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Summary

Inorder to examine the couplings between poloidal or toroidal magnetic
fields of different type, magneto-hydrodynami'c oscillations of a fluid sphere
under the influence of a uniform magnetic field are studied. A set of
simultaneous differential equations for the oscillation is obtained in a
general form which contains harmonic constituents of successive degrees.
Although the writer can not solve the equation rigorously, some features
of the coupling are qualitatively examined. A simple normal mode of the
free oscillation is also studied by taking into account only the S;° and Sy
type magnetic fields.~-

1. Introduction

The writer” has studied magneto-hydrodynamic oscillations in the
earth’s core. It seems likely -that the possible magneto-hydrodynamic
oscillations play an important role for the explanation of the secular
geomagnetic variations. In the previous study, only the S}-type
magnetic field was examined ignoring the mutual dependence of various
harmonic constituents. In order to study the problem in more detail,
however, we have to refine the theory by taking into account the
mutual dependence because the interaction between certain fluid
motions and magnetic.fields would cause many types of electric currents
which in turn give rise to many other types of magnetic field.
Therefore we have to study oscillations of every harmonic constituent
which is coupling with each other.

This sort of oscillations has also been a topic in astrophysics. M.
Schwarzschild® discussed, in an approximate way, the magneto-hydro-
dynamic oscillation of a highly conducting star in a uniform magnetic
field. His study was the first approach to the possible magneto-

1) T. RIKITAKE, Bull. Earthq. Res., Inst., 33 (1955), 1.
2) M. SCHWARZSCHILD, Ann. d’Astrophys., 12 (1949), 148.
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hydrodynamic oscillations in a celestial body. Though interesting, he
did not study the behaviour of a particular harmonic constituent.
Accordingly, his result can not be applied to the examination of the
mutual coupling of each harmonic constituent which is the main object
of the present paper. V. C. A. Ferraro® and his colleagues also
studied the oscillation of a magnetic star in which the steady magnetic
field is considered as due to a magnetic pole at the centre. In that
case, there was no coupling between harmonic constituents. The
oscillations of this kind seem to be related with the reversal of
magnetic field of magnetic variable stars though, as was pointed out
by T. G. Cowling®, no satisfactory explanation between the observed
reversal and oscillations has been made yet.

The writer is going to study magneto-hydrodynamic oscillations
of a liquid sphere in a uniform magnetic field as was studied by
Schwarzschild. But the boundary conditions are different from those
in his study because the writer would like to apply the result to the
earth’s core. As may be seen in the writer’s previous paper?, we
may presume that the steady magnetic field would be of the S?, 79,
T¥ and T% type provided we adopt the simple dynamo which would
maintain the earth’s permanent magnetic field. However, it is not
easy to take into account all of these magnetic fields because of
mathematical complexity. So we may here take into account only the
Si-type steady field for the purpose of examining the mutual coupling
of various harmonics. The steady fluid motions are also assumed to
be non-existing in the present model. Thus the problem becomes identical
to the magneto-hydrodynamic oscillations of a spherical liquid body
under the influence of an external uniform magnetic field. It is the
purpose of this paper to study the mutual coupling of each oscillation
in terms of poloidal and toroidal fields.

Starting from the fundamental equations for electromagnetism and
fluid motion, the writer obtains a differential equation for the pressure,
the velocity of the fluid motion being obtained from the solutions of
this equation. The magnetic field produced by the interaction between
the motion and the permanent magnetic field is also calculated. If we
take a typical type of the magnetic field, poloidal or toroidal, we can
construct an equation for the radial part of the magnetic field. The

3) V. C. A. FERRARO and D. J. MEMORY, M.N.R.A.S., 112 (1952), 361.
C. PLumpTON and V. C. A. FERRARO, M.N.R.A.S., 113 (1953), 647.
4) T. G. CowLING, M.N.R.A.S., 112 (1952), 527.
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general form of the equation suggests that the coupling occurs between
ﬁvevconstituen_ts of successive degrees. It is also shown that we have
the coupling between fields of poloidal and toroidal types in general

 cases.

A more detailed study is made for magnetic fields of zonal distribu-
tion. In that case, there is no coupling between poloidal and toroidal
fields. It is also shown that there is no coupling between constituents
of odd degree and those of even degree. Although the writer can not
solve the coupling equation quite rigorously, a normal mode of the
oscillation is approximately obtained by taking into account only the
S¢ and S? type magnetic fields.

