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Letters

Selective Retrieval of Memory and Concept
Sequences through Neuro-Windows

Hideki Kakeya and Yoichi Okabe

Abstract—This letter presents a crosscorrelational associative memory
model which realizes selective retrieval of pattern sequences. When
hierarchically correlated sequences are memorized, sequences of the
correlational centers can be defined as the concept sequences. The
authors propose a modified neuro-window method which enables selective
retrieval of memory sequences and concept sequences. It is also shown
that the proposed model realizes capacity expansion of the memory which
stores random sequences.

I. INTRODUCTION

In the autocorrelational associative memory [2], [3], [8], [10],
when hierarchically correlated patterns are memorized, the centers of
correlation can be defined as the concept patterns in each hierarchical
level. Kakeya and Kindo have shown that the memory patterns and
the concept patterns can be retrieved selectively in the network
composed of the neuro-window elements, the controllable window-
type neural elements [4].

When correlated sequences are memorized in the crosscorrelational
associative memory, the sequences of the correlational centers can be
defined as the concept sequences. Though the existing neuro-window
method realizes selective autoassociation of memory patterns and
concept patterns, its simple adoption to the sequential associative
memory does not work. In the present letter the authors take up
the case where cyclic sequences of patterns with the same period
are memorized, and present a modified neuro-window method which
realizes selective association of memory and concept sequences. The
authors also apply the proposed algorithm to capacity expansion of
sequential memory.

In Section II, the neuro-window method for the autocorrelational
associative memory is reviewed. In Section III, sequential associative
memory based on the crosscorrelational learning is formulated, and
the neuro-window method is modified and applied to the sequential
memory to achieve selective retrieval of memory sequences and
concept sequences. In Section IV, the proposed models are inves-
tigated through the eigenspace analysis of the memory matrix, and
its application to capacity expansion is discussed.

II. NEURO-WINDOWS IN AUTO-ASSOCIATIVE MEMORY

In the autocorrelational associative memory, the nonmonotonic
neural dynamics (the partial reverse method) given by

xi(t+ 1) = sgn

N

j=1

wij~xj(t) (1)

~xi(t) =xi(t)� ��(ui(t)) (2)
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Fig. 1. Example of memory patterns and concept patterns in hierarchical
autoassociative memory.

ui(t) =

N

j=1

wijxj(t) (3)

�(u) =
�1; if u < �h

0; if �h � u < h

1; if h � u

(4)

enlarge the capacity (0 < � � 1; 0 < h) [9], where xi(t) is the
state of theith neuron at timet; wij is the autocorrelational memory
matrix, and sgn(u) is the sign function given by

sgn(u) =
1; if u � 0

�1; if u < 0.
(5)

In these dynamics the output of neurons which have large absolute
values of membrane potentialjui(t)j > h is weakened (or canceled
when � = 1).

When hierarchically correlated patterns are memorized, the centers
of correlation can be defined as the concept patterns which represent
the correlated groups of patterns (Fig. 1) [1]. Kakeya and Kindo have
shown that selective association of memory patterns and concept
patterns is enabled by controlling the parameterh in (4), for concept
patterns have largerjuij than memory patterns. Memory patterns can
be stabilized exclusively whenh is selected so thatjuij < h holds for
memory andjuij > h holds for concept [4]. If largerh is selected,
memory patterns become unstable and concept patterns are retrieved
as a result. This method for selective association is called the neuro-
window method, because each neural element works as a window
which transmits only the output of neurons withjuij < h. The size
of the windowh determines whether memory or concept is retrieved
in the recalling process.

III. N EURO-WINDOWS IN SEQUENTIAL ASSOCIATIVE MEMORY

In this section we formulate crosscorrelational associative memory
which stores sequences of correlated patterns, and propose a modified
neuro-window method which realizes selective association of memory
and concept sequences.

The neuro-windows can deal with the patterns which have the
correlational structure with multiple layers of hierarchy generally. For
simplicity, however, here we consider cyclic sequences of correlated
patterns with two layers of hierarchy

sss
(p ; p )(0) ! sss

(p ; p )(1) ! � � � sss(p ; p )(Q�1) ! sss
(p ; p )(0)
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Fig. 2. Example of memory sequences and concept sequence. When corre-
lated sequences of patterns are memorized, a concept sequence of patterns
can be defined. The goal here is to retrieve memory sequences and concept
sequences selectively.

where
1

N
E[sss(p ; p )(�)

� sss
(q ; q )(�)] =�R(p1; p2; q1; q2)��� (6)

�R(p1; p2; q1; q2) =
1; if p1 = q1; p2 = q2
R; if p1 = q1; p2 6= q2
0; if p1 6= q1.

