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Summary

Possibilities of magneto-hydrodynamic oscillations in the earth’s core
are discussed in relation to the stability of Elsasser-Bullard-Takeuchi’s
dynamo. If there are stable magnetic fields which are caused by the
dynamo-action in the earth’s core, there will be oscillations of magnetic
field and fluid motion around the steady state. This sort of oscillation
is here studied under some simplifications. Although the study is rather
crude, it is tentatively concluded that the toroidal magnetic field is not
so large, otherwise the small oscillations of dynamo would not be stable.
Since the fundamental equations for magnetic changes in the earth’s
core are obtained, we may forecast the magnitude of magnetic field of
certain type, say S,’-type, starting from suitable initial conditions. This
is done in this paper on the basis of the spherical harmonic analyses
for various epochs. Although no definite result is obtained because the
observation period of the earth’s magnetism seems too short for close
comparison between the observation and theory, the conclusion concern-
ing the internal magnetic field is compatible with that obtained in the
stability problem. ,

The effect of the earth’s rotation as well as that of the mutual
dependence of various spherical harmonics are ignored throughout this
study. That sort of study will be carried out later on.

1. Introduction

W. M. Elsasser”. E. C. Bullard®, H. Takeuchi® and Y. Shimazu®
have shown that the origin of the earth’s main magnetic field seems
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to be explained by the self-exciting dynamo in the earth’s core though
further laborious works would be necessary in order to complete the
theory. As far as the convection currents, magnetic fields and electric
currents which are expressed by low degree spherical harmonics are
concerned, however, it is likely that there will be a solution for the
eigen-value problem which proves the existence of a self-exciting
process. If this is to be taken for granted, we have steady motions which
excite steady electric currents and consequently steady magnetic fields.

Since the earth’s main magnetic field seems to be maintained over
long periods, the dynamo must be fairly stable. Palaeomagnetic studies®
suggest that the earth’s magnetic field might have been reversed quite
a long time ago, say 10°—10° years. But there is no evidence that the
reversal of the earth’s magnetic field occurred after this epoch. So the
dynamo must have been maintained during this order of years. It is
believed that the study on the stability is aiso quite important to
establish the dynamo-theory in the core. Bullard® studied the oscilla-
tion of a homopolar disc dynamo as the first step to this problem.
Although the disc dynamo is quite different from the dynamo in the
earth’s core, his study is important and interesting for the stability
problem. The writer would here like to make another approach to the
stability problem which is approximately applicable to the real earth.

Now let us consider an equilibrium of convection currents, magnetic
fields and electric currents. We shall introduce small deviations of these
quantities from their steady values. The behaviour of these small
quantities will be studied here. If they remain small enough for a
long time, the small oscillation of the dynamo may be regarded as
stable. If they increase indefinitely, it will not be stable.

The writer takes the so-called ‘¢ A-
@ @ approximation ”’ as the simplest model of
the steady state. As shown in Fig. 1, it

i ' contains magnetic fields of S}, 7%, T% and
X ' T2 type and velocities of 77 and S¥ type.
* t The fundamental equations for small devia-
0 o\ tions are constructed in Section 2. In
S’l T2 order to solve these equations, only small

; - deviation of the magnetic field of S} type
Fig. 1. The ¢ A-approxima- ., . A . !
tion”" of the self-exciting dynamo. 1S taken into account ignoring all magnetic
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fields of other types which will come out during the course of magneto-
hydrodynamic interactions. Thus as shown in Section 8, we can solve
the pressure equation which is deduced from the fundamental equations.
Then the velocity is calculated in Section 4, getting 7%, T3, S?, S¥, S¥,
T¢, and T motions. The couplings between these motions and the
steady magnetic fields will give many types of magnetic field. But we
pick up the couplings which give only the S%type magnetic field. So
we can have an integro-differential equation for small deviation of
Si-type magnetic field as given in Section 5. In Section 6, this equation
is solved assuming suitable distributions of the steady fields. Thus the
periods of free magneto-hydrodynamic oscillations are approximately
obtained. The above-stated procedure is similar to the studies of
magnetic oscillations of highly conducting stars®”® though there are
some differences between both studies.

It is found out that the amplitude of the above-considered small
deviations will increase tremendously unless the intensities of the steady
magnetic fields satisfy certain conditions. In other words, this is a
sort of stability condition from which we presume that the 7% and
T7 magnetic fields would not be larger than the steady part of the S?
field as will be discussed in Section 7. In that case the period of free
oscillation of S} field will be of the order of scores or hundreds of
years. However, as was suggested by Bullard®, the effect of Corioli’s
force due to the earth’s rotation would be fairly large. If we take
into account this effect, it is quite probable that the stability condition
would become fairly modified. Strictly speaking, the error due to the
present procedure in which we pick up only the S%type magnetic field
is not clear though the effect of neglecting higher degree terms is
thought to be not so serious from physical considerations. However,
these points remain to be made clearer.

