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1. Introduction

A characteristic feature of Love-wave is that it shows dispersion
owing to the stratified structure or more generally to the heterogeneity
of the medium. It is usual to assume two or more homogeneous layers
and choose the values of their density and elastic constants so as to
explain best the observed dispersion curve.

But it must be remarked that within the errors of observation the
result can not be unique—we can suppose different structures which
equally fit the observations®. In other words, we can conclude only
with ambiguity where and how the discontinuities exist in the earth’s
crust.

It seems, then, rather natural to assume that the density and
elastic constants vary continuously in the medium. This might be
looked upon as the result of averaging over various surface layers
which the Love-wave encounters while travelling long distance from
its source to the place where it is observed.

In this paper, we shall first develop the general theory of dispersion
under the assumed heterogeneity, next the inverse problem—given the
dispersion curve to determine the structure of the medium—will be
treated.

2. Dispersion of Love-type waves propagated over
heterogeneous medium

We shall treat the problem in a two-dimensional form. The z-axis
indicates the surface and z-axis is taken vertically downward. Density
p and rigidity p are thought to be the analytic positive functions of
2. The displacement v occurs in the vertical direction both to z- and
z-axes.

Then the equation of motion is expressed as

#* Assistant Professor of the Seizyo University, Setagaya, Tokyo.
1) Y. SATS, Bull. Earthq, Ees, Inst., 29 (1951), 519.
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P& T =) 22+ (1@ ) (1)
Assuming now v=exp (ipt—ifz)V(z),
the equation (1) reduces itself to
() +usv=0 (2)
with
s=(p[p)p*— f*= f* {(ofv(2) -1} , } (3)

Vo=0|f , vs(z)=1/p/p .
Let the variables be changed by the substitution

0 =stdz ,
o } (4)
20)=vusV(z) ,
then the equation (2) is transformed into
d:Z/d6° + {1+ Q(0)} Z—0 , (5)
with '
QO) =~ (13)*=(QAOY (1) = — (pis) (s us)™ . (6)
We now make following assumptions:
(i)  w(z) is a increasing function of 2.
(ii) v,>v,0). Then s* has only one zero-point z=H,
and v(H)=v, . (7)
(i) |QO)IL1, if [z—H] is large.
It is easy, then, to observe that the asymptotic solutions of the equa-
tion (5) are
(a) sinusoidal, if z<H (ve>v4(2) and 0 is real),
or
(b) exponential, if z>H (ve<vi(2) and ¢ is imaginary).
We need the solution which converges to zero as z—o. To obtain
the corresponding sinusoidal function, we must remark that, owing to

the many-valued character of s, the so-called Stokes’ phenomenon hap-
pens. H. Jeffreys was the first who showed how to connect the above




Part 3.] Analysis of the Dispersion Curves of Love-Waves. 289

two asymptotic solutions each belonging to different regions®. Accord-
ing to him, the sinusoidal solution at #<H, which decreases exponen-
tially for large z, is expressed as

Z(0)~ cos {/4—(0x—0)} , (8)

or
V)~ (pz5) " cos(n/4— g:lsdz> . (9)

‘In case the assumption (iii) is fulfilled near the surface, we can
apply to the expression (9) the boundary condition

(dV/dZ),___():O ’ (10)

ol )L 2O o

and obtain

or

Fz4
S sdg=nr+ "~ — Tan™! {’1@ (»14)} , m=0,1,2,---). (12)

0 4 2 dz\ps/ ) z=0
This equation gives the relation between the velocity v, and the wave-
length L(=2x/f) of the n-th Love-wave, if the functions p(z) and u(2)
are known satisfying the conditions (i)-(iii).

Substituting in (12) the expression (3), we have
I . L 4 d(1l '
@F —1de= L lan 1~ Tan 2d() L, az

R e e T B € 2 O ) beoa

from which we can observe that

{if L—0, then H—0 and v,—vs(0).
if Lo, then H—oo and v,—vs(0).

To derive the formula (12), it was necessary to assume that Q(0)
becomes negligibly small near the surface; this condition may be ful-
filled when H is of several wave-lengths, that is, when » differs from
0. But the only case #=0 Leing practically observed, we must next
obtain the corresponding formula to (12) which is valid when L is not
small compared with H.

2) Now called as W.K.B. method:
E. KEMBLE, Fundamental Principles of Quantum Mechanies (1937).
M. MoOSE and H. FESHBACH, Methods of Theoretical Physics (1953), chap. 9.
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2.1. Near the zero point z=H, taking the first term of the expansion,
s* is proportional to (H—Z), then

¢50,,—0=SII sdz o rszds=83/3 . (13)
0

z

Putting this relation into (6), we get as the first approximation
Q0)=— ¢~ ()¢~ (5/36)¢~ . (g)
Then the solutions of (5) are expressed as Bessel functions of order

+1/3 multiplied with ¢'*. We choose the linear combination of them
80 as to converge to zero when z—, and obtain

V=(¢/ps)"* {J1s(¢) + I -1s(9)} - (15)

