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Introduction

For the past several years, vibration tests have been performed on
full size structures of new fire-resisting constructions to investigate
their aseismic properties. In each test a small or a gigantic shaking
machine was installed on the floor or a building so that it might produce
forced vibration through the centrifugal shaking force. When the
amplitude of the test structure is small, its dynamiecal behaviour can
be regarded as linear but, if the amplitude becomes so large as to do
some damage to the building, the response features are no longer linear
but present non-linearity. Of these problems the authors already
presented two papers’® in which they dealt with some theoretical and
experimental problems on the masonry and two-story frame structures.

In this paper the analysis is shown for the steady state non-linear
vibration of the two-storied frame structure which is subjected to shaking
force by a machine and its application was investigated on the test
results obtained from a pre-stressed concrete frame structure.

In steady state vibration of a building, the relation between the
restoring force and the relative displacement of each story would usually
make a figure of loop in their co-ordinate but, in the analysis shown
in this paper, the relation is assumed as a curve passing through the
origin of the co-ordinate, and the damping proportional to the velocity
of relative deformation is considered. The vibrational properties of the
test building including dampings in large vibrations are computed from
this analysis and compared with the ones in small amplitudes.

1) T. H1saApA and K. NAKAGAWA, “ An Analysis of Vibration of Masonry Buildings,”
Report of the Building Research Inmstitute, 12 (1953).

2) T. HI1SADA, “Non-Linear Vibration of Two Story Buildings” Trans. Architectural
Institute of Japan, 50 (1955).
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1. Forced Vibration by Shaking Machine

Assumptions

In this analysis, the following assumptions are employed :

The building is considered as a system of two degrees of freedom
and the restoring force of each story has terms of displacement having
odd power (up to 7 in this paper).

The damping force of each story is considered as viscous and pro-
portional to the relative velocity of deformation.

Notations

The following notation is used in this paper:
m,=mass, =1, 2
m=my|m,
x,—Iinstantaneous displacement of mass m,, =1, 2
c,=coefficient of the linear term in the algebraic expression
for a non-linear restoring force.

1,4, i=ratios of the coefficients of the non-linear terms to that of
the linear term in the algebraic expression for a non-linear
restoring force, i=1, 2

kl=c;/m;, t=1,2

K =k3[K}

=51

7’LL=10V3/9/111’ =1, 2

1,=3568%27p8, i=1,2

b,=coefficient of damping force, i=1,2
D,=b,/2mx;=dimensionless relative damping, =1, 2

@,=amplitude of harmonically varying displacement of mass m;,

1=1,2
Q=v 3/444,Q;=dimensionless amplitude of displacement of mass
m,;, =1, 2

M=eccentric mass of shaking machine

r=arm of eccentric mass

s=Mr|m, .
s=Mr|[m,-\/8]4m

«,=difference of phase of the sinusoidal motion of mass m,; ¢=1, 2
QOQ=circular frequency of shaking machine

7=0/k,

t=time

=01
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General Relations
The differential equations of motion of the system shown in Fig. 1
are
mE, + ¢, — piwd + vie] — 5]

—&[(@,— ) — g0, — 2,) + w2 — 2, "y Xe MrFeosot

— (@, — ) ]+ by, — by(2,—x,)=0  (1.1) q
M, + e[ (@, — @) — pi(@, — ) + vi(w, — )
—&(@,— )]+ by, — &) — MrQ* cos Q=0 n q
(1.2)

or

E\ =i+ 5w, — g + vix] — £52]] — mei[(x,— ;)
— p(@,— 1) + vy — @) — 632, — 21)']
+ 2D k& — 2mD (%, — 2,) =0 1.3)
E,=2&,+ 3[(x,—x,) — pi(@, — )’ + va(, — a,)° — 3@, — 2,)']
+2D,k,(2,— ) — 80 'm - cos Qt=0 1.4)
We assume the following periodic solution :

Fig. 1.

T,=Q, cos (r—a) , Z,=Q, cos (r—a,) (1.5)
The Ritz averaging method® gives the following four conditions:
2 2
S E\(%,, &,) cos zde—0 , S Ey(&,, &,) sin zdr—0
0 0

g (1.6)
S B3, %) cos «de—0 , S B3, %) sin tdr—0
0 0

Introducing (1.5) into (1.8) and (1.4), and furthermore putting those
two equations in (1.6), we obtain the following four equations :

[(L+ 75 =)@ — (L + RNRL + (TR — -+ L)@ S

+[—mEQ+ M EQ — M QS + mELQ] G

— 52y [ 9C0S |, | €OSro | — i 7[ 0COSQ |, COS
FmEEQIQ) 20+ (e — a) |~ mIEEQQ] 2ipne + o2 — )

e ey e c
+ 0,0, [2 S (@ —2a) +3 % o ] —m n%Qsz[z _ (e, — 202

COos ——y T3 COS COS COoS
80 o |+ QI 6 S8 o+ _%0S (2a,—3a1) +3 55 (2 — v

3) K. KLOTTER, ‘“‘Non-linear Vibration Problems Treated by the Averaging Method
of W. Ritz,” Proc. First U. S. National Congress of Applied Mechanics, 1951, ASME.
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~mRLQQ 3 _9% (o~ 20) +4 S8 |+ RLQQ[ 3 _%F (2er—3a)