The integro-differential equation (45) which is obtained in Section 5
can be regarded as the fundamental equation which governs the small
oscillations of the Sy field superposed on the steady one. If we start
from suitable initial conditions, we may forecast the behaviour of
geomagnetic change which is thought to correspond to the secular
variation. With the aid of the various spherical harmonic analyses we
choose the initial condition at 1900. Then a forecasting is made in
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Section 8 and is also compared with the observed course of the secular
change in the S’-field. Since the observation does not cover a period
sufficient for getting a definite result from the comparison between the
forecasting and the observation, we failed to obtain any conclusive
result. But the assumption that the toroidal field is not so large in
the core as is discussed in Section 7 seems to hold good here also,
otherwise the forecast curves would have become quite different from
the observed one.

2. Fundamental equations

Assuming that the magnetic permeability is unity, the fundamental
equations are given as

I=o(E+VNH) , (1)
curl E=—aH/at , (2)
curl H=4xTI, (3)
pd V|dt=INH—grad P+G , (4)

where f, If, ﬁ, o, P, 17, P and G denote respectively the electric
current density, electric field, magnetic field, electrical conductivity,
density, velocity, pressure and non-electromagnetic force. We will
write as

— - -

I=I,+i, E=E,+e, H=H,+F, }
ﬁ=ﬁu+5, P=Pu+p,

in which the quantities with suffix o are not dependent on time, while

those denoted with small letters are regarded as first order small

quantities. Introducing (5) into the fundamental equations and ignoring
the second order quantities, we have

(3)

_?0=0(E0+ T/()/\Elo) y [ gzd(g‘l‘ 'l—;/\gu"' Vo/\};) y (6 )

(1) curl E'j—_—O ' (IT) curl e= —-ih/at , (7)
curl Hy=4=l, , curl 2=4n , (8)
I,\H,—grad P,+G=0, pov[ot =i NH,+ I,/ \h—grad p .

(9)

It is assumed here that the liquid is incompressible. So the
relation

divo=0 (10)
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is taken into account in obtaining the equation (6).

The first system of equations (I) is precisely the one from which
the self-exciting dynamo in the earth’s core might be deduced. It has
been shown by Bullard, Takeuchi and others that the solution of (I)
would be so complicated that one can hardly solve it completely. But
it is likely that the main feature of a self-exciting dynamo will be
given with certain magnetic fields and velocity fielas which may be
expressed by spherical harmonics of low degree. Therefore the writer
assumes that the solution of (I) is given by the ‘“ A-approximation” as
was called by Takeuchi and Shimazu. The solution contains the 77 and
S¥ types of velocity and magnetic fields of the S}, T3, 7%, and T3 types.

Now we are in a position to solve (II) in which Vi H, and I, are
given as the solution of (I). By taking curl of (6) and eliminating

¢ with the aid of (7), we have
curl i=o{—Dh+ curl(v AH,) +curl( V, AR)} (11)

where we write D in place of 3/3¢. On the other hand we have from

(3)
47 curl i=curl curl b= —p?h . (12)
From (11) and (12), we have
{D—(4zo)'p*}h=curl (Vy, AR) +curl @ AH,) . (13)
We also have from (9)
pDv=(4z)-*{(curl 1 AH,) + (curl H,Ah)} —gradp . (14)
If we make div. of (14), we obtain

pp= —(dx)* {Hy- ph + he p>Hy+ 2 curl i+ curl Hy} . (15)

3. The solution for pressure

Generally, 7 can be expressed as

h= S+ SR (16)

nym n,m

where I—i;’fn is of the poloidal type, the #, 0 and ¢ components being
written as
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—n(n+1)s™(r)r"1Yn
- _ dsm M [ —1 BYQ’
= | [ G G T an

oYy
sin 0o

—[r _dsy + (n+1)s"‘j|7'" I
dr

and l?}j‘n is of the toroidal type which is written as

0
mf e 7 Y:ln
P (mr n0og ’ (18)
aY
th(r)r® =
(r) 7
in which
m__ pm COS
Yi=P;i(cos 0) & m (19)

Introducing (16) into (15), we obtain a partial differential equation
from which we can determine p as a suitable solution with some

constants. Since p becomes known, v will be obtained from (14). The
constants should be determined by the condition that the radial com-

ponent of » vanishes at the surface of the core whose radius is denoted

by a in later statement. Putting both % and v in (13), we shall have
an equation by which we may determine s? and #* under the condition
that the magnetic field is continuous at the surface of the core.
Theoretically speaking, we can thus obtain the magnetic field and
velocity. However, as has been shown by Elsasser, Bullard, and others,
an interaction between certain electric currents and magnetic fields
produces many types of motions and that between motions and magnetic
fields produces many types of electric currents. Thus it is almost
impossible to treat the problem quite generally. As has been done in
the study of self-exciting dynamo, we shall take an approximation.

As the simplest, we shall assume that the magnetic field is of the
S-type which is the most predominant one in the earth’s magnetic
field. The magnetic field of other types which will appear in the
righthand-side of (13) will be ignored.