2. Fundamental equations

As we assume that there are no fluid motion and no electric
current at the equilibrium state, the fundamental equations can be
written as

i=o(e+v\H,) , (1)
curl e=—2h/3t , (2)
curl i=4m - (3)
p85/8t=ZAI§O—grad P, | (4)

where f, Z, E, I—Z,, s, p, p and v denote respectively the electric current
density, electric field, magnetic field, steady magnetic field applied from
outside, electrical conductivity, density, pressure and velocity. It is
also assumed (1) that the magnetic permeability is unity, (2) that
there is no non-electromagnetic force that depends on time and (3) that
the inertia term of fluid motion can be neglected. The fluid is also
assumed to be incompressible, so that we have the following relation ;

divo=0. (5)

By taking curl of (1) and eliminating ¢ with the aid of (2), we
obtain

curl i=o{ — Dh+ curl (0 AH,)} (8)
where we write D in place of 3/ot. ‘On the other hand we have from

3)

4z curl i=curl curl = -- rﬁl? . : (7)
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From (6) and (7), we obtain

{D—(4mo) 'p* h=curl WAH,) . (8) |
We also have from (4)
pDv=(47)"(curl LAH,) —grad » . (9) |
If we make div of (9), we obtain .
7*p=—(4=)(curl % curl H,— H, curl curl l?) .
As’ ﬁo is applied from outside, we have the relation .
curl H,=0 . (10)
Therefore the above -expression becomes |
Pp=—(4=)"(Hy%) . (11)

3. Poloidal magnetic field
In general, % can be expressed as

72: Z hgln T Z ]-?::]:n (12)

n,m nym

where 75?},, is of the poloidal type, the », § and ¢ components in the
spherical coordinate being written as

—a(n+1)sp()rtYy,

R .dsy m | n-10Y
i, { [P+ 2 s
[ dS;;l _!_(".j_l)snz] N1 ‘alf;;l ,
dr sin §2¢
and h"‘ is of the toroidal type which is written as
0 )
Y™
,_,"l t?)l 7 il n
hin= ) sin 62¢ ’ (14)
m o7 aYﬂ
tﬂ( ) ’
where
Yi=Py(cos 6) o> me . (15) ~

In the first place, we shall take a poloidal field and calculate p, '5,
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5/\1‘2, and curl (?)/\fio).
From (13), we obtain

0,
d?sm ds® ] ., oYr
_,m n 2 +1 n 1 'n ,
curl 7, — [ e 2D sin 6a¢ (16)
d sm ] aYm
—n 4 2 -1 ,
|G &
and
( —n(n+ 1)[@+M%]W“Yﬁ ,
dr? T dr .
- dis™ dsn 2n(n+1)ds™ :l o OY
Shmo +3 +1 7 Y 17
rh |: dr? ( ) 7 dr ad ()
d’s™ ds’” 2n(n+1)ds ],,_1 oYn»
+3 +1 R — .
I: dr’ ( ) 7 dr " sin 03¢

If we assume that the external field is uniform and- parallel to
the #=0 axis, H, is given as

[' Heos 6 ,
H,— 1;—H’sin0 S (18)
0

From (17) and (18), we obtain

+1) dsy

ﬁ0°1727a7§fn— [ n(n+1){ sn_{2(n
dr® 7 ar

}Ym cos §

d? s’” 2n(n+ 1) dsy } BY,’,"SIn 0j|
7 dr

dsn
+{ a8+

Taking into account the following recurrence formulae for Neumann’s
spherical surface harmonies '

cos 0Pr—_ 1 AO=mE VP + (4 mPRY
sing ‘fZ’; (4 é%“ (n(n—m+1)Ply—(n+1)(n+m)Pr}

the above expression can be written as follows ;
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= 2 Hy"-? d’s

Hy-p*hin=— [ - ‘1( @S0 on+1
o 7R o1 n(n--m+ )7d (n )

d? s;;‘ _2(n+1) ds’")Y,,,
g d’) n+l1
—-(n+1)(9z+m)( s 4—(47z+3) S +4"("+1)Ad§m)yzy ]
7 r
(19)
Putting (19) into (11), we obtain a differential equation for the pressure
which can be written as

Fo=fraYia+fa Y0, ' (20)
“where
__4 . _Hn(n—)n 1) RIp. ( dSS" 2 1 ds, 2(”+1) dSm :
Tfr= ont1 d*+(+) . d7) f