+6 00 Qa—a)+ 12 0 a :l m;czzzQ?Q{ o (3a,—4a,) '

+4 %05 (8a,—2a)) +12 €05

cos
sin —sin (1 —2®) +18 al:l

B —
+mELQIQ _“‘S’isn (B, —4da) +4 2 (3, —2at,) +12 C‘S’fn( ,—2a;)

+18 g?:az]‘m#lQlel—S " oin (20— 3a) +6 5% (20, —av) + 12 1:|

+mELQR, 8 % (a—20) +4 3, | +2D0G, 5«

—sin sin 08

sin sin . .. (1. .

+2mD,knQ; " _ eog @—2mD 57Q, Ceos®=0 .. {(1. '
[—W§1+Wﬁ2@~mm@;’+mzzz@]{coﬁ }

TG T T

+7—nm-g[z{g;’:}al+i:?s}<2az ao]

—m-'nzaagrz{ }(al 2az)+3{cos}a1]

L sin
——, =—=[,( cos cos
+ mEnQ0, _2{ _Sm}(a —2a) +3{ cos }a]
+mEn Q) 65 1. +{ %, Jea—sa) +3{52 - a) |

T

-t {5 S ol o]

| {sIn —sin
el 6@[3{ o} (=2) +4{gi e |
— L Qi 3] °%% hea—3a) +6{50% 2o — ) + 12{0% o, |

—sin

@
+mRLQG [{ cos }(3a1 4a)+4t{‘3°s}(3a1 2a,)

COS COos
+12{ Sm}(a1 —2a,) +18{ cos
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et Q] { 08 }aa— ) +4{ 255 |G —200)

sin
[eX] COS
+12{_Sin}(ao 2a1)+18{5m} 2]

+7%E2l2§§@§|: { cos }(2a —3a)) +GJCOS}(2a —al) +12{cos}a1:‘

—sin (sin sm
—mRLQQ, [3{ —cgisn}( —2a) + 4{;3? }a{l
vomDE@f 0 LoD @] S0 Ja, - fFl=0 (G TP

For undamped systems, by putting @;=a,=0 and D,=D,=0 in
(1.7.1) and (1.7.3), we have

A—7)Q— Qi +m @ —1,Q —mk(Q,— QJ-HT%EF(Qz QY

—nm (@, — Q) + I mFH(Q,— Q) = (1.8.1)
mi (@, — Q) —m B (Q— Q) + nﬁﬁz(@ — Q)
'—lzm—léﬂ(@z—ay—m?}@z—5772—:0 (1.8.2)

From those two equations, we can compute the response curves
which represent the relations between Q, and 7* by using graphical
method.

To see the behavior of free vibration of undamped systems, we put
$=0 in (1.8.1) and (1.8.2), then we have

my*
i
Introducing (1.9) into (1'.18.1), we obtain
g A —7)— @+ Qi — LQ— mEp (1 — 7 — m7) — &+ Qi — L, Q]

+m (1 — 7 —mp?) — Qi 4+ n, Q! — L QTP @ — mk*n.y [(1 — 72— my?)

—Gf + nl@{_ llé(l;]ﬁ@'i_kzlz[(l _772_77”72)'— @‘F nl@_l1@]766=0 (1-10)

(1.10) is the formula for “backbone” curves of Q, and. represents
the relation between amplitude @, and frequency 7? in free vibration, while

(1.9) represents the relationship between @, and @, on their “backbone ”’
curves.

For damped systems, we can get the response curves by solving
(1.7.1), (1.7.2), (1.7.3) and (1.7.4) simultaneously. The computations take
very long and are tedious, so, if the dampings of the system are small,
we allow ourselves to infer the general tendency of the damped systems
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from the response curves of the undamped ones. In this case, it is
necessary and most important to determine the behavior of the system
at resonance for the first mode. For this, we put a,=a,==z/2 in (1.7)
and, by adding (1.7.1) and (1.7.2) and also (1.7.3) and (1.7.4), we obtain

(1—)Q— Qi+ QG — L, —mE*(Q.— Q) + M (Q,— Q,)°
—mEn(Q,— Q) + mFL(Q,— Q) +2D,5Q, + 2mD.kyQ, — 2mD,i7Q,=0

(1.11)
ME(Q, — Q) —mFF(Q,— Q) + Mk ny(Q. — Q. —mFL(Q, — Q.Y
—my'Q,+ 2mD,ip(Q, — Q) —57°=0 (1.12)
Adding (1.11) and (1.12) and using the relation in (1.9), we obtain
2D,Q,—57=0 (1.13)

The crossing point of (1.13) and the backbone curve of @, represents
the amplitude of @, at resonance and we can find the corresponding
point of @, on its backbone curve.