The magnetic field %, curl’ and VZZ are given as
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—2s(r)P, , 0,
’ . ds dp
h= _<""d’7._+ 23) d01 ’ curl b= 0,
d’s ds dP
- 0, —\r= L,
(wa dr) do
d’s |, 4 ds
—2 - Pl ’
R <dr“ + r dr)
O LY B AT (20
dr® drr o dr/ do’
0,

while the stationary magnetic field and velocity are given as

ﬁu=ﬁl+ﬁ;+ﬁ3+ﬁi , }

o o o 21
Fom Vit 72, @)
where
S? magnetic field :
4 “‘"281(7')P1 ’ 0 ]
. dS dP, -
0, _(szsl +4dS1)dP1_. ’
dr* dr / do
’ d:sS,, 4 dS
—o(@5 4 1)P ,
N (d7'2 r dr '
i H = ( @S, | .d2S, , 4 dS, ) dpP (22)
- ! +6 ! +_ —1— E
T T T ar / do
0,
T? magnetic field :
0, —6a~*rT.P, ,
- N o, dT, dpP,
H,= 0, curl H.= @ (T dr +3TZ>TW !

sz

"Zrsz(’)") 0,
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T¥ magnetic field :

curl ﬁs=

0,

~2pa, () 21 o(P3 cos 2¢)
sin 03¢

——— a(P: g;s 2¢4) ,

’

—6a~*rT,P; cos 2¢ ,

a_2<r aT, + 3T3)r o(P; cos 2¢) ’
dr o0

‘—a!—2<7"ddzls—+ 3T3>7’ a(P; COoS 2(]5) ,
r

T?% magnetic field :

/’

curl I—{:=

sin 00¢
0,
—as(2T:4 8 A, 2(Preosy)
dr*  r dr sin #9¢
—of@T5 , 6 dTy )\, 3(Pcos 2¢)
a-? S = 228 | AL 2 VYIS 4P) ,
<d7"" r dr )T o0
0,
—a () o(P5 sin 2¢) ’

sin 03¢
a=r2Ty(r) 3(F; sin 2¢) ,
o0
—6a~*rT,P;sin2¢ ,
f ATy ) o(P; sin 2¢)
—a?(r—2 437 Jr——22—=2 |
i ar )T o0

—a- (, oty | 3T) . 9(P% sin 2¢)

sin 69¢

[Vol. XXXIII,
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(24)
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0,
’ L | o f@T, 6 dT.\ .0(P;sin 2¢)
pH=] "¢ (dr2 o )r sin 03¢ (25)
) _2(d T, 6 th> ,3(P;sin2)
dr:  r dr o0
T? velocity :
0,
V= 0, (262)
a'y Vl(v)dpI .
S¥ velocity :
) —6a-'rV,P;cos 2¢ ,
. _ av, . 9(P; cos 2p)
. Pm | o (g T AR (26b)
( av, +3v) LA(Picos24)
dr sin 02¢

From (20), (21), (22), (23), (24) and (25), we can calculate the
righthand members of (15) as follows;

. B s £ 80) (45 a5 ) ol 4 )

2 fas (T84 4 ) (85,55, +6fz§ £ dn)p

dr*  r dr dr dr®  dr* 1 dr )
—s d’s d*s , 4 ds\ pe
+2a-*Tyr* <’r_+6dr~ T—d—)P sin 2¢>

2 ds 4 ds
—2a Tﬂ'( o ’+6dr T dr )PoCOSZqS,

b3S ) (ot LY 1)

{ 4(d S, i (fz%) (Tdf; +6%§£ N 39(15;)( 2’;:+ 28)}1:’2
T,

= + 61 dTs )(r—gi + 23)P§ sin 2¢

—2a- (7 d(;ﬂ + 67 dT* )(7 %i + 23>P§ cos 2¢

+ 2@' ’(fr
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dfrz dr dfr
d*S, d.S'l) d’s , 4 ds )
-2 +421 +42°\P,
3 ( dr dr d7 dr
) ddT‘; ) iﬁ dS P
+2a (r o +3rTy (rdr +4 o )P2 sin 2¢

——2@“(9“‘?1“ + 3rT4)(7 pae +4 gi )P” cos 2¢
For the sake of simplicity, we may assume that S,, T\, T; and T}
are independent of ». We shall be able to obtain a rough idea of the
magneto-hydrodynamic behaviour in the earth’s core by this simplifica-
tion. In that case (15) becomes

Fo=fo+fo P+ fiP;cos 2¢ + f3P; sin 2¢ @n
where
d S 4 d
4 ( d’s d“s 4 ds
—4 == +4 & a5
. e Tar dr)
()= 5 20 (T 1o , 28 ds
4”( fgs) 20 (Ts)r( ar g T dr) S
The solution of (27) may be expressed as
p= nZ &Y, . (29)
Putting (29) in p*p, we obtain
20y = _1_*87 n(n+1) m Ym 0
rP n%{r“ ar( ar> r? } #(0) (30)

Comparing (27) with (30), we obtain a series of ordinary differential
equations such as

e ) R
Y (fs | 31
Ea(-2)-Hz)-(%)

g7 for the other combinations of n, m are disregarded without loss of
generality.
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The solutions of (81) which remain finite at =0 are given as

=K+ S rﬁ,dr—r’IS rifudr ,
0 0

qg Kg 1 ‘7 f‘z r fz (32)
gc =g Kﬁr +~—«{7‘2& -t fic d,'._,).—SS rt f.z,'c drl, R
¢ Ky) St v
where KU, KU, K¥ and K¥ are constants which shall be determined later.