4-{ﬂz 1—'H(n—1-1)(n+nl) o= 1< dsn +(4?Z 3)dsn +4n(fn+1)dsm) /\

2n+1 dr ” dr
(21)
The solution of (20) can be given as v
D= q;"+1Y7’z"+1+Qn Yoo (22)

where ¢7,, and ¢7., are respectlvely the solutions of the following
differential equations :

1 d( ;;!“)_(n+1)(91—i~2)q;g“=fn+1 , l

r dr ar 7 | 23
il._. _,_(_i_ 0327;?'1 (n - l)n m —
,,.25 d,’. (7 d‘)' ) P qn-1 n—1 ¢ !

It is easily seen that the solutions of (23) which remain finite at
r=0 are given as

r r
q;;1+1=a-(n+l),’.n+1kzz+l+2_1;*__ 3(?.’”’5 ,).-7iﬁz+1d,'._,'.-n-2g ,).7z+:ifn+1d,r) , ?
n 0 0

(24)
L (e [rrspitrmr ) J

— = (=1pm=17n
@i1=a =+
* 2n—1

where k2., and ™., are constants which are to be determined later.
Putting (21) into (24), we obtain, after some calculations, the
following expressions :
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n(n—m+ 1) q»ndﬁ

4ﬂqm _a-(n+1),rn+1a
2n+1 dr

(25)

drql j=q~-Dp-1m 4 Hw {r”@+ 2n+ l)r""sﬁ} ,
2n+1 dr

where
aya=4nky., , Biti=4nly_,

These constants are to be determined by the boundary conditions.
Thus the solution for the pressure is given by (22) together with
(23).
Now we are in a position to calculate the velocity according to (9).
From (16) and (18), we have '

d’s Y’"
—on 1 2(n+1 J -l 0
H[rd +2(n ) sin Y
o not o Y
curl 23, N\NHy= - —H[chisz +2(n+1)dsn ]T cos 0 20 ’ (26)
ds Yy
— %42 1 ] r*1 cos @ m_.,
H[ ot (n+ ) € sinfa¢

We also-calculate grad » from (22) and (28). Putting (26) and gradp
thus obtained into (9), the velocity can be calculated. Taking into
consideration (5), we see that the velocity can be expressed as a sum
of poloidal and toroidal velocity fields, this expression being thought
to be convenient. After some lengthy calculations using the recurrence
formulae of spherical surface harmonics, we arrive at

T— B+ Dt Dy 27
in which
—(n+1)(n+2)A3 0" Y3
dmpDie [ d‘jl"“ +(n+2)An+1:| aag“ ,
v ]
A;"+‘1=a—(n+l)azl” H n(n—m-+1) fr"M ’ 28)

n4-2"7 T (2rn+1)(n+1) dr
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—(m=1mByp_ " Y, ,
[ dB' L1 -LnB,’;l 1] JE-2 a ;zn 1 s
dr ¢

4zpDv,= i
[ dB;;I 1 _L ZB;;! 1] 71—:7'aY1'!n-71_ s
dr sinfo¢
m —r-n .’m 1)(71 + 771)
By, =" gt { Y r@ntl)srl, (29
o n * Cn+1)n dr ( ) } (29)
0,
_ g 3T
tmpDi— | sindeg
Cm,’.na_ﬁl
n 80 b
H {ds _Ids,z}
Cr=— ® o 2(n+1 , 30
n(n+1) (et D dr A( )
where
Yp=2Y7/eg . (31)

So it becomes clear that we have two types of poloidal velocity (S5 and
S»:%) and one toroidal velocity (77 type) through the interaction

between fio and 75;’3;,”. ¢ and s, which are attached to the shoulders of
the symbols here, denote respectively that those velocities or magnetic

fiields contain cosm¢ or sinm¢. When we take 75;’{;5 instead of EQ:;ﬁ,
we get velocities of the S, S5 and T types.
Since we have obtained the velocities, the next step is to calculate

curl (5/\]?[0). Applying the recurrence formulae as before, we obtain

—(n+2)n+3)Er Y 0.,

N . { I: dE; !+" + (72 4 3)Em ] Sl aY;ln+2 s
4zpD curl(v, \H,)= ° dr 20
dE?”,, ] Loy,
n+2 + 'X'3 E'yln*.q o7+ '7&
[ dr (n+3) sinf2¢

