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Letters

Selective Retrieval of Memory and Concept Centers of Correlation
Sequences through Neuro-Windows (Concept Patterns)

Hideki Kakeya and Yoichi Okabe

Abstract—This letter presents a crosscorrelational associative memory
model which realizes selective retrieval of pattern sequences. When
hierarchically correlated sequences are memorized, sequences of the
correlational centers can be defined as the concept sequences. The
authors propose a modified neuro-window method which enables selective
retrieval of memory sequences and concept sequences. It is also shown
that the proposed model realizes capacity expansion of the memory which
stores random sequences.

Fig. 1. Example of memory patterns and concept patterns in hierarchical
autoassociative memory.

|. INTRODUCTION I
In the autocorrelational associative memory [2], [3], [8], [10], wi(t) = Z wija;(t) (3)
when hierarchically correlated patterns are memorized, the centers of j=1
correlation can be defined as the concept patterns in each hierarchical
level. Kakeya and Kindo have shown that the memory patterns and -1, fu<=nh
the concept patterns can be retrieved selectively in the network o(u) = 0, if —h<u<h (4)
composed of the neuro-window elements, the controllable window- 1, ifh<u

typ\)/?/hneural ellemznts [4]. edin th | .enlarge the capacityd(< A < 1,0 < h) [9], where z;(t) is the
en correlated sequences are memorized in the crosscorrelatiqhge "o theith neuron at time, w;; is the autocorrelational memory

associative memory, the sequences of the correlational centers cal Six and sgtu) is the sign function given by
defined as the concept sequences. Though the existing neuro-window
method realizes selective autoassociation of memory patterns and sgr{u) = { 1, ?f u>0 ®)
concept patterns, its simple adoption to the sequential associative ' -1, ifu<O.

memory does not work. In the present letter the authors take U, shege dynamics the output of neurons which have large absolute
the case where cyclic sequences of pattems with the same pefigg,oq of membrane potentifl; (¢)| >  is weakened (or canceled
are memorized, and present a modified neuro-window method WhWﬂen A= 1)

realizes selective association of memory and concept sequences. TRgy o hierarchically correlated patterns are memorized, the centers

authors also apply the proposed algorithm to capacity expansiongffeqrelation can be defined as the concept patterns which represent
sequential memory.

X the correlated groups of patterns (Fig. 1) [1]. Kakeya and Kindo have
In Section Il, the neuro

e reuro-window method for the autocorrelationgl,, n that selective association of memory patterns and concept
associative memory is reviewed. In Section IlI, sequential associatgerms is enabled by controlling the paramtén (4), for concept

memory baged on the cros_scorrel_a_tional Iearnir_lg is formulated, a&ﬂterns have larger.| than memory patterns. Memory patterns can
the neuro-window method is modified and applied to the sequentigl gapijized exclusively whelnis selected so that:| < # holds for
memory to achieve selective refrieval of memory sequences afdnory andu;| > & holds for concept [4]. If largeh is selected,
‘?‘mcept sequences. !n Section 1V, the_ proposed models are_ 'nvﬁ%'mory patterns become unstable and concept patterns are retrieved
tigated through the eigenspace analysis of the memory matrix, and, yesyit. This method for selective association is called the neuro-
its application to capacity expansion is discussed. window method, because each neural element works as a window
which transmits only the output of neurons with;| < k. The size
1. NEURO-WINDOWS IN AUTO-ASSOCIATIVE MEMORY of the windowh determines whether memory or concept is retrieved

In the autocorrelational associative memory, the nonmonotorft the recalling process.

neural dynamics (the partial reverse method) given by
I1l. N EURO-WINDOWS IN SEQUENTIAL ASSOCIATIVE MEMORY

N . . . o e
wi(t+1) =sgn Z wi w5 (1) @ I_n this section we formulate crosscorrelational associative memo_r_y
which stores sequences of correlated patterns, and propose a modified
@) neuro-window method which realizes selective association of memory
and concept sequences.
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Fig. 2. Example of memory sequences and concept sequence. When corre-
lated sequences of patterns are memorized, a concept sequence of patterns
can be defined. The goal here is to retrieve memory sequences and concept
sequences selectively.

