3. Analysis of Dispersed Surface Waves by means

of Fourier Transform I.

By Yasuo SATO,
Earthquake Research Institute.

(Read Dec. 22, 1953.—Received Jan. 6, 1955.)

1. Introduction

From the beginning of our investigation, it has been one of the
main objects of seismometry to examine the mechanism of earthquakes
and the nature of media through which the waves are propagated. Of
course, we have several kinds of waves available for this purpose, and
P-waves have been often used successfully®, while the surface waves
are not so easily employed as the bodily waves®. This is due chiefly
to the complex structure of the earth’s crust and the dispersive nature
of Rayleigh- as well as Love-waves. If the analysis of the seismograms
of the dispersed surface waves is done with success, the above object
will be partly accomplished. The following procedure is merely an
attempt in this direction of our investigations.

The analysis has its foundation upon the very simple principle that
the amplitude and the phase angle of the Foulier transform of the
curve observed at any station express the spectrum near the origin
and the phase shift caused during the propagation respectively.

2. Fundamental concepts

At first we will consider the wave motion in- one-dimensional space.
Let us assume the movement at x=0 to be

FE=FE;0) . ennn.. el (2.1)

This function is expressed as is well known from Fourier’s double
integral theorem,

1) We can find an enormous number of papers and reports in seismic prospecting,
which all utilize the P-waves.

2) References in this branch of seismology is found, for example, in T. Akima’s
paper. Bull. Farthq. Res. Inst., 30 (1952), 237.
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FO ==\ s+ exp ptiav,
in which. ... 2.2)
f*(p)_~l/2 g f(z) exp (—ipr)dr .

The physical meaning of this expression is as follows.

An arbitrary function f(¢) is (if some conditions are satisfied) re-
presented as the sum of the waves with frequency p and amplitude
S*(P)V 2z, while the function f*(p), which is named as Fourier
transform, is also expressible in a similar form as shown in the latter
expression of (2.2).

Now, if a wave A exp (¢pt) is propagated by the velocity V(p), it
takes the form A exp{ip(t—=x/V(p))} at the distance x. Therefore, if
the disturbance at =0

fO =5 S:f *(p) exp (ipt)dp

is propagated, the wave form at z=ux is

ﬁ S 1 F*(p) exp {ip(t—=/ V(p)}dp

[F*(p) exp {—ipx/V(p)}]-exp (ipt)dp . (2.3)

ft;x)=

75

The Fourier transform of this function is

;) =71—2~?—g1f(r ;@) exp (—ipr)de,  ee.ns (2.4)

which can be also expressed, by substituting the above expression, as
follows.
Fews @)= | exp (—ipyis
1/12 S Lf*(p") exp {—ip'x[V(p')}]-exp (ip't)dp’

=f*p)exp {—tpx/V(P)} .  ciiiiiiiiiiiinn (2.5)

Since f(t; ) is the wave form observed at w=w, the above func-
tion can be calculated from the seismogram of that station, namely
from (2.4)

S w)——7§— S _f(z; @) cos (pr)ds
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N ; in (pr)dr
—i "27;5-.,30 (z; @) sin (pr)d
=C(P;X)—=18(D ;L) . eiiiiiiiiiiieaas (2.6)
Now putting
S*@=F()exp {—if(®)}  cevviveinnn... (2.7)

we have

S*(p; )=F(p) exp {~if(p)} - exp { —ipx/V(p)}
and F(pP=c(p; ) +s(D; ),  cieerernenennn 2.8)

where F(p) and j(p) are assumed both to be real.
From the expressions (2.6) and (2.7) we have easily

C(p)=—arg f*(p; x)
=arctan {s(p; x)/e(p; )}
=B +px/V(D),  cieiniiinn 2.9)

where the inverse-trigonometric function does not necessarily take the
principal value.