(7)

Here1 � p1 � P1; 1 � p2 � P2, and��� is the Kronecker’s delta
function. This means that the patterns which share the same suffix
� have the ultrametric correlation [11]. As in the autoassociative
memory, the center of correlation whose components are given by

s
(p )(�)
i = sgn

P

p =1

s
(p ; p )(�)
i (8)

can be defined as the concept sequence. An example of memory and
concept sequences is illustrated in Fig. 2.

The crosscorrelational memory matrix which stores the above
sequences is written in the form

wij =
1

N

P

p =1

P

p =1

Q�1

�=0

s
(p ; p )((�+1)modQ)
i s

(p ; p )(�)
j :

(9)

Unless the correlationR is small and negligible, this weight matrix
enables only the retrieval of concept sequences

sss
(p )(0)

! sss
(p )(1)

! � � � sss
(p )(Q�1)

! sss
(p )(0)

and cannot attain the retrieval of memory sequences under the
standard dynamics given by

xi(t+ 1) = sgn

N

j=1

wijxj(t) : (10)

As in the autocorrelational associative memory, it is expected that
the neuro-window method realizes selective association of memory
and concept in the sequential memory. The dynamics given by
(1)–(4), however, cannot attain selective association of memory and
concept when it is applied to crosscorrelational associative memory
in the original form.

(a)

(b)

Fig. 3. Recalling process (Q= 3; P1 = 5; P2 = 3R = 0:49; N = 1000):
(a) time course of overlap with memory orbit from various initial conditions
(h = 2:0; � = 0:5) and (b) time course of overlap with concept orbit from
various initial conditions (h = 10; � = 0:5). Small h attains retrieval of
memory sequences, while largeh attains retrieval of concept sequences. Both
memory orbit and concept orbit have basins of attraction. The basin of the
concept orbit is wider than that of the memory orbit.

To realize selective association of memory and concept sequences
which cycle with periodQ, here we propose modified nonmonotonic
dynamics written in the form

xi(t+ 1) = sgn

N

j=1

wij ~xj(t) (11)

~xi(t) =xi(t)� ��(~ui(t)) (12)

~ui(t) =

N

j=1

vijxj(t) (13)

[vij ] =V = W
Q (14)

where the function�(u) is the same as that shown in (4). In these
dynamics it is possible to retrieve memory sequences and concept
sequences by adjusting the parameterh to the proper value in the
above dynamics.

Fig. 3 shows the results of the numerical experiments where the
above dynamics are applied to selective association of sequential
memory. Here the overlap with the orbit of memory (or concept)
sequencesm(t) given by

m(t) =
1

N
sss
(�)
� xxx(t) (15)

is plotted(� = t modQ). As shown in the figure, smallh realizes
retrieval of a memory sequence, while largeh realizes retrieval of a
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concept sequence. It is also shown that both the memory orbit and
the concept orbit have basins of attraction. Especially, the basin of
the concept orbit is very large.

IV. DISCUSSION

A. Geometry of Recalling Process

In this subsection we analyze the models proposed above from
the geometrical viewpoint based on the eigenspace analysis of the
weight matrix.

It is known that in the dynamics given by (10) linear transforma-
tion is the major driving force of state transitions, while nonlinear
transformation terminates the state transitions where the linear flow
is slow. Linear transformation drives the state in the direction of the
eigenvectors of the weight matrix with large absolute eigenvalues.
Therefore eigenspace analysis of the weight matrix is effective to
grasp the dynamic property of the network [6], [7]. One of the
important points given by the eigenspace analysis is that concept
patterns in the hierarchical memory and spurious memory patterns
in the random memory are composed mainly of the eigenvectors
with large eigenvalues, which constitute stable space. Cancellation
of the effect of neurons which have large membrane potential
juij by the nonmonotonic dynamics makes the space with large
absolute eigenvalues unstable, which leads to the retrieval of memory
patterns [5].

In the crosscorrelational associative memory, however, eigenspace
analysis is not so simple as in the autocorrelational associative
memory, because the memory matrix is not symmetric and includes
complex eigenvalues. Complex eigenvalues cause rotation of state
vectors in the recalling process, which enables emergence of limit
cycles in the network.