Overlap with Concept

where

%E[s(ﬁlv??Z)(T) ,s(ql,qz)(a)] =ARr(p1. P2, @1, @2)br0 (6)

R, fpi=q,p2#q (7)
0, if p1r #aqr. (b)

Herel < p1 < P, 1 < p2 < P, andé,, is the Kronecker's delta Fig. 3. Recalling processX=3, P =5, P, =3 R =0.49, N = 1000):
function. This means that the patterns which share the same suffixtime course of overlap with memory orbit from various initial conditions
~ have the ultrametric correlation [11]. As in the autoassociatif@ = 2.0, A = 0.5) and (b) time course of overlap with concept orbit from

memorv. the center of correlation whose combonents are given bvarious initial conditions§ = 10, A = 0.5). Small & attains retrieval of
Y p 9 %emory sequences, while largeattains retrieval of concept sequences. Both

) memory orbit and concept orbit have basins of attraction. The basin of the

1, ifp1:q17p2:q2
AH(]JI, P2, 41, (12) =

Py
sPO) = g S 5P p2)(7) (8) concept orbit is wider than that of the memory orbi.

2=1
can be defined as the concept sequence. An example of memory antb realize selective association of memory and concept sequences
concept sequences is illustrated in Fig. 2. which cycle with period?), here we propose modified nonmonotonic

The crosscorrelational memory matrix which stores the abodynamics written in the form

sequences is written in the form N
1 PL Py Q-1 » ,T,j(f + 1) =sgn <Z 71),;11'.”7?’,’(17)) (11)
W=+ Z Z Z sgm,pz)((_r+1)modcz)sgp1-pz)(r). ] =1 -

R — i (t) = (t) — Aop(a;(t)) (12)

(9) N
o . o . i) =Y vijai(t) 13)

Unless the correlatio® is small and negligible, this weight matrix =
enables only the retrieval of concept sequences [0,] =V = we (14)

SPVO) (e (0@ _ (p1)(0) _ _ _
where the functions(w) is the same as that shown in (4). In these

and cannot attain the retrieval of memory sequences under thaamics it is possible to retrieve memory sequences and concept

standard dynamics given by sequences by adjusting the paraméteto the proper value in the
N above dynamics.
2i(t+ 1) =sgn <Z Wi, (t)). (10) Fig. 3 shows the results of the numerical experiments where the
= above dynamics are applied to selective association of sequential

) . L . memory. Here the overlap with the orbit of memory (or concept)
As in the autocorrelational associative memory, it is expected th?équencem(t) given by

the neuro-window method realizes selective association of memory

and concept in the sequential memory. The dynamics given by m(t) = irs(’) -x(t) (15)
(1)-(4), however, cannot attain selective association of memory and :

concept when it is applied to crosscorrelational associative memasyplotted (7 = + mod Q). As shown in the figure, small realizes
in the original form. retrieval of a memory sequence, while larfgeealizes retrieval of a
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concept sequence. It is also shown that both the memory orbit and

the concept orbit have basins of attraction. Especially, the basin of ! L ' '
the concept orbit is very large. 6 r
IV. DISCUSSION St
g 4R
A. Geometry of Recalling Process g
In this subsection we analyze the models proposed above from > 8 ";,
the geometrical viewpoint based on the eigenspace analysis of the w 2 |
weight matrix.
It is known that in the dynamics given by (10) linear transforma- 1r
tion is the major driving force of state transitions, while nonlinear 0 \
transformation terminates the state transitions where the linear flow . .
is slow. Linear transformation drives the state in the direction of the ] 50 100 150 200
eigenvectors of the weight matrix with large absolute eigenvalues. Eigenvectors sorted by decreasing eigenvalue
Therefore eigenspace analysis of the weight matrix is effective to (@
grasp the dynamic property of the network [6], [7]. One of the
important points given by the eigenspace analysis is that concept 1 T
patterns in the hierarchical memory and spurious memory patterns 08
in the random memory are composed mainly of the eigenvectors 06 |
with large eigenvalues, which constitute stable space. Cancellation 04 |
of the effect of neurons which have large membrane potential 5
|u;| by the nonmonotonic dynamics makes the space with large g 02 "| l | ’ | l l
absolute eigenvalues unstable, which leads to the retrieval of memory r3-_' or V'H Syt le" bt bt
patterns [5]. 2 o2t |
In the crosscorrelational associative memory, however, eigenspace £ 04t ‘
analysis is not so simple as in the autocorrelational associative
memory, because the memory matrix is not symmetric and includes 06T
complex eigenvalues. Complex eigenvalues cause rotation of state 08 ¢
vectors in the recalling process, which enables emergence of limit -1 . . . 1 .
cycles in the network. OEigenvg((:)tors sortzeod by deg?easing gigenvalugo
The nonmonotonic dynamics given by (1)-(4) can cancel the
effects of neurons with large membrane potential only when the signs (b)
of u;(t) and z;(¢t) are the same [notice (2) and (4)]. This relation
holds in most cases in the autoassociative memory. Rotation of state !
vectors in the cross-associative memory, however, often leads to the 08} ]
situation where the signs af;(¢) and z;(¢t) are different, which 06 .
results in enhancement of the space with large eigenvalues on the 04t ]
contrary. This is why the nonmonotonic dynamics given by (1)—(4) g o2 |
fail to give the same effect in the cross-associative memory. g l 1‘ ' | |
Though the crosscorrelational memory matkix is asymmetric a O ’\ et e
and has complex eigenvaluds,= W% becomes almost symmetric, g 02t Il 1
since the cross-associative memory with perigavorks as an auto- = 04t !
associative memory system if it is observed affesteps of dynamics, 06 |
which include@ times linear transformation by¥". Therefore the '
signs of a;(t) = >, vija;(t) and z;(t) are the same in most 0.8 ¢
cases. This is why the nonmonotonic dynamics (11)—(14) enable -1 : ; ; : :
0 10 20 30 40 50