This procedure is due to R. E. Langer®.
We can rewrite the expression (15) in the following form

V=(¢/ps)'" cos (w/6) {exp (i=/6)- H(}(¢) + exp (—ix/6) - H(¢)}
=2 cos (/6) (¢ ps)2| H{Y| cos (=/6 +arg H) . (16)
If we apply the boundary condition (10) to (16), we have
tan (/6 +arg H{j)(¢0)) {(d/dz) arg H{Y(¢)} .
= {(d[dz) log ((¢/ps)"*| HSY¢) )} -0 - 17)
On utilizing the relations
arg H{jj=tan™' (Y,,/J,;) ,
[HP =(Jys) + (Y1)

i - EdS;Ym_ Y- Edg;JWZ __259 )
we get
y=(d/dz) arg H{}j= —2s(z¢) | H}|* . (18)
Then the equation (17) is written as
arg Hiji(go)+ z/6=nz+Tan"* {(z#/2)(d/dz)(py) "} -0 . (19)

When ¢—c, we have arg H—¢—(5/12)x, Ve [HE| -2/ and
y——s. This shows that (19) coincides with (12) when 2<H.

3) R. E. LANGER, Phys. Rev., 51 (1937), 669.
MoOoOSE and FESHBACH, loc. cit.
1. Imai extended the result of Langer:
L. IMAlL, Phys. Rev. 74 (1948), 113; 80 (1950), 1112.
His formulas are available when a more precise knowledge about the behaviour of
the solution is needed.
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We next try to bring the expression (19) to a more convenient
form, under the condition which reads

1> | {(1/2)(d]dz)(1y) "} 2mol = | = (1/2){(d]d2)(p25) ™} (g [2) | H s *
+(z/4)@]de) (@ HiRI*) -0 - (20)
For a small quantity ¢ compared with ¢, we have
arg H)(¢+e)=arg Hij(¢)+e(d/de) arg Hij(¢)
=arg H{}(¢)+2e(z) " |H(e)| -
Then the equation (19) is reduced into
nr—n|6=arg H{3[po— (o 2 | HS( @) * {(2o/2)(d[d2)(15) "}
+([8)pol HSi( o) H(d]de) {@ol HiB90) T - (21)

To solve this equation we can utilize the numerical tables® of
arg H{}. In the case n=0, the relation

arg H{3(0.835)= —7/6
shows that we can take 0.835 for the first approximation value of ¢,.
Again from the tables® of |H3

| H}3(0.835)|==0.85 ,

(d)de)| H$3(0.835)|:==—0.475 .
With these values the equation (21) becomes

¢©0—0.035+0.9 x {(z/2)(d/dz)(ps) "} :-0=0.835

or

%ES:sdzi——.O.S’Z——O.Q{(p/2)(d/dz)(ps)‘1}z=0. (@)

Comparing this formula with (12), we see that the principal term (z/4)
is augmented about 11 per cent.
When the condition (20), or

[(/2)(d]dz)(p2s) " .-eL1

does not hold, we must use the equation (19). In this case the equa-
tion (12) of the former section may be used as the first approximation
formula.

2.2. In case the equation (2) has an explicit solution satisfying the

4) G. N. WATSON, Theory of Bessel Functions (1922), p. 714.
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boundary condition, W.K.B. solution (9) or (15) proves to be an asymp-
totic function of it.

Sezawa® and later Satd treated the case when p is constant and
¢ increases linearly. In this case the solution of (2) which tends to
zero for large z is given using Whittaker’s function

V=0RW(0) (23)
where
{=2fpl3,  rk=ppJ2fF, (24)
and
p=t+pz .

When £>1 and &£>f, the expression (23) becomes, disregarding the
constant factor, asymptotically®

Vg-ticos (kx—21/kg —n[4) . (25)

Meanwhile our caleculation goes on as follows:

s=F {pplpf* =1} = f (dsjc —1)

ps=pL(Axlc—-1)" ,

fsdz=(1/2) S:‘(z;u,/:_l)”fd:

= —(1/2)(4rC =€)+ Cos™* (¢/26—1) .
Putting these results into (9), we have
V=B (46t =) cos {x/4+(1/2)(4nC ~ )~ Cos™ (/26 —1)} .

We can easily verify that this expression approaches to (28) when £>>¢.

We can also observe that with these values equation (15) expresses
the asymptotic form of Whittaker’s function when k¥ and ¢ are large
and {/r=4%.

Y. Satdé newly calculated the greatest roots of dV/dc=0, according
to his formulation of reference 5). His result is shown in Table I and
Fig. 1 (dispersion curve).

In our method, we first reduce the expression of ¢, to the fol-
lowing form:

5) K. SEzZAWA, Bull. Earthq. Res. Inst., 9 (1931), 310.
Y. SaAT6, Bull. Earthq. Res. Inst., 33 (1952), 1.

6) A. ERDELYI, Higher Transcendental Functions, 1. (1953), pp. 279 and 281.
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Fig. 1. Ordinate; Phase velocity of surface waves.
Abscissa; Period of surface waves.