The function F(p) is the spectrum of the wave observed at z=u=,
and also shows the spectrum of the vibration at the origin. The pro-
pagation velocity V(p) with frequency p is from (2.9) expressed as

V(p)= pr .. 2.10
® —pB(p)+arctan {s(p; @)/c(p; x)} ®-10)

or, if we define ARCTANz so as to satisfy
—a<ARCTANZ<{7T ,  tvvrrreernn. (2.11)

we have
140 R .. .(2.12
)= i) + Aroran s(p s (@ ; @) + 20m (2.12)
But we must add some remarks concerning the practical way of cal-
culating the velocity. For the angle f(p) can never be obtained from a
single observation and therefore we cannot get V(p) from the formula
(2.12) if we do not neglect A(p).
In order to perform an exact caleulation, we are to choose at least
two observations at different places, namely

COP=p@) +pa®/V(p) @2.13)
and C(p)®=p(p)+ pa™®V(p)
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Taking the difference of two expressions we have
Cp) P —-C(p)P=p(P—z®)/V(p)  .c..... (2.14)
from which we get

(& — )

Vip)=- P& ) e 2.15
(p) (g(p)(l)__ (g(p)(z) ( )
or
(1)_x(2))
V)= G . (.16
Aroan [ 5@ &N _p [s(@; ™) o
T {c(p;x(l))} RCTAN lc(p;x(z))}+ M

If three or more observations are available and the dispersion
formula ecan be assumed to be common to all of them, we can apply
the method of least squares to the expressions of the type (2.13), and
determine the unknown parameters B(p) and 1/V(p), or V(p).

3. Cylindrically.spreading waves

In the previous section we have treated the analysis of waves
propagated one-dimensionally; we will now modify this theory to
discuss the waves spreading in a two-dimensional space.

Cylindrically-spreading waves of course decrease their amplitude
because their energy is distributed over the enlarging wave front.
Since, in the two-dimensional propagation, the wave front increases
proportionally to the epicentral distance, f(¢;r) must involve a factor
1/1/#. (Where » is the epicentral distance.) Consequently, if some
wave train, whose amplitude at r=r, is A4, is propagated and arrives
at a point r=r,, its amplitude becomes Ay 1 /r, .

Taking the above nature into consideration we will formulate ex-
pressions similar to the case of one-dimensional propagation.

Let us assume at first the movement at a point r=r,, which is
situated near the origin, to be

feirg= LT ey ey, .60

in which

£l o _714‘ - e — DT oD,
f (p,ro)—]/z;s_mf( ; 7o) xp (—ipr)dr , 3.2)

then the expression corresponding to the equation (2.3) is
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siny= 2 {0 s exp finte — 70
=]7£2—*;g1[ o S*(p ;1) exp {—-zp (;}] exp (ipt)dp

..(8.3)
Now the Fourier transform of this function is

SHp;r)= 1/'2 S f(z;r) exp (—ipr)de

= 1/}2_7; Siwexp (—ipr)dr

.1/1?7_:_&1 [/?f*(p’ ; 7%) eXp { ——zp'TI—/( r,")}:l-exp('ip'r)dp'

=]/7:"0 FE(p ;1) ex'p«‘l _— zp?(jf} .............. (3.4)

If we compare (3.2) with (2.4) and (8.4) with (2.5), we find at a
glance that the modification is very slight and we can immediately
obtain the formula applicable to the analysis of the problem in two

dimensions.
We put as before (cf. (2 6)~(2.9))

Frwin =L | st exp (—ipeds

=c(P;1)=i8(P;71), - ceiieriiiineenn (3.5)
F(p;ry=clp;r)y+s(p;r),
and C(p)=—arg f*(»; )
=arctan{s(p; »)/c(p; r)}

=A(p) +p(;( ’)0) e (3.6)

then the spectrum distribution at the place with the epicentral distance
r=7, is easily obtained.

F;ro=y/ %F(p N PR 3.7)

The following treatments concerning the velocity are quite same with
the process shown in the equations (2.10)~(2.12), and the formulae
(2.13)~(2.16) can be applied in this case, too.
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If we neglect the phase angle B(p) and pro/ V(p) compared with
pr{V(p) we have immediately the next simple formula

Vpy="t" - pr 3.8

®) €()  ARCTAN{s(p;7)e(p;7)} +2nx ' 8-8)
while, if a more presise estimation is required, we must employ the
formulae (2.15) and (2.16), where #® and #® should be replaced by
r® and »® respectively. Namely

Vp)= pr®O—r®) . 3.9

. 2e(1) . 2
ARCTAN { s(pir ,,ll} — ARCTAN {S(p $ ) } +2mn
e(p 5 V) e(p; )