selective association of memory and concept sequences as in the

auto-associative memory.
Since W< is almost symmetric, it is expected that eigenspace
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analysis of the symmetric part of the mati%¥ @, [W9],, helps Fig. 4. Eigenspace structure of memory matrixV ( 200,
understand the geometry of the recalling process. From the knowledge= 3. P1 = 3, P» = 3): (a) eigenvalues of the matrifi¥’?].; (b)
of the autocorrelational associative memory, it is expected tH4fe’ Products of the eigenvectors and a pattern vector in a memory

. N . sequence; and (c) inner products of the eigenvectors and a pattern vector in
the Statle proceeds toward the elgenvectors[l/bf‘?]s with large a concept sequence. As for the inner products, only the eigenvectors with
eigenvalues.

i the largest 50 eigenvalues are shown. Memory patterns are composed mainly
The eigenvalue distribution qm/'@]s and the inner products of of the eigenvectors with the largesy P.Q (27 in this case) eigenvalues,

the eigenvectors and the pattern vectors in the memory and conc‘%?{e concept patterns are composed mainly of the eigenvectors with the
sequences are shown in Fig. 4. This figure shows that the patteI geStplQ (nine in this case) eigenvalues.

in the memory sequence are composed of all the eigenvectors in the

memory space, which span the memory pattern vectors, sporadically,

while the patterns in the concept sequence are composed mainlyrefdified neuro-window method proposed above can terminate the
the eigenvectors with large eigenvalues. Therefore concept sequeriloyg toward the eigenvectors with large eigenvalues in a favorable
are stable in the standard neural dynamics. On the other hand, plece by setting the parameterto the proper value, which leads to
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on the same dynamics. The basic mechanism of the proposed model
has been clarified by the eigenspace analysis of the memory matrix.
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Fig. 5. Overlap with memory sequence after 30 steps of state transitions
under different memory rations= (PQ/N). In the modified nonmonotonic
dynamics (MND), the parameteis= 2.0, A = 0.5 are used whei) = 3,

and the parameter's = 3.5, A = 0.5 are used wherd) = 6. The memory
capacity increases when the modified nonmonotonic dynamics are used. The
increase of the capacity is greater when the length of the seqtgiscshorter.

the stabilization of memory sequences. Thus selective association of
memory and concept sequences is attained.

B. Capacity Expansion

In the model which stores random patterns, the patterns in a
spurious memory sequence are composed mainly of the eigenvectors
of [IW¥], with large eigenvalues. Therefore the flow toward spurious
memory sequences is terminated and the memory sequences are
stabilized and retrieved by the modified neuro-window method using
the matrix?W? even when the memory ratio is rather large.

Fig. 5 shows the memory capacity given by the standard dynamics
and the proposed nonmonotonic dynamics. Here the stability of
memory sequences is examined in the cases whete3 and@ = 6.

The results show that the proposed model realizes larger capacity in
both cases, while the enhancement of capacity by the nonmonotonic
model is weaker whel)) = 6. As () increases further, the capacity
enhancement by the nonmonotonic model gradually disappears.

V. CONCLUSION

In the present letter the nonmonotonic neural dynamics which real-
ize selective association of memory sequences and concept sequences
have been presented by modifying the neuro-window method. It has
been shown that capacity of crosscorrelational associative memory
which stores sequences of random patterns can be expanded based

physicists,”"Rev. Mod. Physyol. 58, pp. 765-786, 1986.




