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1. Introduction.

Among the various properties of Love-waves, the dispersion seems
to be the most remarkable and well-known one, and makes the matter
greatly complicated as well as interesting. Although Rayleigh-wave
when propagated in a semi-infinite elastic medium does not show such
a property, the actually observed waves of Rayleigh type are known
to be dispersive. This paradox, after remaining unsolved for a pretty
long time, was made clear by A.E.H. Love® some forty years ago.
In his celebrated memoir he calculated the velocity of Rayleigh waves
propagated upon the layered medium and proved that the velocity is
the function of frequeney. Now, the next question which naturally
occurs is why Love- and Rayleigh-waves propagated in the layered
structure show dispersive nature. Are there any surface waves, besides
Rayleigh- and Stoneley-waves, which are non-dispersive? We will answer
this question in the following sections.

2. Dimensional analysis.

We will employ the following notations;

V; Velocity of surface waves.

L; Wave-length.

4, p; Lamé’s constants.

p; Density.

If the surface waves are propagated upon a semi-infinite body, its
velocity must be expressed in the following form;
V=FiQ, p,p, L) . Ceebeecereetsaannan 2-1)

Now, from the consideration with respect to dimensions, V must have
the form;

1) A.E.H. Lovg, Some Problems on Geodynamics (1911).




350 Y. SaTo. [Vol. XXXII,

Ve (:}i>%F( i) e, @.2)

Thus the wave-length L cannot have any relation with the velocity, or
in other words, the waves are non-dispersive in this case.

If, however, the medium has a layered structure, which has some
definite thickness, say H, we have the following relation

V=GV, ¢ 0,0, L, H)y,  ceveennnnnn. 2.3)
where the new notations have the following meaning :

2, ¢'; Lamé’s constants in the part of layer.
p’;  Density in the part of layer.

By a similar consideration as with the former case, we have

i A A p p L

V= (./‘. )2 G( LS. ) e e, . (2.4)
P pppp H

In this expression the function G, involves a variable L/H, which fact

implies the dependency of V on L/H, namely the dispersive property of

this case. Thus it was madé clear that the existence of a layer makes

the surface waves, which are propagated in this medium, dispersive.

3. Non-dispersive surface waves.

In the previous paper” we have deseribed the examples of the types
of surface waves with one- and two-phase. We will now pick out all
the types of waves which are non-dispersive, i.e. the surface waves
existent in the medium without layer structure. The symbolical ex-
pressions of the type of waves in a non-stratified medium are the
following seven, the existence of which will be examined in the following
section.

1) [E], 2) [E],
3) [EET, 4) [EE],
5) [g] 6) [EEE] ............. (3.1)

“2-) Y. SAT%), “Study on Surface Waves XI. Definition and Classification of Surface
Waves,” Bull. Farthq. Res. Inst., 32 (1954), 161.
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3.1 Examination of the seven types of waves.

We will now examine the above seven types of waves one by one.
3.11 [E] ’
We have proved in our former paper that the waves of this type

may be the SH-waves or the sound waves in an elastic liquid, but neither
of them can satisfy the boundary condition of free surface.

3.12 [E]

In this ease also no wave satisfying the fundamental wave equation
and the boundary condition can exist.

3.13 [EE]

This is the well-known Rayleigh-waves.

3.14 [EE]

Taking the displacement potential

{ d=Aexp (az+ifzx+ipt), a=v'f=r, (3.2)
¢=Bexp (fz+ifx+ipt), f=V fi—k*,
(z-axis is taken upward and the medium is in the negative part of z.)
{ h=plVe,  Vi=y/{G+2)P}

k=p|Vs, Vs=1v/(¢lp) »
we have

u=—a¢1+ o¢ =Aif-exp (az+1fx+ipt)
ox oz ]
+ Bf-exp (Bz+ifx+ipt),

/
w=2% _ ¢ =Aa-exp (az+1ifx+ipt)
9z oz

—Bif-exp (fz+ifa+ipt) .