E:LZ=H(n + 1)(n~m+2) ,r-din+1
(2n+8)(n+2) dr
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—n(n+1)FptY oy
[+t Fy |2
.
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N 20
[ ey o S
. - sin 69¢
Fre= H(n+2)(n+’m+1) dAn+1+ 2 +3 An+}
@n+3)(n+1) { @A,
0
— G D
+ sinfo¢
GZL.H,rn-»layr:;L-fl
20
n H EA,,
mo=— T 3Tl P(n4-2 "*‘} , (32
(n+1)(n+2){ g PR DrI=aEy, (32)

{ —n(n+1)Hyr" 'Yy

dH" : Y™
| 0y 1 H;;t] n-19Ln
[7 ar +(n+1) i 20

de } aYm
— n 1 H;bn n—l‘_:___ﬂw
1 [r dr +nt DE sinf23¢

4zpD curl (v, \H,)=

o gn—=Dn=m) _dB.,
2n—1)n dr

r(n 2)(n— DI Y7

ar aY’"
n=2 4 (n—1)I0, ] n-3Z o nod
(g =D

sinf2¢

+

—[r_dm—ﬁ +(n—1)I;?_{|r
dr

v _ gy mn+m—1) ( dBy, w ]
= H(Zn 1)(n—1){ dr +(@n—1) ]5'

0
_ J;n_l,rn-l aY;zn—l .
sin'§o¢

J,)zn l,rn-l a zbn—l
Gl

-+
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H d_Bm dBm
']1,1” -"‘-f777~~-{ n-1 S+ 2 ge=1%Dn1 , 33
(= @ R } (33)
=n(n+ 1KYy
R N ; l: dI{”’ +(7l-l—1)K,'ln:| JN=1 a}’;{f
4zpD curl(v; \H,)= )l 20
d]{ ] aY‘m
n 1 I{;zl =1 ._lz‘
‘ [ HOD) sin §9¢
m__ __ H???v" O
! n(n+1) "
’ 0
— Ly 2Xae
+ - sin #2¢

|

i

) L;;z* 1 rvz +1 a,}:"gtl
a0

L“__H(n -1)(n—m+41)( _,dCy 2 C,’;‘
' 2n+1 { dr g T }

0

_ﬁl’m JL—1 aYr'znl
h sin 02¢

|

i

i

1

’ Afm 17.71 -1 a Ytlz"—l
n-—

i af

MI,I” H(n+2)(n+7n) n Cm . 4
Zn+1 { o Tt } (34)

Therefore the interaction between the fluid motions and H induces
the electric currents which give rise to the magnetic fields of the
Syes, Spee, Swoe, Twes and T types for the first case which corresponds
to &me. If we take 7, the final magnetic fields become of the S3,
Sivs, Sps, T and T types.

On the other hand, putting hs . In place of 7&, the left-hand side
of (8) becomes
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—n(n+ LYy,
— [r————d;:? +(n+ l)r;”]r"‘l oYy R

(D~ (4ro) 7"} o= " S0
dTm ] Ym
n _+_ n + 1 n n-1_ Y4n
|: ( i sin eaqs
i Dl — (47:0)'1{&8;7'-{— 2(n+1)r-1.98 } . (35)
drt dr

4, Toroidal magnetic field

A similar calculation will be made for the toroidal magnetic field
%, which is given in (14). From (14), we have

{ —n(n+ Y
dty aYy
+ n+1 tm] -1 n ,
aie R

curl o= | (36)
| 1 ~[r +(n+1)t"‘] w2V
L sin 08¢
anél o
0, ,
- \ |:d = +2(n+1)r’1dtm]r‘ oYy
PRl= dr* dr sin 62¢ (87)
[ea +2(n+1)r-1dtz”] LA
Corresponding to (19), it becomes
Hypht=H [‘f;f —l‘ziﬂwi’:r : (38)
The differential equation for the pressure is given as
rr=0,Y , | (39)
where o '
. —4ngn=H(%%+2(n+1)r-l%%)rn : (40)

The solution of (39) can .be given as
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P=q.Y7 (41)

where ¢ satisfies the following differential equation
1 df( m ) 72(72‘*‘ 1) m__ ¢ 42
o\ g )T = (42)

