations from (1) to (4), we
obtain

—
%i{=curl(V/\H), (6)

oV = 2 TAFT
4np{a—t+(V-grad)V}= curl H \ H—4= grad p (7)

In the cases of small oscillations, as have been investigated in the
writer’s previous papers, the time-dependent velocity and the magnetic
field are considered to be of the first order small quantities and the
second order quantities are ignored. If we take the same approxima-
tion here, it becomes clear that the equation for the magnetic field is
to be separated from the one for the fluid motion, coupling between the
magnetic field and fluid motion being by no means possible. Hence the
next step of approximation may be to take into account the electro-
magnetic force in the right-hand side of (7), while the second term of
the left-hand side of (7) may be assumed to be smaller than the first
one, so that we may take

—>

4rrpaaiz=curl E A ﬁ—— 47 grad p (8)

instead of (7). If this approximation is taken for granted, we obtain
the following relation by making div. of (8) and using (5).

pp=— (=) {(H p* H +(curl HY} . (9)

We shall now assume that Ij} is of the S} type that gives only the
dipole-like field outside the sphere. In that case, the », 6 and ¢ com-

—_—
ponents of H are respectively written as
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as )dP1
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(10)

11)

(12)

With the aid of the expressions from (10) to (12), (9) can be

V2p=fn+fzpz

written as
where
—4af, =£[2( a"f« + ia—s—)s +
3 o*  r or
x(raﬁ—l— 2s>+( s
or or’
2
o or

The solution of (13) becomes
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in which ¢, and ¢, should satisfy the following differential equations.

10(:2Y, 1y,

r or\ or

beanla)

6

or?

o%s

o

S lat..

,r:l

4 ?8,,)
r or

_{_ias)
ror

(13)

(14)

(15)

(16)
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The solutions of (16) which do not become infinite at =0 are
given as

Qo= Ko+ S:Tfo dr— 7‘"15rr2f0 dr,
q.=(r[a)K,+ ;( S — dr__r_sg s dq) 17

where K, and K, are constants which will be determined later. a
denotes the radius of the sphere.

After some calculations, g, and ¢, are obtained as

47rq0‘=4nK0—-£|:2ra—s—s +—1-7 (as> + 3¢ +Sr ( S)Zdr:l ,
3 or

2 \or
2y 1 .(0s 7 _35’ WEEAY
dnq,=4nK,(r/a) + [27’—8 + s <ar> TN <a7~) dr (18)

12 ~1{98\ :I

+ 57'507' (5) dr|.

Since we have calculated the pressure, the right-hand side of (8)
can be obtained from (10), (11), (15) and (18). The result is as

follows :
—6S(r)rP, ,
5 N
V:
( o +3S) v (19)
0,
where
8_3_ 4 2f s, 7 S TCAY S 45 STEAY ]
47rp 3 nK,a™ +3[ é§‘s+i07‘ Or(a,r)d7+5 J (ar)dr .
(20)

In obtaining (19), it is easily seen that the term that does not depend
on 0 vanishes.

On the other hand, by putting (19) into (6), the right-hand side of
(6) is obtained as

J—2t1P1 y -—12637'2133,
VAT ot 2t)‘£131 _( %+4t> AP,
curl(V/\H)-L ( o + d0+ Tar 3 )1 a0’ (21)
0, 0,

where
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t— ——2—{1’%(88) + 533} , 22)
_1,1(gq?8 _ 40 2
=gt (esar 487‘3). (23)

If it is assumed that we can ignore the magnetic field of the Sj type
thus brought forth, (6), (21) and (22) give
o8 6. 0
Tk {rar(sS)+53S} , (24)
whence we see that the radial parts of the magnetic field and velocity
are to be determined by solving (20) together with (24) under suitable
boundary conditions. This means solving a set of simultaneous non-
linear integro-differential equations. It is not known whether or not
we can solve them with rigorous accuracy. But the writer would here
like to show a simple solution by making use of a way of rough ap-
proximation.
Let us assume that

s=>" a,(r/a)*,

S=23. bu(r[a)"
in which the terms for »>>4 are ignored. It is also assumed that a,
=0, otherwise one of the integrals in (20) is divergent. After introduec-
ing (25) into (20) and (24), the coefficients of the corresponding terms
are equated, so that we obtain

(25)

a;=0,=b=0,
W - —6as
%: —%(aobﬁ—azbo) :
%‘%= - %(aom +ab,+ aby) ,
.......................... (26)
4np%l-)t9 =-§a‘2(2n1{2 —2a,a,)
4np,%= — ga" 4da,y ,
4np%= - %a‘"- 15—1@2@4 )