4. Approximation formula for the integration

In the previous sections the integral of the form
1
V 2z
=c(D;7)=8(D;7T) cieiiiiiiinnnns (4.1)

often appeared, which must be calculated in order to perform the treat-
ment stated. Numerical integration by means of trapezoidal or Simpson
rule can be of course utilized, but when the wave takes some simple

form, we can approximate to this curve

Ax by some simple function and perform
\ /\ /’\m /\ the integration more conveniently. For

\/ \/ tn\V v \/ example, if the wave is, as shown in
Auni

fH ;) = glf (z; ) exp (—ipr)de

Fig. 1, consisted of sinusoidal curve
with slowly varying amplitude and

Fig. 1. period, then we can approximate to it by
o L., W tldy,
FEim= 15 Ak A+ (A= 4,,) cos{,,_,_w}
k+17 U
esecsense tk<t<tk+1, (]520, 1, ..,n—l),
o ... <lt.  eeiiia... 4.2)

Hitherto, in such a case, we customarily used the method to assume
the time interval (¢.,—%) as an approximate value of the period of
waves, and obtained the velocity corresponding to this assumed period.
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But here, we introduced the expression (4.2) into the above formula
and obtained

n-1

c(p;r)= Zlcu s(p;r)= ZI%

I = gt“l[~ (A + Aps) + 2( ¢ —Apar) COS {n Ll Hcos prdr,

28 brar—tx) A

IS,G=S“*‘|: (At A) + o (s = A) 08 fr }]sinpfdr.
k

tk-a-l'_ k

Then I, and Iy can be integrated and after a somewhat complicated
but easy calculation
2pI,— —24A, sin Pty + 24, Sin D
Ak AL-H
" (peyfn)—
2pISL=2Ak coS ptk—ZAk_H CcOoS ptk+1 ........... (4.4)
AL Ak+1
(pex[z)*—

(sm Pty +sin pie,)

(cos Pt 4 COS Plis1) »

where Cr=ltrs1 — T -
Therefore, summing up the above expressions,
anE—i I, = —2A4, sin pt,+ 24, sin pt,
T a 4-4

A2k TR+ (gin pt, -+ sin pt
2, (pecln)? _1( Y278 y279%),

ZpZZ.: I =2A,c08 pty—24,C08 Pl sevevasccecnes (4.5)
+n}j ~ A (cos Dty +€OS Dhisn)
(pck/ﬂ')
If we can assume that
A—mA—0  ...(4.6) N N
as is in the Fig. 2, the above 'SV \/ \}\/’"

expression may be reduced to
the next simple form.

"& ) 15 A=A
S Ig=c(p;r)=——-—2.- (sm Pt + Sin Ply,)
#=0 2pi=b (pe/)—1

Fig. 2

= A, —A
Iy = ; 4= _L—L“—cosptﬁcospt +1)
’g s(p;r)= op kE‘S (podjaf— ( k41
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If
Dl =ply+ 7, OF pe/r=1, D - )

(sin pt, +sin pt,,,), (cos pt,+ cos pt,,,) and {1—(pci/m)*} all vanish and the
(k+1)-th term in the above summation becomes indefinite. In this case
we must employ the expressions

— (4y—4;,) —Wcos pt, and (4,— AW)%sin 747 4.9)

instead of the terms

A A“l (sin pt, +sin pty,,) and - A=Ay

(poy/n) — (pew/m) —
respectively. These formulae are easily obtained as the limit

(cos Pty +cos piy.,,)

P —t) > .

In some case the next formulae may be more convenient than the
expression (4.7)

o ; r)-—azmk A 05 (pey/2) 2 sin pty.ss
pecfm) = ..(4.10)
s(p; )= +»-~2(A —Ay) S PB) ogp,
(peafm)—1
Wwhere Covrp=(CctLirr) /2.

5. Analysis of a practical record of explosion

We applied the above theory in the analysis of the practical record
made by F. Kishinouye and reported some ten years ago.” It is a small
explosion which took place on February, 1942 at Lake Haruna, and the
details of the experiment can be found in the original paper. But we must
notice here that the actual record of this experiment contains some
regular oscillation with a constant period and amplitude, such as hum,®
so we omitted this vibration and obtained the curves by hand-writing,
which are given in Fig. 8. The epicentral distance is 141.75m for 4 and
76.2m for B respectively.