Putting (28) in (32), we have, after some calculations, the following
expressions :

drnqh=Lo— %Sl (r%f: + 3s) , )
4r:q;’=a‘-r“L3+%S1r%s; ,

e (33)
drgy=a"42Ly + 2a"-’T.,(r3-gs‘ + 45— 21"3S r‘sdfr) ,
7 0

dngy =0~ L5 — 2<z“~’T3(7‘315iSL +4r*s— 2?"3Sr7"sd?‘) ,
r 0

J
where

L=4zK¢, IL3=4zK}, Ly=4=Ki, L3=47K% .
Thus the solution for the pressure is given by (29) together with (33).

4. The solution for velocity

The velocity can be calculated from (14). We have

4 d*s ds 4 d’s ds
— 28 (rZ= 4= Z8(rE 2472 )P,
) 5 S\ g T dr) 3 ‘(rdw dfr) :
curl AN\ H,= + {9 ds ds \ dP.
0 2g ( 77~+4H)—i
37\ dr/ df
0 0 )
0
curl ﬁ/\ﬁu= 0
0 ,
20T (r 3%+ 4.2 ) P1sin 29
curl 2 /\ﬁ3= 0 " !
0 ,
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curl ;;/\ﬁ; =
curl H1 /\72 I

curl A, N\ =

curl ﬁs /\E=

curl I_L/\73=

T. RIKITAKE.

2a-*T' g (trdﬁs_ +4 gs )P" cos 2¢

S o oo o o o

L

ds apP T

6 -2 Radudl —
—£0 Tolr +5S)

dr de

_6a-:T3/’~<7o_g'_S_+ 2S)Pz" sin 2(]')
dr '

_u-eTyrd(Pisin 29)
Gl

o ds o(P; sin 2¢)
2a Tﬂ‘( dr +38) sin 03¢

0

0
2 _.mosds O(Picos 2¢)
LT g2 A8 9473 COS 49)
57 "o a0
6a=*Tr (w o 2s)P" cos 2¢

6(1; - 2T47'S ?(&%Sz—d))

2a-*T v gs—+ 3 ) 2(F; cos 2¢)

sin 02¢
0
0
_Aa g2 @5 3(Pisin 2¢)

dr o0

6
5

[Vol. XXXIII,

0
0
a]—zT:TZVd'? de. .
dr df
(34)

With these expressions we can calculate » from (14) in which p is given

by (19) and (33).

Hence we have
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4AnpDy,— ——2<a‘2rL° 2S1*—)P

_ 2a“‘2(rL§”‘ +6T - S o*‘sd?')Pi cos 2¢
0

— 2a—2(rL?;IS— 6T, S%*‘sdr)Pg sin 2¢ ,
0

471,0Dv6={ — a2 L)+ ~S,< +2 ds }f{lZ%_
—a‘ﬂ{o‘l).ﬁ“ + 2T4(7's — 2'7""Sor'sdr>} ?_(I_D_zggggib)
o(P; sin 2¢)

_a‘z{rLZs —2T3(rs —29""Srr'sdr)} S
o0

0

_ 2 oo ds A(Picos2)
5 dr  sin@o¢
_2 oy ds O(Pisin2g)
5 dr sin 62¢
oGl )
6 ds dP
+ —a =" 3
5 " dr de

(P2 cos 2¢)

— a‘z{eric + 2T4(frs —2rt Srvﬂsdr)} St Rdbant £
o J ™ sin 03¢

(P3 sin 2¢)

— a"—’{rLi’ - 2T3(7~s —2r-! Srr‘sdo-)} At £ 44
0 sin 89¢

+ _2_a_._,Tsrgis_ (P cos 2¢)
5 dr o0

+ 2 2 g2 g2 98 ,ds 9(Pjsin 2<j>)
5 dr 20

13

But it is more convenient to express velocity with a sum of poloidal

and toroidal velocity fields. We can write as follows;
;=7—):+$;+53+;4+;5+;c+57 y

where
T¢-motion :

(35)
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0

47TPD;1 ==

t]frig.]_ ,

dé
T3-motion :
0

47pDv,—
t3r3ipi ,
do

SJ-motion :
—6s,1P,

b | (r s g )01

0
S:*-motion :
— 65 PZ cos 2¢
( dSo +3s)c) a(P; (;PS 2¢)) 20

2¢
—(r dsﬂ +35 )
dr
»-motion :

6s¥r P sin 2¢
I ( ds? asi’ | g QS) 3(P; sin : Sin 2¢) sB—
20

47r,0D1—): = 00 i

(P; cos 2¢)
sin 8o¢

b

o0

6
J— -2 2( PR
a*Ty( 7

0 - ta—»ga T2,

4z pDvy— dr
_( sy’ +3S2s) Fo(Pisin2¢)
dr sin §o¢
T¥-motion :
0
.| —pmedP5cos2¢) tr—
4mpDye= sin 3¢
1oy 3(P; cos 2¢) ’