If the boundary surface is expressed by z=0, the condition at this
plane is

u=0, w=0. it (3.4)
Therefore
Aif +Bf=0,
{ Aw—Bif=0,  crrrerrereeeseesee (8.5)

Eliminating 4 and B we have
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2 __
filmaf (3.6)
=l/f“—k""l/f2—lc“’ .
By a glance it will become recognized that this equation cannot be
satisfied by the real values of « and 3. Consequently we must conclude
that the waves of the type [EE] also cannot exist actually.

E
3.15 [—ET]
If we take
{ v=Aexp (—fz+ife+ipt), (3.7

v'=A"exp (f'z+ifx+ipt),
where

F=v/(f= k"),
K =p|V,
Vi'=v'(i'[p") ,
the next conditions must hold at the boundary surface z=0.
Continuity of displacement; A=A (3.8)
Continuity of stress; Ap(—p)=A"p'p’ .
These conditions cannot be satisfied simultaneously, so we must conclude,

in this case also, that the surface waves of the type [%:' do not exist.

3.16 I:EE]

E

Next we will examine the type [WE‘* .

In the part of solid, we take
{ A=dexp (—aztifetipt), (3.9)
o=Cexp(—pz+ifa+ipt),
where A is the dilatation and & the component of rotation vector.
Since
o'

oA Gl
——=A4+2n) = 4 p
L ot* ( ") ox ! oz

-

*w oA &
T —(Q4-2p) 22— p 9@
P p (1+2p) e M a

we have
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e _p_;; {(A+2¢) Ai f -exp(—az+ifa+ipt)

+ pC(—pB)-exp(—pz+ifa+ipt)},

..(8.11)
w= ——L_ {(A+24) A(—a)-exp(—az+ifa+ipt)
Py
—pC(if)-exp(—~Bz+ifz+ipt)},
and
z”z=AA+2/1—aﬂ
oz
=,u|:{1l— — »ggji}A-exp( -az) +2_—Z‘f£0-exp(—-ﬂz):|
1 x k* ..(8.12)
- exp (efx+pt) .
In the part of liquid we have
o o*u A*E.AW ’
ot* o
P W™ o 0A* R RRCRREETTEE (8.13)
ot* 0z
where the asterisk implies the quantity in the liquid.
Putting A*=Bexp (a*z+1fx+ipt)
we have
« ‘ u*z—%f:—zBexp (a*z+1fa—ipl),
'ZU*=—%;BQXD (akz_*_ifx_?;pt) ,  treeereeeeer (3.14)

zz*=21*Bexp (a*z+ifax—ipt) , wz*=0.

The boundary conditions are the continuity of the vertical component
of displacement and that of the stress. Hence we have

Ky o p
h* k? R* ’
Z 2“2 'I;fﬂ *
AN A—]— 2 I C=2 B, ........
{ 7 h? } k 8-15)
22f« F-2f
wra, =2 o
x e C=0
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We will introduce the following new notations :
=V Vi=Q+2p)/n
re=V*V =R,
r=p*lp,
v=V|V,=Fk[f, (V is the velocity of the surface waves.)
Introducing these relations we have
Bjp=Ir,
Blf=v(1—v),
alf=v(A-vr),
o[ f =1/ A=),
Then eliminating A, C and B from the expression (38.15), we have

V(A=v[7) 1 V(1 —v[r*)
-2 —2/1-v) - Iy =0, ..(3.18)
-2/ 1=y =2 0

or
1 -+ 2 [l 2 [ K2 1 1 2 :
,, [ » 1/(1_1)/T)+1/(1_1)/T ).( -— 1))

=V (=1 1/ (L= vfr) -/ (L =) .
3.161 We will examine the equation (3.18)’ and investigate the
range of existence and other properties of this wave.
First we will assume that the solid is perfectly rigid, and glance
at the nature of the matter briefly. In this case

TPE=00 , iiiiierereceraeeaaeaan

and the equation (3.18)" takes the following simple form
1 Fot+ /=1 r) - (1— »;— 1)2)2=1/(1—1)‘~’)1/(1—1)"’/7'*3) .
(3.20)

Now, this is an expression connecting I',y* and v, and since it
does not contain any quantity such as period or wave length, the waves
in question are, as have been expected, non-dispersive.