As to the dampings, we obtain from (1.11), (1.12) and (1.9) the
the following formulas:

D= {—m7*Q,+ mF(Q,— Q) — mE*I(Q,— Q,) + mFnyQ, — Q) — mk*1(Q,— Q)

+2m k(@ — Q)D.} [27Q, (1.14)
D= {—m&*(Q,— Q)+ m&*(Q,— Q. — mh*n,(Q— Q) + mk*l(Q, — Q. + Q.
+ 3577} [2mEn(Q.— Q) (1.15)

2. Analysis of Large Vibration Tests of A Pre-Stressed
Concrete Structure

Vibration Tests? were performed on a two-storied frame structure
of prestressed concrete construction by installing a small or a large
shaking machine on the roof floor. In those tests eccentric moments
Mr were 137kg.cm and 3960 kg.cm respectively. In the case of small
vibration no damage was done to the structure but, in the first large
vibration test, many cracks appeared in the cement mortar filled in the
connections of the frame. Keeping the eccentric moment of machine
at a constant value, the test was continued and, in the third test, the
steady state response features shown in Fig. 2 were obtained.

4) K. NAKAGAWA and others, ‘‘Vibration of A Prestressd Concrete Structure,” Report,
Architectural Institute of Japan, 31 (1955).
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m=m,/m,;=1.51

R,=14.7 (,—0.506z}+ 0.14727—0.000267x;)

R,=18.8 (,—0.50622+ 0.147x;—0.0002677)
R, R, in ton, @, in cm.

K=k ki=c,[m, m,[c,=0.846

=gl pi=1
n,=10,4/9pi=0.638
n,—0.638

1,= 35827 12=0.00266
1,=0.00266

Introducing the above values into (18.1), (18.2) (1.9) and (1.10), we
obtained response and backbone curves for the undamped systems as
shown in Fig. 2. As may be seen in this figure, the analytical and
experimental results show considerable good agreement.

As for the dampings, by putting the resonant circular frequency
and the maximum amplitudes into (1.14) and (1.15), we obtained the
following values : '

D,=0.057 (1.14")
D,=0.094 (1.15%)

3. Analysis of Small Vibration Tests of the Same Structure

In the case of foreed vibration of small amplitudes, a shaking machine
was installed on the second floor, and the behavior of the structure
could be regarded as linear oscillations with viscous dampings. Then,
we have the following differential equations of motion :

&, + ki, — med(@, — 2,) + 2Dk, &, — 2m D,k (&, — &) —sQ* cos 2E=0  (3.1)

&, + k3(0,— ;) + 2D,k,(&,—,)=0 (3.2)
Representing the solution in the following forms
z,=Q,cos (Qt—71)) } (8.9)

r,= @, cos (U —7.)
and giving the shaking force and displacements as the form of complex
number, we can obtain the solution of (3.1) and (3.2) as follows:

Q. =s7"V/(C*+ D) (A + BY) (3.4.1)
Q.=s"V(E*+ F*)[(A*+ BY) (3.4.2)
71=tan"{(BC — AD)|(AC + BD)} (3.4.3)

r.—tan-'{(BF— AF)[(AE+ BF)} (3.4.4)
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where
A=9'—(1+F+mE+ 4D, D,g)yp* +-k*
B=2k(kD,+ D,)yp—2(D,+ %D, + 2 kD)7
C=Ez—v2
D=2kD,y
E=g?
F=2ED,y
Numerical values for the small vibration test are as follows ;
Q,=0.1cm, @.=0.057 cm
Mr[m;=0.0133 cm
m=1.51
k*=c,[(c;m)=(29500 kg/cm)/(80600 kg/cm) x 7=0.638
7=Q7m;[c,;=28.3 X 10.5/30600=0.275
where Q,=resonant circular frequency
Introducing the above values into (3.4.1) and (3.4.2), and calculating
the values of D, and D, which satisfy both equations, we have
D,=0.041 }
D,=0.029

Comparing these values with those in large vibration, we find that
the former is smaller than the latter.

(3.5)

(3.6)

4. General Results

In the forced vibration test of a two-storied pre-stressed concrete
structure which was subjected to a large shaking force by a mechanical
oscillator, the response behavior of the structure represented non-linear
features as shown in Fig. 2 where Q and Q denote the amplitude of
each floor and the circular frequency of shaking machine respectively.
The maximum accelerations obtained at roof and second floors at reso-
nance were 580 and 420 gals, and some structural damage was done to
the connections and columns of the skeleton.

In analysis of the test results, considerable good agreement between
experimental and theoretical values are obtained, if we consider the
relation curves between the restoring forces and relative displacements
as shown in Fig. 8 and the viscous dampings to be proportional to the
relative deformations for the first and second stories of the structure
regarded as a system of two degrees of freedom. The fractions of
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critical damping for the stories computed from the test results are 0.057
and 0.094, and those in the vibration of small amplitudes 0.041 and
0.029 respectively. It is noteworthy that the dampings assumed as
viscous in large vibration are larger than those in small amplitudes.

The method presented in this paper may be considered as one of
the analytical treatments for the steady state non-linear vibration of
two-storied buildings.

The authors are greatly indebted to Professor K. Klotter of Stanford
University for his guidance and advice. Thanks are also due to Mr. T.
Uchida and Mr. T. Sato who were in charge of the computation.
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