[Vol. XXXIII,

d
5+ 53) ' (36)

37)

<a"-’L3 —2Slr“‘-gi ) ,  (38)

.
s? _,.__é a—ngc_*_ 2T4a—2?.—sg ’1‘4Sd7’ s
0

(39)

,
_a-2L§3—2T3a"2r'5S risdr ,

[

(40)

Ea‘”Tsfr"iSJ
5

dr (41)
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T#-motion :

0
| _peo®isinze) P —
4npDv,= sin 09¢ 5 dr (42)
props O(PSIN29)
o0

The constants are determined by the condition »,=0 at »r=a. They

are given as
d

0
L._,—Za,Sl( i

r

) , L§“=—6Tia'5gno"sdr, L§3=6T3a--"5a7'"sd-r. (43)

0 0

5. The integro-differential equation for magnetic . field

We introduce, then, » thus obtained into (13) together with V, of
(26). Although we obtain many types of magnetic field from curl

( v, /\l:) and curl (?; /\ﬁo), we only pick up the components of the S} type.
This can be done with the aid of the selection rules for electromagnetic
couplings. The components which contribute to the S? type magnetic
field are found to be as

0
.o 0
471"0D('U3 /\H])“*
S (s 45 1P
5817 9d7’+532> 20
1—5281(7“% + 5SZ)P1
47['PD Curl ('Ug/\H])_’) ,,6,Sl(ri+2)(’rfl§3+5sl dP1
5 dr dr do
0 ,
( 0
- 0
AzpD(v, NH )~
—-215-§T,,a'ﬁs§“7'3 (fil(;l ,
(44)
422T4a—2’7'23~§cp 1
4mpD curl (v, AH))~ { 216 ( d ) s a0y AP
£ g2 & 4+ 2) (st
5 1A\ g TR)I) g
0 ,
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0
- o 0
47TPD(?)5/\}13)"’ i
216, _, . AP,
S/ ALY e R
5 g
—%?Tswfrﬂsg*ﬂ
4zpD curl (v, \H.
reD eurl (v, \H)—~ —?}6T3a'2(?‘—d—~+2)(7""833)—(—1-61
5 dr do
0

Hence (13) is satisfied if we have the following relation :

4ﬂpD{DS—(4no)"<c%+—§~ %j)} .

- g S, (o%jf + 532) + ?é%—w-’( Ty — Tst) . (45)

6. An approximate solution for the magnetic field

(45) is an integro-differential equation for s. It will be of great

difficulty to obtain rigorous solutions for it. However, we may be able

to find a solution for a simple radial distribution in the following way. .
Let us assume that

s—= z au(r|a) (46) )

in which we do not take into account the negative pbwers of 7 because
the magnetic field should remain finite at the centre of the earth.
Introducing (46) into (45), we have the following relation
dnpD’ 3, a,(rfa)—pDo~'a™* 3, a,n(n+ 3)(r/a)y-
=~ L5t 5 0, {5~ (n-+ Yoy}

+4—32—{(Ta)2+(T4)2}a‘2Z» D (rfay{l—(rfay} . (47)

5 n n+5H
Equating the corresponding terms of both the sides of (47), we can
obtain the relations between the coefficients @y, @y, A+ +- . If we ignore
the terms for n>4, the relations become
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4(pDa“‘+%Sf)a1=0, (48)
drpDa, —10pDo'a*a, +16Sia*a,=0 , (49)
47rpD2a1—18a'2(pDa"+%S%>a3=O, (50)

{4rpD2— __ma—a}a,_a -{28p Do+ W2+11282}a4—

(51)
It can be seen from (48) and (50) that a,=a,=0.
Further, the solution must satisfy the boundary condition that the
magnetic field is continuous at r=a. The magnetic field outside the
core is given as

{ 2a%r-3h, P,
he ) o, 3P0 (52)
[ do
0
which tends to zero at infinity. The continuity at r=a gives
—8pa=0""y , (rig + 23) =a"h, ,
dr r=a
from which we have
(rgiJr 3s) —0. (53)

This in turn may be written as
3a,+ 5a.,+ Ta,=0 . (54)

In order to have a non-vanishing solution for a,, a@. and a, which
satisfies the equations (49), (51) and (54), we have

3 5 7
npD*  —10pDo"'a 16Sia-:
—o0.
0 drpD*— 43~2(T3)2+(T4)a-’ - {28pD —1+112 *(T3)+(T4)}

(55)
If we assume that the substance in the core is perfectly conductive,
(55) can Le simplified as

D‘+4(7rp)'1a‘2(»§-8’f—TZ)D2+1296( 0)-*a- ST =0 (56)
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where

» T',:(T3)2+(T1)2 .
The assumption may be safely taken because the coefficients for D* and
D are very small provided we adopt o2<10-° emau which has been
accepted from various reasons.

For the magnetic field to be oscillatory, D’ must be negative. This
condition is satisfied if we have

(%S%-T—) >2Z§S, . (57)

On the contrary, we have exponentially increasing solutions provided

(—é—Sf— ) 2%482? In this case, the small oscillations of the dynamo

is regarded to be unstable because a slight deviation from the stationary
state will increase exponentially.