Solving the equation numerically we ecan obtain the relation velocity
v(=V]|V,) versus I'(=p*[p) with a parameter 7*(=V*/V,). The following
table and figure show this relation explicitly. As is clear from the
figure, we can find a positive solution of v corresponding to any set of
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values of y* and I". This is a very conspicuous property when compared
with the Stoneley waves which can exist only under a very restricted

conditions.

By a similar method we
can get the solution when
the solid is not rigid and 7y
has a finite value. The re-
sults of the numerical calcu-
lations when r*=4, or 1=2p¢
(cf. Table IT and Fig. 2) and
=38, or 2=y (cf. Table III

V/Vg

(Ve/ Vs)2= oo
(v*/ Vs)2=°°
2

and Fig. 3) are shown here. 2f
Even if the parameter ¢* 5
takes other arbitrary values, ¢ ' 2 — s 8
we can easily infer, from Fig. 1.
Table I. Values of I" (=p*/p) when y*=oo, (incompressible).
> - ™ 10 2 | 1/2 1/3 1/5
0 0 0 ) 0 “ oo o o 0o

0.02 0.14142 | 108.5 108.4 108.0  [107.4 106.3 105.2 | 102.9
0.10 0.31623 | 18.47 ' 18.38 17.96 ‘17.52 16.52 15.46 | 13.06
0.12 0.34641 | 15.13 15.04 14.67 14.20 13.19 12.11 9.572
0.16 0.4 10.866 = 10.779 | 10.403 | 9.959 8.961 7.836 | 4.860
0.18 0.42426 |  9.560 9.474 9.120 | 8.657 7.648 6.485 | 3.023
0.20 0.44721 | 8.443 8.358 8.010 ‘ 7.552 6.540 5.334 0
0.25 0.5 6.426 6.345 6.011 | 5.565 4.544 3.213

0.30 0.54772 | 5.074 4.998 4.678 | 4.245 3.209 1.605

1/3 0.57735 | 4.394 i 0

0.36 0.6 3.938 3.867 3.566 | 3.151 2.084

0.40 0.63246 | 3.365 3.297 3.010 ‘ 2.607 1.505

0.46 0.67823 | 2.683 2.621 2.365 | 1.972 0.7590

0.48 0.69282 | 2,492 2.431 2.171 . 1.797 0.4983

0.50 | 0.70711 | 2.314 2.255 2.004 : 1.636 0

0.6 | 0.77460 |  1.583 1.535 1.324 | 1.001 |

0.7 | 0.83666 | 1.022 | 0.9858 | 0.8242  0.5599

0.8 1 0.89443 |  0.5451 i 0.5228 | 0.4222 © 0.2438 |

0.9 l 0.94868 0'067791 0.06467, 0.0504  0.02144 ‘

0.91 1 0.95304 | 0.012011  0.01231  0.0106  0.003873

0.912618 * 0.95531 0 ! o 0 l 0 :
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o0 2 1 1/2

0.31623
0.12 0.34641
0.16 0.4
0.18 L 0.42426
0.20 0.44721
0.25 " 0.5
0.30 | 0.54772
1/3 0.57735
0.36 0.6
0.40 | 0.63246
0.46 0.67823
0.48 0.69282
0.50 . 0.70711
0.6 0.77460
0.7 0.83666
0.8 . 0.89443

0.869599 |  0.93252

| V/Vs the form of the expression,
(Ve/Vs)P=4 that the equation has a
(V¥ Vg)E= o solution, hence some special
2 surface waves can propagate
along the plane of separation
of the solid and liquid medi-
um for any given set of
values of /' and 7*.
£/ The eurves in the three

s . figures all show the general
6 8

feature of monotonously
decreasing. If, however,
we glance at the portion I"'=p*/p=0, we shall find some peculiar aspect,
for some of the curves start from a single point, while the others do
not. (Cf. Fig. 4.) Now, we will explain this matter briefly.

Fig. 2.

Putting I'=p*[p=0 ceeees(3.21)
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Table III. Values of I" (=p*/p) when 1*=38, (A=p).