(42) can be solved as

5}7=a"’7-’%2‘+» 1 (7"’S 7"‘”“”gndr—7"”“g 'r""”g,ldr) (43)
2n+1 0 0

which is written as
V drqi=a-"r"a — Hy g . (44)
where
ay=A4zky .
~ After calculating grad » and curl A2, /\1’-70, we obtain the velocities
as before. They are given as :

V=0, + 0.+ s (45)

in which
[ —n(r+1)Apr-Yy,
| _

N J —[7'@—415+(n+1)Z§;’]r”"—aY" ,
dzpDv,= dr 26

dAm aifm
7 1 Am /I | n R
! [ dr D) sin §3¢

pp_re, H g (46)
n+1 71(1z+1)

- 0,

_Bm ne1 O ,
- n+
47zpDv,= sin 2¢
Bm ’n+la ;;I-l-l
n+1
a0

b

B g n(n—m+1) r_ldt,';{

n+17 T A~ A B4 47
(n+1)2n+1)  dr (47

_a
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0' ’
_C_m g1 aY:zn—l

4npD53= " sin6og
677?_1,’.17. 1aY177t:1 R
- o0
C_ZL__ =HMM dtm pat IR 272-!—1 tzm} . 48
' n(2n +1) ! a e (15)

Thus we have got the velocities of the S, T/ and T™¢ types

for k:";f and of the S™¢, T™}% and T types for h;’j,f respectively.
We also obtain

—(n+1)(n+2)Dy, "V,

. . |:an+1 +(n+2) n+1] a 771n+1
4zpD curl(v, \H,)= dr
Dy, ] aic;:l
— n+ 2)Dr,
[Ir dr +(n+ 29D sin §0¢
Sn _ g Mn—m+1) ,r_ld;lZ;L
T+ (n+1)  dr
—(n~1)n Em -2 ~:;n-1
[,r.(z_E:il + E:zn 1} = 28YTT—1_
+ dr o0
d n -1 ] -2 aY_gl_l_
[ dr +BL | sin 03¢
0
) £
+ * sin 02¢
va(rn aYzz
"o
= m: (AT dA™T
ﬂl= 7 1 —1 49
Fy, Hn(n-{—l){ +2(n+T)r o } (49)
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} -(n+1)(n+2)Gn+17 nl+1

[ d(;ii'n +(n+2)Gn, :I 20Y 74

4zpD curl(?, /\ﬁ0)= o6

d m . :I a m 1
— n+ + +2 G;;x* n+
l [ dr (2 +2)Gn sin 6o¢

Im H nmn
n+1 = _(71+1)(7Z+2) n+l

sin #o¢
m IR 4 ayg;ﬁ

n+2 27"

l i PR (Y
L | R

|

!

o0
H]rln*"__ 73(91—7'1+2)j -1 n+l 3 —zBm ]
i 2n+3 ! dr o+ "y
0
oYy

-
j ___Izzlrnr _ .
K sin §5¢
Fn oo OY;?

R e

r Gldj

gt ) (0B g |
2n+3 ar TOEOB

—(n— l)nJ,’," PEY

n— I_Ln 171"—1 :

M e
4zpD curl(v, \H,)= dr o0

_l:? 7’171 -1 J‘?ZJ,’?_] o2 aYrT 1
L dr sin 02¢

(50)
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K H(n 2)(”’ m){ —1 n -1 1 -2 m } .

R e 7 i (n+ Y
0

E’m ,r'n-‘z _a]‘@n:{

sin 09¢

e — gt Dt m=1) (+C dCy. S 0 G
2n—1

In this case, the induced electric currents produce magnetic fields
of the S5, Sy, Thwus, T and Th»% types when we take h"” We also

have Suys, Sis, Tis, Tt and T types for Ay
The left-hand side of (8) becomes

0,
{ _ymgn OY
{D—(4na) Y= Sin0%
Fe 02
20
7i=Dtp — (4m0)"" { » +2(n+1)w—1‘f;f}. ' (52)

5. The differential equations for the radial parts

The results in the sections 4 and 5 can be summarized as shown
in Table I.

Now we go back to the general case (12). Putting the relations
from (32) to (85) and those from (49) to (562) into (8) and equating the
coefficients of the corresponding surface harmonics, we obtain the fol-
lowing relations for respective types of the magnetic field;

oDy =B +m (D + Gi®) + e+ Hyro -+ Koo+ mf B+ Jpe) + I
dnpDy =Ep* —m(Dp* + G + Firs + Hi* + K —m(Ems + oty + I
dnpDyye=H* + m(Ge + L) + Fre 4 Tioe - Ko 4 m(J e + M)+ Lie
drpDyys=Hy —m(Gt + L) + Fot + Tt o+ Ko —m( T + M?) + L

: (53)
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Table I.