Under the condition (57), we can expect simple harmonic oscillations
whose periods are given as

dopef(ter-r)o/(Ssor) tar) . o

7. Discussions

Thus far we see that the A-approximation of the self-exciting
dynamo seems to be stable under the condition (57), otherwise its
small oscillations will be unstable. In order to maintain the earth’s
magnetic field over long periods, the dynamo mechanism should be
highly stable. Although the condition (57) is derived from a ecrude
calculation, we may assume that such a condition approximately holds
in the earth’s core. It should be noticed that (57) implies smaller 7%
and 7% magnetic field than S? field. This result does not seem to agree
with Bullard’s view in which he considered that the 779 field is quite
large and 7% and T% field would be of intermediate intensity. As for
the dynamo itself, however, we may take a considerable variety of
velocity distribution and magnetic field distribution. It would perhaps
be possible to construct a dynamo under (57). To get (57), however,
we made assumptions that the stationary magnetic fields are distributed
in a simple way throughout the core and the effect of the magnetic field
and velocity which are expressed with higher harmonics can be ignored.
The influence of the earth’s rotation is also negleted in the fundamental
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equation. So we do not say that the condition (57) is definitely right.
It is a rough approximation for the stability condition.

It is likely, however, that S? magnetic field amounts to a few gauss
at the surface of the core as calculated from the value at the earth’s
surface. Then S, becomes of the order of a few gauss. So the values
in the bracket of (58) would be of the same order or a little smaller.
Adopting p=10 gm/em® and a=3.5x10°cm, the periods amount to scores
or hundreds of years. Therefore we can have magnetic oscillations with
period of scores or hundreds of years which are superposed on the
stationary fields of the dynamo. The secular variation in the earth’s
magnetic field might be interpreted in this way. The damping of these
oscillations are not considered here. But it is likely that the relaxation
time would be of the order of 10-10°years provided the conductivity is
of the order of 10-° emu.

In the above calculations we did not take into account higher powers
of r than n=4. If we take them into account, we shall have many
other solutions of more complicated radial distribution and of different
periods. Since the distribution considered here is an approximation for
the so-called ground tone of oscillation mode, the other oscillations
may be considered to have shorter periods than that studied here.
For shorter period oscillations the shielding due to the conducting
mantle will become considerable.

The present study has nothing to do with the explanation of the
reversal of the geomagnetic field which is supposed to occur during
the geological time as suggested from the studies on some rocks’
remanent magnetization. However, the stability condition might be
broken provided something happens. For instance, the velocity distribu-
tion would change if we had changes in the rotation velocity of the
earth—not necessarily the reversal of its rotation. In that case, we
might have strong toroidal field which violates the stability condition.
Once the stability breaks out, the field would change fairly rapidly until
the system reaches another stable state. As the opposite-sign dynamo
seems to be also capable of existence, we might get a reversal of the
magnetic field. But we must pay attention to the fact that something
must happen in this speculation. As long as the dynamo is considered
stable, it is difficult to consider the earth’s magnetic field to be oscillating
with a period of 10° years or so. We can only expect stable oscillations
whose amplitude is smaller than the stationary field, the periods of
these oscillations being presumably of the order of several hundred years.
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8. Secular change in the S? field

As far as we assume the A-approximation of the self-exciting dynamo,
the equation (45) is the one which governs changes in the S? magnetic
field. As for the observational side of geomagnetism, we have a number
of spherical harmonic analyses of the earth’s magnetic field, the change
in the S} field being traced through these analyses. The coefficients
for the dipole field are reproduced in the following table.

Table I. The change in the S field

Source Epoch 910 gl hyt V{02 (g2 (12
Erman-Petersen 1829 0.3201 0.0284 —0.0601 0.3269
Gauss 1835 3235 311 625 3310
Adams 1845 3219 278 578 3282
Adams 1880 3168 243 603 3234
Fritsche 1885 3164 241 591 3228
Schmidt 1885 3168 222 595 3231
Dyson-Furner 1922 3095 226 592 3159
Bartels 1922 3090 227 586 3153
Jones-Melotte 1942 3039 218 555 3097
Afanasieva 1945 3032 229 590 3097
Vestine-Lange 1945 3057 211 581 3119

(Unit: ec.g.s.e.m.u.)

The moment of the magnetic dipole may be used in expressing the
intensity of the S) field. The moment is proportional to the root
square sum of the coefficients of the first degree constituents, say
V(9P + (91 + (A, which is also given in Table I.

If we take the time origin at a certain epoch, say 1900, we can
get the initial conditions for the change in the S? field. Starting from
the initial conditions, we can obtain the change in the S? field by solving
the equation (45). Although the stationary field S;, 7% and 7', are not
known, we may be able to choose the most probable values for these
fields by comparing the calculated change with the observed one. This
is what the writer would here like to do.