The nonmonotonic dynamics given by (1)–(4) can cancel the
effects of neurons with large membrane potential only when the signs
of ui(t) and xi(t) are the same [notice (2) and (4)]. This relation
holds in most cases in the autoassociative memory. Rotation of state
vectors in the cross-associative memory, however, often leads to the
situation where the signs ofui(t) and xi(t) are different, which
results in enhancement of the space with large eigenvalues on the
contrary. This is why the nonmonotonic dynamics given by (1)–(4)
fail to give the same effect in the cross-associative memory.

Though the crosscorrelational memory matrixW is asymmetric
and has complex eigenvalues,V = WQ becomes almost symmetric,
since the cross-associative memory with periodQ works as an auto-
associative memory system if it is observed afterQ steps of dynamics,
which includeQ times linear transformation byW . Therefore the
signs of ~ui(t) =

j
vijxj(t) and xj(t) are the same in most

cases. This is why the nonmonotonic dynamics (11)–(14) enable
selective association of memory and concept sequences as in the
auto-associative memory.

SinceWQ is almost symmetric, it is expected that eigenspace
analysis of the symmetric part of the matrixWQ; [WQ]s, helps
understand the geometry of the recalling process. From the knowledge
of the autocorrelational associative memory, it is expected that
the state proceeds toward the eigenvectors of[WQ]s with large
eigenvalues.

The eigenvalue distribution of[WQ]s and the inner products of
the eigenvectors and the pattern vectors in the memory and concept
sequences are shown in Fig. 4. This figure shows that the patterns
in the memory sequence are composed of all the eigenvectors in the
memory space, which span the memory pattern vectors, sporadically,
while the patterns in the concept sequence are composed mainly of
the eigenvectors with large eigenvalues. Therefore concept sequences
are stable in the standard neural dynamics. On the other hand, the

(a)

(b)

(c)

Fig. 4. Eigenspace structure of memory matrix (N = 200;
Q = 3; P1 = 3; P2 = 3): (a) eigenvalues of the matrix[WQ]s; (b)
inner products of the eigenvectors and a pattern vector in a memory
sequence; and (c) inner products of the eigenvectors and a pattern vector in
a concept sequence. As for the inner products, only the eigenvectors with
the largest 50 eigenvalues are shown. Memory patterns are composed mainly
of the eigenvectors with the largestP1P2Q (27 in this case) eigenvalues,
while concept patterns are composed mainly of the eigenvectors with the
largestP1Q (nine in this case) eigenvalues.

modified neuro-window method proposed above can terminate the
flow toward the eigenvectors with large eigenvalues in a favorable
place by setting the parameterh to the proper value, which leads to
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(a)

(b)

Fig. 5. Overlap with memory sequence after 30 steps of state transitions
under different memory rationsa = (PQ=N). In the modified nonmonotonic
dynamics (MND), the parametersh = 2:0; � = 0:5 are used whenQ = 3,
and the parametersh = 3:5; � = 0:5 are used whenQ = 6. The memory
capacity increases when the modified nonmonotonic dynamics are used. The
increase of the capacity is greater when the length of the sequenceQ is shorter.

the stabilization of memory sequences. Thus selective association of
memory and concept sequences is attained.

B. Capacity Expansion

In the model which stores random patterns, the patterns in a
spurious memory sequence are composed mainly of the eigenvectors
of [WQ]s with large eigenvalues. Therefore the flow toward spurious
memory sequences is terminated and the memory sequences are
stabilized and retrieved by the modified neuro-window method using
the matrixWQ even when the memory ratio is rather large.

Fig. 5 shows the memory capacity given by the standard dynamics
and the proposed nonmonotonic dynamics. Here the stability of
memory sequences is examined in the cases whereQ = 3 andQ = 6.
The results show that the proposed model realizes larger capacity in
both cases, while the enhancement of capacity by the nonmonotonic
model is weaker whenQ = 6. As Q increases further, the capacity
enhancement by the nonmonotonic model gradually disappears.

V. CONCLUSION

In the present letter the nonmonotonic neural dynamics which real-
ize selective association of memory sequences and concept sequences
have been presented by modifying the neuro-window method. It has
been shown that capacity of crosscorrelational associative memory
which stores sequences of random patterns can be expanded based

on the same dynamics. The basic mechanism of the proposed model
has been clarified by the eigenspace analysis of the memory matrix.
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