Magnetic field. Velocity ‘Magnetic field caused by

the induced currents

(Interaction with Hy) (Interaction with Hy)

M, C
SIZ ’

My s
n -

nsC
n

|
M e .
T On
i
SN o M50
T — s
0,8
n-1
. M,ye
n
Tm,s i gy
n i n+1
2
n-1
™,S
;_Sn+z
; M58
—gms T 11— 8y
n+1. :
e
n+1
: ) MyS
i n
My 8 — QTS
e n-1 T *’*7i Sple
[ e
n-1
S
\ n
0,0 [
—1n i Tn+1
| MsC -
n-1
L QMss
; n+1 :
Snns »__ my$ d
n ! n-1
i M C
n
__Smm
] n+1
—pe ' e

Sm »C
i n+2

i M, C
e =8,

M, S
n+1

n+l n+2

My C
n

M,y S
n-1

_Tm,c e
n-1 n

_Tm,c

n-2

(to be continued.)
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(continued.)

M C
—Sn41

— g Sk
S

Ty
me
—Sn+1
2,8 . s

m,s 4

' T”"‘l Trn+2
__vas

n

s

m,c
Sri1

M, S My S

-1 T’

s
Tn’2

These equations can be regarded as the simultaneous differential
equations for s¥°, s, #¢ and ¢™°. It should be noticed that five terms
having respectively n+2, n+1, n, n—1 and n—2 as their degrees come
out at the same time. Therefore those terms are coupling each other.
This feature is quite different from electromagnetic, elastic or hydro-
dynamic oscillation problems of a spherical body. If we can solve (53)
somehow, we would be able to make clear the magneto-hydrodynamic
oscillation problem. But it seems quite difficult to solve the general
case as given by (53) because of mathematical complexity.

6. Zonal harmonic oscillations

Taking the simplest case, the writer would here like to study only
the zonal oscillations because we have, as can be seen in (53), no
coupling between zonal and tesseral harmonic constituents.

In that case, (563) becomes

dnpDyy=E,+F,+ H,+1, , } (54)

47TPD-7T7.1=E7; +Tn+Kn +Zn ’
from which we find out that there is no coupling between poloidal and
toroidal modes.. As the toroidal field does not appear outside the sphere,
we are in the main interested in the poloidal field. Putting the relations
given by (32), (33), (34) and (35) into (54) and taking into account the
relations (28), (29) and (30), the first equation of (54) can be written as

4npDH-2[Dsn—(4m)—1{ﬁn..+3("_+ﬁisﬂ}]
_ dr* r dr
_ (n=1)(n—=2) [ d’syp , dSy-2\ .
—(2n—1)(2n~-3)<7 o ar >'
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1 (n(n+2) (n 1)(n+ 1)>(dgs,z 2(n+1)ds, )
2n+1\ 2n+3 2n—1 dr? r dr

(n42)(2+3) (e 0, 7 JJ,.,” .
+(2n+3)(zn+5)(’ ge Hen+r (2n+5)s,.2)

+Ha "+ Fuan) (59)

(65) suggests that the coupling occurs between constituents of
even or odd degrees, no coupling being possible between constitutents
of even degrees and those of odd ones.

As (55) is true for any n, we have to solve the simultaneous
differential equations of infinite numbers with infinite unknowns.

It seems to be almost impossible to obtain rigorous solutions of (55).
So the writer would here like to obtain the solutions for the S} and S
type magnetic fields in an approximate way neglecting the S%, S, ««--
type fields. From (55), we have

K-sl__(%.}_zir“@l) 12(d 83 + 5t d —5r- 33>+a —H—l(a +‘H ) ’
r

dr* dr 35\dy”® dr

(56)

d*s ds d*s. ds. - )

K33 »_‘(_1 —1 1) #‘<___d 4p-12°8 __10p-2 )+ —tf-1 . 1,

=is\ae T ) Fis\ge T, T0T ) ra H @k A
(87)

where
K*=d4zpD'H*, S;=1"8;

in which ¢ is taken to be infinity for the sake of simplicity. If we
take a rigid boundary at r=a, «., 3., a, and j, are determined by (28)
and (29) as

ds N

210, = — -1(_1 ,

¢ R @ d?‘ )r a
_ 15 ds _15 ds,
a—4H-l — sV -1 3 —_ 29 -3 2 =1 ,
= 7 ¢ (d7 ) 7 “ (do' 4 ss>r=a (58)