We did not integrate these curves in order to get the true vibra-
tion of the particle. For the records were obtained using an oscillograph

3) F. KISHINOUYE, “Studies on Lake-Ice,” Bull. Earthq. Res. inst., 21 (1943), 298.
4) F. KISHINOUYE, ibid. See Fig. 3 on Page 304 in this paper.
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Fig. 3. The upper dotted line is the time mark. One interval is 0.01 sec.
At every 0.1 sec. there is a large mark.

The middle curve shows the observation 4. (r»=141.75m.)

The lower curve shows the observation B. (»=76.2 m.)

The chain line at the left indicates the shot time.

and an amplifier involv-
ing vacuum tubes, and
thus their precise char-
acteristics now cannot
be clarified enough to
use for the reduction of
the records. Consequ-
ently we gave up such
treatment and wused
them as they were. The
results, however, seem
not to contain so much
error as to affect the
conclusion perceptively.

We utilized the for-
mulae introduced in the
previous section for the
numerical integration
of the curves in Fig. 3.
The data used for the
calculation is given in
Table I. Introducing
the numerical values
into (4.7), and if neces-
sary by the aid of (4.8)
and (4.9), we can obtain

L L P 1 . L L 1 ' 1

10 20 30 40 50
Frequency
Fig. d4a.
. ' ! . 1 S R
10 20 - 30 40 - 50
Frequency

Fig. 4b. Ordinate; Amplitude in arbitrary scale.
Abscissa; Frequency per second.
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Table 1.
A (r=141.75m) B (r=76.2 m)
k tk thrr T Ag Ar —Ax41 143 t’c"_l~tk Ay Ax —Ag41
=Ck =Ck

0 21.1 0.5 0 —0.9 12.1 1.2 0 —2.0
1 21.6 0.6 0.9 3.0 13.3 1.0 2.0 6.5
2 22.2 0.6 —2.1 —5.3 14.3 1.1 —4.5 | —10.6
3 22.8 0.6 3.2 5.7 15.4 1.0 6.1 12.2
4 23.4 0.7 —2.5 —6.3 16.4 1.2 —6.1 | —14.9
5 24.1 0.8 3.8 6.3 17.6 1.6 8.8 17.9
6 24.9 0.8 —2.5 —6.7 19.2 1.5 —9.1 | —23.3
7 25.7 0.9 4.2 8.2 20.7 1.5 14.2 30.9
8 26.6 0.9 —4.0 —9.7 22.2 2.4 | —16.7 | —34.3
9 27.5 0.9 5.7 1.7 24.6 2.0 17.6 36.3
10 28.4 1.0 —6.0 | —13.0 26.6 2.8 | —18.7 | —38.7
11 29.4 1.3 7.0 15.7 29.4 3.2 20.0 38.5
12 30.7 1.2 —8.7 | —17.7 | 32.6 3.7 | —18.5 | —35.1 -
13 31.9 1.4 9.0 20.0 36.3 4.8 16.6 28.6
14 33.3 1.3 | —11.0 | —22.3 41.1 4.7 | —12.0 | —19.9
15 34.6 1.7 11.3 23.7 45.8 6.5 7.9 11.9
16 36.3 1.6 | —12.4 | —27.0 52.3 6.3 —4.0 —6.2
17 37.9 1.7 14.6 30.5 58.6 7.4 2.2 2.2
18 39.6 2.1 | —15.9 | —33.8 66.0 0

19 41.7 2.0 17.9 36.0 ‘
20 43.7 2.2 | —18.1 | —36.8
21 45.9 2.6 18.7 38.1
22 48.5 2.8 —19.4 —39.4 ¥
23 51.3 3.3 20.0 | 39.0
24 54.6 3.5 | —19.0 | —39.0
25 58.1 3.6 20.0 36.8 |
26 61.7 4.1 | —16.8 | —31.7
27 65.8 4.4 14.9 29.3
28 70.2 5.2 | —14.4 | —25.3