--------------------------
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while K, is to be determined from the condition that the normal com-
ponent of the velocity vanishes or b,+b,+b,=0 at the boundary, that
is, the right-hand side of (20) becomes zero at r=a. Taking into account
this eondition, K, is given as

2n K, = 20,0, + 40ty + 19411/26&; . 27

Further, the solutions should satisfy the boundary condition that
the magnetic field is continuous at r=a, so that the following relation
must be satisfied as has been shown in the previous papers:

3@0 + 5(1/3 + 704: 0 . (28)

With the aid of (27) and (28), we obtain simultaneous differential
equations with respect ta ay, ., b, and b, as follows:

%%— - GUJng )
4 Zad.+ aby),
(29)
47zpa‘-’%29= —241(2a0 + '97 oaz)(i-m0 + bay) ,
2 dbz
4drpa e ;1a0(3a0 +5a,) .

The writer is going to show a solution of (29) for the special case
of a,=b,=0. In that case, b, may be easily eliminated by obtaining a
non-linear differential equation for a, as

&y (AN _ psgn
as (dt) flai—0 , (30)
where
=22 (31)
Tmpd
If we put da,/dt=¢, (30) can be written as
atE — g+ fa, (32)

0

which can be integrated as

F=Aa;+as , (33) -
whence we have
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%%@: + a VAT (34)

Taking the plué sign of the right-hand side of (84) and putting
Iff=—Af"3, (35)

(34) can be integrated as

1, . e
t=tan~1,/% % 4
S k K ¢

that gives
a,=ksec k(ft—c) . (36)
We see therefore that the magnetic field performs a periodic oscil-
lation given by (36). At t=c/f, we have

@en—te, (%) —0

dt
The period is given by
2n 71 3%
=4" — a. 38
kf 3 lcT P (38)

3. Discussions and concluding remarks

Under the assumption that the finite oscillations of the S) field
can occur independently of those of the other harmonics, a simple
mode of magneto-hydrodynamic oscillation is obtained in the last section.

The oscillation, which is given by (36),
is shown in Fig. 1. Since many ap-
proximations are made use of in order
to get at (36), it is not known to
) ‘ , ‘ . what extent (36) can be applied for

— — the real earth. Especially, the infinite
growth of the field causes doubt. In
that case, the couplings between q,
and b, and the ignored quantities such
as d,, by, Ay byyevonnn.. would become

appreciable, so that the differential
equation (80) would be seriously af-
fected. For all the crude treatments, however, it is of interest to
note that the study suggests possible reversals of the S} field.

Fig. 1. The oscillation of the S0 field.
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The finite oscillation of a disc dynamo studied by Bullard does not
give reversals after a field has once been established in a given direc-
tion. The finite oscillations of a conducting fluid sphere, however,
might give rise to reversals, judging from the study, though incomplete,
in this paper.

We see that the period of oscillation is proportional to the square
root of the density, the radius of the sphere and the inverse of the
initial field as shown in (38). This is thought to be of the right form
as made clear in the studies of small oscillations of a conducting fluid
sphere and finite one of a disc dynamo. Since the period depends on
the initial value of the field, the period may be given any value by
assuming suitable values for the initial field. In order to give a period
of 10° years, k is taken to be 5x 10~° gauss, that means the initial magne-
tic field at the pole should be 10~* gauss.

Since the electrical conductivity has been assumed to be infinity
throughout the mathematical treatments in this paper, the effect of
finite conductivity on the magneto-hydrodynamic oscillations concerned
is not known. But it is clear that the loss of energy as Joule’s heat
will after all damp down the oscillation. If we suppose that quite a
small field is given at the initial state, it is hardly likely that the field
will grow without limit following the course as shown in Fig. 1, be-
cause of the ohmic dissipation. The situation would be, however, quite
different if there are steady fluid motions of certain distribution at the
equilibrium state. Actually, the writer® has shown that a small field
given to a conducting fluid sphere, in which fluid motions supposed by
Bullard and Gellman are existing, can grow. Once the field grows up
to an appreciable magnitude, the non-linear terms would become to play
an important role. In that case, we might expect finite oscillations of
the system. Even reversals of the S¢ field might occur at this stage.

The above discussions, of course, are incomplete because the writer
can not solve the problem with steady motion at the equilibrium state.
It is also not known to what extent the results will be affected by the
neglect of higher harmonic constituents. The investigation of the
mutual couplings of various harmonic constituents are difficult even in
the case of small oscillations. In spite of these defects, the fact that
we might expect reversals of the earth’s magnetic field when we take
into account magneto-hydrodynamic oscillations of finite amplitude still
seems to be of importance and interest.

8) T. RIKITAKE, Bull. Eartha. Res. Inst., 33 (1955), 571.
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