—27y-10Q 14 d83 — ( _1d33 —23

a*HB, 7 ( d +733)r=a 7 r 0 + 51 83)T=a ,
/34=O ’

because v,=0 at r=a.
As was done in the writer’s previous paper, (56) and (57) may be
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approximately solved by putting

4
si—= 3 a(rla) }

$=0

! (59)
8= 3. b(rla) , J
8=0

in which the terms with powers higher than 4 are ignored. Putting
(59) into (56) and (57), we obtain the following relations:

4 4 4
kS as('r/a)sz_;;a‘z S s(s—1)a,(r/a)" - +%a'2 " sa(rfa)’-?
$=0 §=2 s=1
+ %ga‘z 24‘4 s(s—1)by(r/a)*—* + 1—2a" S sb,(rfa)'~* = },?a'z S b(rja)’*
s§=2 s=1 §=0

—a- ﬁ;sas—7a-~ > b, —_a—— b, (60)

§=0

K‘Zb(r/a)s '223(3 Da(rfa)* >+ ga‘ZZsas(r a)’-?

+1007 S s(s=Dbrfa)' =+ 2 S b /a)”—lgé“‘z 3 brfa)’

—a" Z sbs(r/a) -|— a? Z b(rlay . (61)

Equating the coefficients of the corresponding terms of the two
sides of (60) and (61), we obtain the relations between a,, a., ., a;, a,,
by, by, by, bs and b,, the relations being simplified as follows:

a]=a3=b1=b3=0 y

@ K?ay=— da,— 90y, — 485, 108,
5 7

a*K*a, 28 4—{—324b _

5 35 (62)
a2K2b0=1§5az ,

32 30 144

2K2b)—— ~b ==7b, .
R AT A

7

However, it is easily seen from (29) and (30) that we should make
b,=0 in order to have finite velocities at »=0. As can be obtained
from (62), this eondition also gives a,=0.
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Further, the solutions must satisfy the boundary condition that
the magnetic field is continuous at »=a. The magnetic field outside
the sphere is generally given as

( (n+1)(»fa)"-*h, P, ,
dPn

7_____ ) (e -n-2} el 63
y (r/a) /) 57 (63)
0.

The continuity at r=a gives

- 7Z(§71)r=a =hn

ds, , 1 ds, | o
as, i ”) =(.-;k"_+2 ”) =h,
(?d'-HH_ Su) 7d" Sl

by =a 7
where
8,=1""'s, .

]

Eliminating h., we obtain

(o@si tnt? 5,,) ~0. (64)
dr r

=a

For the present case, (64) can be written as
2 1=0 ’
3a,+5a.+Ta } 65)

5b,4+Tb.+90,=0 .

In order to have non-vanishing solutions for a,, a,, b, and b, which
satisfy the equations (62) and (65), we obtain

3 7 0 0
0 0 7 9
g 4 48 108 | =0, (66)
5 7
0 _%2 arK:? _],'ﬁ
15 35

the condition b,—a,=0 being taken into account here. (66) is the
equation from which we can determine the period of the oscillation
considered here. The stable oscillation is specified by one of the roots
of (66) which is calculated as

(aK):=—-2.70 . ~(87)
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The other roots do not give oscillatory motions. As K*=4rnpl*H-?, by
2r

taking into account the relation D2=—( 7

)‘L for periodic cases, the

period of the oscillation 7' becomes
T=2.4r"p P H* . , (68)

Thus we have got an oscillating magnetic field with a period given
by (68). The mode of the oscillation is a superposition of the S} and
SY type fields. Outside the sphere, the magnetic field has a potential
composed of the two spherical harmonic constituents, (r/a)~*P, and
(r/a)-*P;, the proportion of both constituents being obtained by deter-
mining the -coefficients a, b,, -+ from the simultaneous equations in
(62).