29 75.4 5.6 10.9 20.2

30 81.0 6.2 —9.3 | —13.3

31 87.2 7.3 4.0 8.1

32 94.5 7.3 —1.1 —5.8

33 101.8 9.3 1.7 1.7

34 111.1 0

Unit of time is 1/100 sec.
Unit of length is mm. on the original seismogram.
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Table TI.
A (r=141.75m) B (r=76.2m) .
=D pes(p: O\ F(p: arg —p- alm* . arg

pleyele) Tsec) | ooy PSPPI oy | o(pyry PSP @O prye

2.5 1040 | -4.80 —1.60 2.00 0.27 —0.82 0.32 | —1.89

37 10.33 | 045 0 | 0.17 | 3.14| —1.45 —0.19 0.49 | —0.13 | 3.27
4 1025 | -2.05 4.20 1.18 | 1.1z| 2.13 —0.37 0.52 | —2.97 | 4.09
5 10.2 6.70 2.40 1.42 | 2.79| 0.64 1.8 0.40 | 1.90| 1.89
6 0167 | 155 82| 291 | 2.65| —6.30 —7.8| 1.67 | —0.89 | 3.5
7 0143 | 26| 32.6| 4.67  1.65| 10.9| 15.1| 2.66 | 2.20 | 2.47
8 0125 | -392| 345| 652 | 0.72| —20.6 | —23.8 | 4.14 | —0.86 | 1.58
9 0111 | -55.5| -33.7 | 7.21 | —0.55| 24.2| 49.0| 6.08 | 2.03 |—2.58
10 |0.1 48.2 | —67.4 | 7.28 | —2.19| 9.0 | —71.9| 7.25 | —1.70 |-0.25
11 |0.0909| 41.8| 804 | 828 | 2.05 —60.1| 53.9| 7.34 | 0.73| 1.32
2 0.0833 84.4| 6.4| 7.06 | 3.07

12.5 [ 0.08 | 62.4| 109.1|10.05 | 2.09| 4l.4| —75.4| 6.88 | —1.97 | 4.06
13.333 [ 0.075 | —60.0 |~123.8 | 10.31 | —1.12 | —86.4 | —20.0 | 6.58 | —0.23 |—0.89
13.888 | 0.072 | —61.4 | 120.1| 9.71 | 1.10| —52.2| 78.8| 6.82 | 0.99| 0.11
15" | 0.0667 | —43.4 (~139.6 | 9.75 | —1.27| 98.6 | —14.0 | 6.64 | —3.00 | 1.73
16 | 0.0625 —50.4 | —89.4 | 6.42 | —1.06

16.666 | 0.06 | 45.3 |~128.1| 8.17 | —1.91 |—109.2 | 10.3 | 6.50 | 0.09 |—2.00
18.055 | 0.0554 | 103.3 | 82.2| 7.31 | 2.47| 93.5| 5l.2| 591 | 2.64 |—0.17
19.444 | 0.0514 |~116.6 | 46.3 | 6.45 | 0.38 | —43.7 —102.2 | 5.73 | —1.17 | 1.55
20 1005 | 52.6| 107.0| 5.96 | 2.03|—108.3  —19.5| 5.50 | —0.18 | 2.21
20.833 | 0.048 | 14.6 —118.2 | 5.72 | —1.69 | —30.1| 103.0 | 5.15 | 1.29 [—2.98
221222 | 0.045 | 65.2| 114.2| 592 | 2.09| 101.0 | —30.6 | 4.75 | —2.85 | 4.94
25 1004 | 1340 | 231 | 544 | —2.97 | —30.9 | 97.8| 4.10 | 1.26 |—4.23
27.5 |0.0364 | 121.8| —27.4 | 4.40 | —2:92 | —10.0 | —91.6 | 3.35 | —1.46 —1.46
30 10.0333| 118.5| —0.4| 3.95 | —3.14 | 35.4| 71.3| 2.65 | 2.03|-5.17
33.333 [0.03 | 34.0 -92.6| 3.34 | —1.92 | —62.7| 7.0 | 1.89 | 0.11 |—2.03
35 10,0286 06| 8.1| 2.46 | 1.58| 24.5| 59.8| 1.8 | 1.96|—0.38
36.111 [ 0.0277 | 68.4 | —57.2 | 2.47 | —2.44 | 64.0| 5.7 | 1.78 | 3.05|—5.49
37.5 |0.0267 | —65.1| 38.4 2.02 | 0.53| 4.0|—66.0| 1.76 | —1.63| 2.16
38.888 | 0.0257 | 78.9 | —17.3 | 2.08 | —2.92 | —69.4 | —6.1| 1.79 | —0.09 |—2.83
40 [0.025 | —54.1| —41.0| 1.70 | —0.65 | —25.6 | 64.2| 1.73 | 1.19 |-1.84
41.666 | 0.024 | 43.6| 31.0| 1.28 | 2.52| 52.5| —5.9| 1.27 | —3.03 | 5.55
2 jooms) 56.0 | —15.1| 1.38 | —2.88 |