Here we again take the approximation

s=ay+ ay(r/a) +a(r/a)

as was studied in the last section. We see that the time-change of
the coefficients is given by an operational equation such as
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o(D)a,=0 n=0,2,4

where @(D) denotes the operator expressed by the determinant in (55).
So far as we consider the change to be within a period of some hundred
years, we may safely assume that the electrical conductivity is infinite.
In that case the intensity of the S? field at »=a changes according to
the following operational equation

{D‘ + 4(np)-1a—2(f7£s;z— T )D”+ 124’6( p)'za'*S§T2}8=

as was shown in the last section.

In order to solve this equation, we shall take the following initial
condition

at t=0

8=8,, g—§= —6.35 x10"emu sec™! (59a)
which is obtained from the change in the magnetic moment of the

main dipole at 1900, s denoting here V/(g})*+ (g})*+ (%})* which is propor-
d’s d’s

tional to the intensity of the S} field, while e and o are to be
ignored because the moment was changing almost linearly at this
epoch.
Hence we have
at t=0
d*s d’s
&8 _&S _o. 59b
dt: dt® (59b)

The solution which satisfies these initial conditions is given by
interpreting the following operational equation

{D‘+4(n’p) 1a’1(mS T2>D +}_2,9§(T,)) ‘a-*S‘T‘}

=D‘Su+D388+4(7rp)’1a"2(78f—-Tz)(DZSo-l-DS{,) . (60)

ds.

where s, stands for ; at ¢=0.

If we write

e SN G B
(60) becomes
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where
4 A
K—4 -14-2 2__ e

On interpreting (61) we have

s§= 1 5 {(K-l— w?)(sg cosh ;¢ + - _sinh wlt)
1@y Wy
—(K+ ) (so cosh w,t + - sinh w,t) } for oo, ,
W,
s=8,cosh wt + Seginh wt + -K2—+.—§Ui(sow sinh wt 4 s; cosh wt)t
w @

for w=w,=w.

As already mentioned in the previous section, the solutions become
infinite with ¢— o unless o, and o, are purely imaginary.

We see that the solutions contain an unknown constant s, which
cannot be determined from the observed change in the S} field.
However we may consider that s, is nearly naught provided we take
the time origin at 1900. At this epoch the change is approximately
symmetrical with respect to £=0, this condition being statisfied by
taking s,=0 in the above solutions which are composed of symmetrical
and anti-symmetrical components. If this may be taken for granted,
the change in the magnetic moment can be calculated for various com-
binations of S, and 7. S, would be nearly 4 gauss as is estimated from
the value at the earth’s surface. Taking various values for 7', we obtain

i) T=0gauss s=-—0.000635x%10"5%

ii) T—=0.5 g —0.0159 sin 27 ¢-+0.000038 sin 2Z.¢
”1 IIZ
(I1,=492 years, [1,=66.5 years) ,
iii) 7=1.0 s= —0.00815 sin -2%¢+0.000235 sin 27 ¢
1, 1,

(I1,=233 years, I1,=T1.8 years) ,

iv) T—=1.5 ,s=-»-0.00336sin%mo.ooogmtcosgnlt

(11 =105 years) .
The cases for T>1.5gauss are not taken into account because the
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oscillation is not stable as well as for T'=1.5 gauss.

Fig. 2 shows the changes in the S? field as calculated for the respective
values of 7. Any T less
than 1 gauss seems to be .. ‘Moment

acceptable judging from o
. " 1 0.330 e.m.u.

the values obtained from

. . — .
the spherical harmonic , NN
analyses which are also AN 0326

. % 3 '

shown in the figure. If / N8
we can trace the change NN 0322
in the future, a more —jdz5 TG0 1880 |\, 1920 1940 1960
conclusive result will be 0.3187 N T=15-
obtainable. As was sug- N J/
gested by Bullard,” if loz1a ~—
th.e .momentk attained its : ‘\‘}\_-m-o
minimum at about 1%)35 lozio oo\,
and has been recovering v~ T=05
since then, we should T=0
be able to gain some Fig. 2. Calculated and observed changes in the

.. Sp tic field.
clue for determining the SF magnetic fie

magnitude of the stationary magnetic field in the earth’s core sooner
or later.

9. Conclusion

The possible magneto-hydrodynamic oscillations in the earth’s core
are examined with their applications to the stability problem of the
self-exciting dynamo and the prediction of the secular variation. In
order to avoid mathematical difficulties, the writer was obliged to
make some simplifications. Firstly, the earth’s rotation is not taken
into account. As is suggested by Bullard, the influence of Corioli’s
force might be appreciable. So the stability condition in this paper is
not so reliable. Some further studies should be made upon this point
as soon as possible. Secondly, the mutual coupling of various harmo-
nic oscillations is ignored. In order to see to what extent one spheri-
cal harmonic component will be influenced by other components, a
study on magneto-hydrodynamic oscillations of a spherical liquid body
is now going on without ignoring high degree components. Although no
definite result has been obtained yet, the oscillation is interpreted as

10) E. C. BULLARD, Journ. Geophys. Res., 58 (1952), 277.
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a coupled-oscillation of every harmonic constituent. Until we finish
this sort of study the exact extent of the influence of higher degree
components will not be clear though it is presumed to be not so great
as is supposed from physical considerations. ,

In spite of those difficulties, investigations in this line would be of
some use in the study of the stability problem. As is also shown in the
last section, the fundamental equation for geomagnetic secular varia-
tion can be obtained provided we had sufficient knowledge on the
stationary magnetic field in the core. The solutions of this equation
will in turn be used for determining the internal field by comparing
them with the observed secular variations. This would also be the
only way to get at the fluid motion which is supposed to exist in the
core. In conclusion, it may be said that a sort of magneto-hydro-
dynamic oscillation possibly exists in the earth’s core. The oscillation
seems to be closely connected with the secular variations. The examina-
tion of the nature of the oscillation is quite important for the discus-
sion of the stability of the self-exciting dynamo.