If we ignore all the couplings between each constituent and pick up
only the S} type magnetic field, the characteristic equation becomes

3 5 7
@K 0 4 | =0 (69)
0 ak: 28
, 5
which gives
@Ky =~ (70)

for the osecillating case. Hence, the period is given as
Ty=2.67"p Pq H . (71)

Comparing (68) with (71), it is seen that the period of the oscil-
lating magnetic field becomes a bit shorter by the coupling between
the two spherical harmonic constituents. In any case, the period is
proportional to the radius of the sphere, the square root of the density
and the inverse of the intensity of the external magnetic field. Suppose
we take a sphere, the density of which is assumed to be 10 g/em?, the
radius 10 cem, and the applied magnetic field 10 gauss, the period is
found to be 42sec. from (68). However, an experiment for such a small
sphere would be almost impossible because of low conductivity of fluid
even if we use mercury. ‘

Although the writer can not obtain rigorous solutions because of
the mathematical complexity, the general differential equation as given
in (55) seems to be useful for studying the couplings between the




196 T. RIKITAKE. TVol. XXXIII,

spherical harmonic constituents of the magnetic field. An approximate
solution for the magnetic fields composed of the S? and S! type ones
tells us that the period of the oscillation is estimated at about 90 per
ceni of that for the S} field when we ignore the coupling of the two
fields. But it is not clear how far the period will be affected when
we take into account the couplings with the other higher harmonics.

The relative magnitudes of the coefficients a,, a,, b, and b, can be
obtained from (62) into which the eigen-value of aK obtained in (67)
should be put. We obtain

a;,= —0.428(10 y bg= - 1-8300 y b;=1.43a3 .

With these coefficients, the magnetic fields can be calculated as
follows :

— {2.00—0.856(r/a)'} a.P, (22.0—17.2(r/a)?} (r/a)acP;
h— l (2.00—2.57 (r/a)'} a, d’; L+ | (7.32—8.52(r/a)} (rfa)a, ‘“; :
0 0 for »<a.,
—1.14(r/a)~a,P, © 4.80(r/a)~aP;
J{ 0572(r/a)-uao%f : + 1—1.20(9-/4)—%,0‘?; :
0 for r>a.

We can also obtain the velocity. From (28), (29) and (30), it is
found that

A,=0.571{1—(r|ay}Ha"*a,, B.=A,=0,
so that the velocity is of the S? type and it is given as .
[ —38.43{1—(r/a)’} (r/a)P,
4=pDH-\ap— , — {1.71—2.86(r/a)’} (+/a) 421:;7
N 0.

The distribution of the magnetic field and the velocity are respec-
tively shown in Figs. 1 and 2.
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7. Conclusion

For the purpose of examination of
the mutual coupling between spherical
harmonic constituents of different de-
grees, the general theory of the magneto-
hydrodynamic oscillation of a liquid
sphere is developed in this paper. The
general differential equation is obtained
as shown in (53) from which we can

. deduce some useful results concerning - = =

the coupling. It is made clear that Fig. 2. The distribution of the velocity
there are couplings between poloidal  ©f the oscillatory motion.

and toroidal magnetic fields except for the case of zonal oscillations.
As is closely examined in the case of zonal oscillation, it is no easy
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matter to determine the free oscillations because we have to solve a
system of simultaneous differential equations of an infinite number
with unknowns of an infinite number. In order to make the problem
tractable, only the coupling between S¢ and S! type fields is studied and
the other constituents are ignored. An approximate normal mode is
obtained by expanding the solution in terms of a power series of the
radial distance. But the oscillation mode thus obtained does not seem
to be accurate.

The magneto-hydrodynamic oscillations of a liquid sphere are quite
different from the electromagnetic, hydrodynamic or elastic oscillations
which have hitherto been examined. In those oscillations, normal modes
are usually obtained as spherical harmonics. However, the normal
modes for the magneto-hydrodynamic oscillation are given as certain
combinations of every spherical harmonic. If we assume that the
geomagnetic secular variation is caused by the magneto-hydrodynamic
effect in the earth’s core, we may expect complicated magnetic fields
which contain many harmonics.

Although the writer can obtain the general equation, which governs
the magneto-hydrodynamic oscillations of a fluid sphere under the in-
fluence of a uniform permanent magnetic field and consequently some
qualitative results, it turns out that the equation is not adequate for
studying the normal modes of the oscillation because it contains un-
knowns of an infinite number. In order to study the free or forced
oscillations, it is desirable to develop a new method which would be
quite different from usual treatment with spherical harmonics. But it
is not certain whether we can construct such a method or not.
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