: : —23.3| —43.7| 1.14 | —1.08

44.444 | 000225 | —0.1| »52.5| 1.18 | 1.57 | —o/-8| —6.5) 0.8 1 —0.171 1.74
45 | 0.0222 —28.2| 12.5| 0.68 | 0.42

47.222 [ 0.0212 | —56.2 | 18.5| 1.25 | 0.32| 2.6| 10.6| 0.23 | 1.81 —1.49
48" | 0.0208 6.5 13.8| 0.32 | 2.01

48.611 {0.0206 | 53.4| 12.0| 1.12 | 2.92| 1.5| 12:8| 0.27 | 1.69| 1.23

*ARCTAN {s(p;74)/c(p;7.4)} — ARCTAN{S(p;7y)/e(D;7 1)}
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Amplitude c(p;r) and s(p;r), which are shown in
i Table II.

By means of these results, we can
determine the spectrum distribution
function F(p;r) and the propagation
velocity V(p). F(p;r) is obtained from
(8.4) and (3.5) and is shown in Fig. 4,
while in Fig. 5 the graph A, versus
[ . nfe, is given, which may also serve as
. a kind of spectrum distribution for a
B . . rough purpose. V(p) is derived from
(3.9). But here occures some unexpected
difficulty in determining the numerical
value, which is caused by the many-
valuedness of the inverse trigonometric
function. Although we can determine

Ordinate; Amplitud‘e in arbitrary ARCTAN {S@ ; ')‘)/c(p; Ir)} uniquely, t}}ere
scale. is uncertainty of 2mz in the determina-

Abscissa; Frequency per second. tion of @:(p) which s necessary for

_ Notice that the form indicated by  obtaining the velocity V(p). (Cf. (2.16)
;hls method is similar to that in Fig. and (3.9). ARCTAN {S(p : 73,)/0(2) : 7’4)} _
’ ARCTAN {s(p; rp)/c(p; r5)} is involved in
Table II.) Hence we adopted the following method. We gave various
values of m in the formula (3.9) for each p, and plotted all the points in
the same figure. Thus we obtained Figs. 6a and 6b, which have same

A

(o] 10 20 30 40 50

o} 10 20 30 40 50
Frequency ( 7/ c«)
Fig. 5.

rhase Velocity (m/sec)
300+ “
ra-Tre = 6555m ()
200} '
. (2}
100}- ol oo . —13)
truroi Do . . )
(B
: 9
N
) Per}od (sec) | I\{:;
o .05 10 15 .20 25

Fig. 6a.
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contents, only the latter is plotted in log-
log-scale. The points in this figure are
naturally divided into several groups, each
one describing a smooth curve. Of course,
only one of them stands for the true dis-
persion curve, but we cannot easily
determine which is the true one. To get
rid of the false curves and discern the
true one, we employed the following
methods.

At first we made a graph showing
the relation group velocity versus period
by means of a conventional way of mea-
suring the interval of crest to crest. This
is easily performed without special trouble,
for we can use 2(fi..—t:) as a period and
rft, as a group velocity. Fig. 7 shows
this relation. On the other hand we
obtained the group velocity (U) from the

Velocity (m/sec)

300
-
@
e (3)
200} @
tete- (8)
LT Lt (e)
R 1L
T /...:‘(e)
L AT ()
|OO" . . .'/. o
. .'/'.::
. .-/'..’
. .l/...:.
AN
VA
50 / . °
5 10 20
Cycle (1/sec)
Fig. 6b.

data of the phase velocity. For this purpose we can conveniently use
Fig. 6b. As we can notice easily in this figure log V(p) and log p are
approximately connected by a linear relation, namely,

log V(p)=alog p+b .

Group Velocity
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Fig. 7. Broken line is the group velocity of the
curve (6) in Fig. 6a or 6b.