Unit of velocity is that of S-waves at the free surface.

Unit of length is the distance from the free surface to the depth where the
rigidity is twice that of the surface. Unit of time is determined by the ratio of
above two quantities. If we assume, say, the velocity of S-waves at the surface
to be 4.0 km/sec and the rate of change of rigidity adequately, the unit of time
becomes nearly 1 minute.

. . Table 1.
¢o=r(w—sin w) , [S] Sat6’s result
C=2I9(1 +cos a)) , (7720)20) [I1 First approximation

[II] Second approximation

£ ¢IS] ¢ ¢I11]
w—sin 0=0.87[k—e¢ , 1.5 | 3.00 297 2.97

with 2.5 6.45| 6.27| 6.35
B ] 5 3.5 | 100 | 9.73| 9.9
e=0.9/k {|2-d|dz(s)""}o 45 | 137 | 13.3 | 13.5
=0.9(4x*)"* cot w(1—cos w)™* . 55 | 17.4 | 16.9 | 17.2

. . 6.5 21.1 20.6 20.9
Neglecting the small quantity ¢ we can 75 | 249 | 244 | 247

solve this equation by help of the numeri- 85 | 288 | 28.1 | 285
cal table of trigonometric functions. The 9.5 | 32.5 | 31.8 | 32.2
second approximation is obtained by iter- 11,5 | 40.2 | 39.4 | 39.9
ation, on making use of the relation 13.5 | 47.8 | 47.1 | 47.6
16.5 59.3 58.5 59.1
19.5 71.1 70.1 70.8
=0.9(2¢)! cos w(l—cos w)~* . oo 4 e | 4k

Then the equation (22) is expressed as

8¢ = —2¢ sin w - dw=2x sin w(l—cos w)'+¢
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The last two columns of Table I contain the values of ¢ calculated in
this way.

Comparison with Saté’s accurate calculation shows that our method
gives satisfactory result and that even the first approximation is capable
of use.

3. Analysis of the dispersion curve

Now we proceed to solve the inverse problem—to analyse the dis-
persion curve obtained as the result of observation.

If the surface values of p, ¢ and their derivatives are known, and
the wave-length L is given as the function of v, from the dispersion
curve, equations (12) and (22) are expressed in the form of the integral
equation

eul F={ (walva)f —1y ede=I0ry) (26)
For instance, if we can neglect the last term of the right side of (22),
we have for n=0
I(vg)=(1. 11/8)L(2,) . A 27
We now set
(v(0)ve)=t ,
W(0)vs(R)y =7, (0<¢, +<1)

and write I(v,) merely as I(z), then the equation (26) is transformed
into the following integral equation of Abel’s type

28)

—[ (e=ayeyr@zana=r1e) (29)

whose solution is obtai;xed in the usual manner as
2(t)=— (2/::)(d/dz)gj {t|(t—)} " I(z)dr . (30)

Integrating the right side of (80) by parts, we get
() =2/ (=) i) (31)
We then reduce the variables to v, and v4(2) by (28) and have finally
R NCTOHCIOTNER IR T CATASN (32)

When the expression (27) is used, this formula is written as

() —(1. 11/4:)1;55?8 (0 Jo(T)P =1} 4T (33)
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with
T=L|v,, } (34)
vQ(Ts):vs .

3.1. It is difficult to determine - KM /sec

the surface values of the deri- not

vatives of p and p. They are L

zero when the earth’s crust % !
has actually homogeneous sur- ]
face layer. Moreover, Love- i
waves of short wave-length sl

being hardly observed, we as-
sume for the present that deri- ) o 26 30 76 To seC
vatives are all zero at the
surface. Then we may be al-
lowed to use the equation (33).

As an example of numerical
calculation, we took up one of
the dispersion curves of Love-
waves from the Assam earth-
quake of 1950 gained by Akima
(Fig. 2)”.

Using the values read from
his curve we performed the

Fig. 2. Dispersion curve gained by Akima.

1 - |
numerical integration of the 0 20 40 6o 80 foo KM
right side of the equation (33). Fig. 3. Full line indicates our result.
(Fig. 8 and Table II). Dotted line shows the structure

employed by Akima.
Table II.
T sec 1 0 L 10 \ 20 | 30 | 40 } 50
vs km/sec 1 3.40 1 3.51 | .76 , 3.94 } 4.04 ] 4.08
z km ' 0 1 19.9 \ 26.0 | 39.0 | 66.0 ‘ 94.0

The result seems to give us information about the structure of
the earth’s crust, at least in the sense inferred in the introduction.
In the next stage we should like to treat Rayleigh-waves.

7y T. AximA, Bull. Earthq. Res. Inst., 30 (1952), 237.
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Finally the author wishes to express his thanks to Mr. Y. Satd
who kindly took the labour of troublesome numerical calculation to be
compared with our result, and, still more, whose knowledge on surface
waves has been of great aid to the author.
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