The oscillations treated here, however, are of small amplitude. If
we consider a disturbance of finite amplitude, there might be stable
oscillations even though they violate the stability condition discussed
here. We understand that the system of the fundamental equations,
as given by (II), is not held for disturbances of finite amplitude. In
that case we have to solve a system of non-linear differential equations
as is done in Bullard’s study on a homopolar dynamo. It should be
added here that Bullard is going to mention in his unpublished study
that there would be cases in which the oscillations will not depart
indefinitely from their steady state even if the small oscillations are
unstable.

The writer had the pleasure to talk with Sir Edward Bullard
about the magneto-hydrodynamic problems while the writer was in
England. The writer is very grateful to him for his helpful sugges-
tions. The writer was encouraged by Professor A. T. Price to whom
the writer’s hearty thanks are also due. Professor T. Nagata and Dr.
H. Takeuchi were also interested in the present study. The writer
wishes to thank them for their discussions.
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1. R BN OERKEEIRD
wimmer B RO OK

Elsasser, Bullard, #&Ic o THIgE iz X 51, HIRNO & 4 + =iz, BEBEAE
SNAHMEEHEE L TE2ELFHNTH S . HWIRERBEMS L 4 FE{EMic X 2 THff s TV D
EW IR, BOEAINEEE R O BT, BIPRTIR TIRRES & O HR OGRS R 20 ASETE AR
BHTHEND CEERIET 5. COREMOTER KO RHATTI & ORI 240§ SR D
fesranhiz.

ARIRTIEROEIERBD I L T2 Cig>TRD 18 5 & & 2 5 1 5 AED
(Magneto-hydrodynamic oscillation) %3Z#tL, < OHEIRYIENERLZHL 5. GEVRLD
OIMRZERZ A B2, HMHER2FHLT, B L0 &/MIZICHET S b O Eoflicd
5T EHHES . BRERATIUDMAZECHT 2 TEARBRICRIIN S . T ORI
REGERBIECTCEICE D, FIARRBOACHET S L OIRESTCENERLIDTDH S,
WREBEERZ b DO BRICIE, & 503 KROIREREADUIRIER &85 .

Chiddh A HORERD S 3 BOREKTT 22 20, £ OBOBHEREL, ZOWLH LK
I OHEMERIIY XL OBOBKEN 2O XBCTHoTH 5. ITRPHECEERS T L
WHETH 55, CCTREBICHUBTREOAMCERL T, WOMOMSE 1253 & 5 AT
I NRTHBLTH 5.

SR E UTHIR—BEc L 0T A BERIERRSNI DL b HS L ORIRAL Tl 2itd
1oEEE, MRZEREERT AHAWMAHER 2R 5 T EHEI. R RER MDA T 1) D5 1 229
Mt H AT, COHBRROEIEIMNRLECHNTRDIZE C 5, fEH toroidal 35 1026, To** %5
HE DA CVEHTIE, BUERRE. 3 AVHCRIINE & HICEDTREL T 250
b, COBRLGHEAFEREETHD EWVABL. T O toroidal BHEORKF X 1.5 #9256
WTd b, Bullard OF4T 2 & 5 sk &7 toroidal RISV C &iTis 503, Bullard
PG L 12 & 51T C ORI SN IZHIBREIE O LA S h T 67, SHRMOHEKEE b Wi
SXNTV S 6 HEMHIETD 2 & RVAEY. Uhb LA HRIEO 3 & TRAK R Ok A
BB EMNDHEIEMITLEDNDITHS.

@ 1 LB B A BERICIETW T, G R LA ST, IO PR T L C
LS D . PESEOREBAFAM L § & & LT 1900 42% t=0 & U, EFRBHLNRT £ — 2 —
EUT, HIREAEREIIL TAY, BHNSENDIRIENS L ERVWAZ VL TRE b,
Fizskp iz toroidal REEOBAM T ENEE D& b LLEITFRRICEMR LGNS, O
5 s HHNC X O TENOER 2150 T, WIERBEOAR X & 2HUET 2 L EHBAHEO & 5 ITibd
N, ORI T EE, TERE 4 7 eTEC & D THIBESCAAEEMMHM I N S & LTV
MBI L2 b DTH b, 4HS SIERPHECTS ¢ &k KR OFHALE) % k24
6ROV EKMICIENT 2FSH D ETHCEEWETHS D .