............ (5.1)
Now,
U_1dp
vV Vdf
_1dp /d(p/V)
vav/ 4v
_yar dp _
Vav <VdV ”)'
..... (5.2)

On the other hand, dif-
ferentiating the expres-
sion (5.1) by V, we get

V_‘ZZB‘:B ,
dV a
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therefore we have at once
UV=1/1-a).  ceeeeriinnni... (5.3)

Thus we can easily deduce the group velocity from Figs. 6a and 6b
corresponding to every curve in the figures. We chose a curve that
fits best for the one conventionally obtained in the Fig. 7. That is
the curve (6) in the Figs. 6a and 6b. Moreover the slope of this curve
0.60 coincides well with the theoretical value®,

Now, if we assume that the curve (6) in Fig. 6b represents true
dispersion curve,

log V(p)=0.60 log p +3.316 (c.g.s. unit) .  ..... (5.4)

Since the material constants have been determined by Kishinouye®, we
will employ those values given in his paper, viz.,

Vs=1.51km/sec ,

V,.=2.82km/sec ,

rzE(Vp/Vg')2=3-49=1.872 y

Poisson’s ratio=0.30 ,

V= 21/_1+72/r=1.69 .

Putting these values into the formula

1/57)
V= (03’5{ 1 2 }
12r ’

where , v=V/V,
w=pH|Vs=2anH| Vs, (n: frequency per sec.)
I"=(density of water/density of ice)
=1.09
we have as the thickness of the ice plate
H=31l.5cm,

which is in good agreement with the directly obsefved value by Kishi-
nouye (34cm.).

5) Y. SAT8, “Study on Surface Waves II. Velocity of Surface Waves Propagated upon
Elastic Plates,” Bull. Earthq. Res. Inst., 29 (1951), 237. Table VI.

6) loc. cit., 3).

7) loc. cit., 5). Table VI or expression (7.3).
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6. Conclusion

By applying the method of Fourier transform to the dispersed
seismograms, we can obtain the dispersion formula and the spectrum
of the vibration near the origin. For, the argument of the Fourier
transform indicates the velocity of the waves, while its absolute value
gives the spectrum of the given disturbance. The obtained dispersion
curve agrees well with those arrived at by the conventional method of
measuring the interval of crest to crest, which gives only several
isolated points and its precision is decidedly inferior to that of the
former. Forms of the spectrum curves calculated by means of two
independent observations coincide pretty well.

Thickness of the ice plate estimated from the dispersion curve,
which was obtained by the method here proposed, is 31.5 cm., while
the value given by Kishinouye from the direct measurement is 34 ecm.»
The fact that the discrepancy is quite small implies the good agree-
ment of the theory on the elastic plates, which was developed several
years ago, and the observation made upon the lake ice. Also, the
author believes, it assures the utility of the method here proposed.

The expense of the present study was partly defrayed from the
Fund of the Scientific Research from the Ministry of Education.
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In the following table we will show the sense of rotation of particle orbit and the
order of magnitude of displacement amplitude when the wave lengths are sufficiently long.

IIy~ —branch
(II) Plate and infinitely] (IIl) Plate and water
(I) Plate deep water with finite depth
Upper surface of the uiw=0(¢) wiw=0(¢) wiw=0(¢)
elastic plate O O O
Lower surface of the uiw=0(%) w w=0(¢) uw=0(¢)
elastic plate @) Q Q
w*lw=0(1) u*w=0(1/¢)
Hggg surface of the wrw=0(1) wFw=0(1)
Q Q
*lw=0(1/¢)
P Decreases wrw
Bottom of the liquid exponentially w* ;0

Direction of propagation of waves is assumed to be —».

IIy* —branch -

(6 =2n/wave length)

(IT) Plate and infinitely | (III) Plate and water
(I) Plate deep water with finite depth
pp<7* ‘ oy >v* o< v* } D> 1*
Upper surface of the wiw=0(1/¢) wiw=0(1/¢) wiw=0(1/%)
elastic plate Q Q Q
Lower surface of the wiw=0(1/¢) wiw=0(1/¢%) w:w=0(1/3)
elastic plate O O ’ 7 O Q

u*:w (lower surface)

u*:w (lower surface)
(1

Upper surface of the =0(1) =
water w¥iw =0(1) w¥iw =0(1)
QO | AN |0
Decreases Not u*lw=0(1)
Bottom of the water explonen- decreases w* =
tially et

Direction of propagation of waves is assumed to be -».

(é=2n/wave length)

When vo>1*, or the limiting velocity of I7,* is larger than that of the sound waves
in water, the surface waves in the true sense cannot exist in a plate covering infinitely deep
water. (bo?=4(—-1+v)/v%, Y=Vp/Vsand 1*=V*/Vg)