ST o o 2 e 1/5

b‘l\ b \\ l |

0 0 oo oo ) i = ) oo

0.02 0.141421 65.76 65.43 | 65.10 : 64.43 - 63.76 62.39
0.1 0.31623 12.30 11.99 | 11.67  11.00 = 10.29 8.700
0.12 0.34641 10.064 9.721 | 9.441 | 8.774 . 8.051 6.365
0.16 0.4 6.928 6.646 | 6.350 | 5.713 | 4.99 3.008
0.18 0.42426 6.323 6.032 | 5.726 i 5.059 | 4.289 2.000
0.20 0.44721 5.600 5.313 | 5.009 | 4.338 | 3.542 0
0.25 0.5 4.247 3.973 | 3.678 | 3.003 = 2.124

0.30 0.54772 3.337 3.076 | 2,792 ©  2.110 1.055

1/3 0.57735 2.878 ; 0

0.36 0.6 2.568 2.326 | 2.055 = 1.359 |

0.40 0.63246 2.178 1.948 | 1.687 0.9742

0.46 0.67823 1.711 1.501 | 1.257 0.4839

0.48 0.69281 1.578 1.376 | 1.138 0.3156

0.50 0.70711 1.455 1.260 | 1.029 o

0.6 0.77460 0.9403 | 0.7867 | 0.5947 |

0.7 0.83666 0.5322 | 0.4291 | 0.2915 | ‘

0.8 . 0.89443 0.1676 | 0.1298 | 0.07497 |

0.845306 i 0.919405 0 | 0 0
Vs

(Ve/Vs)2 = 3

Y

2 4 6 r 0O 2 4 6 8 10 12 14 16
Fig. 3. V/Vs=v, p*/p=T. Fig. 4. V[/Vg=v, V¥/Ve=x*,

into the equation (8.18)’,we have
VA=v[r*) {1—v/2P =1/ (1=} 1/(L—0[)}=0. ......(3.22)

It the factor 1/(1—v*/r**) does not vanish, the expression in the parenthesis
must be equal to zero, namely
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(=122 =1/ (L= )V A=112) ,  everrnneens (3.23)

which gives the velocity of ordinary Rayleigh-waves. This is a very
natural consequence, for the condition I'=p*/p=0 implies that the
liquid is infinitely rarefied. However, contrary to our common sense,
if the sound velocity in the liquid is smaller than that of the Rayleigh-
waves in the solid medium (viz. V*< Vi), the case is different.

Under such a condition we must abandon the equation (3.23) and
adopt

v=7*. . eeee(3.24)

for the velocity of surface waves of [E]-type must be smaller than any
other velocity of bodily waves. The result of calculations is shown
in the Fig. 4, which will readily show the above circumstances.

EE:‘
3.1 e —
! I:EE

This is the well-known Stoneley waves, whose range of existence
was examined precisely by K. Sezawa® and K. Kanai some fifteen years
ago.

4. Conclusion.

Thus our examination of the non-dispersive surface waves was
finished.

From the consideration through dimensional analysis, it was made
clear that the non-dispersive surface waves are those which are propa-
gated upon the non-stratified structure of medium. Possible types of
surface waves which do not show the dispersive property are, as has
been proved in the preceding section, the following three and no other
type is conceivable.

== EE EE
[FE], —E—:I and [ﬁ . cereseeesaa(4.1)

Since the first and the third are already well-known waves, we
examined the second type which always exists unconditionally, and
obtained the velocity as the function of F(E—p*jp) and 7¥*(=V*/V)).

3) K. SEzawA and K. KANAIL, “The Range of Possible Existence of Stoneley-Waves,
and Some Related Problems,” Bull. Farth. Res. Inst., 17 (1939), 1.
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25. REWOMIE XIL
LD 12 RE K

WERET P2 RO sk

Lo IRRR 2 {RI2 B L — V) — I3 U 2 2 5 WEISHI BN T 512 bz 53, SEKC
B SN2 b ORI S T k2R, CHIBHERY ETE 2 2% & EZALNTH 2H, B
DD 2R RIZ 5 7 T IR3RIT 4. ROTENREDHEBRTFONKICE 50T
HDIW X, V=Y =P, 2 v ORI S VETNERTFEL VDO TH S 5D,
CNSDOMERLITICHD BT a.

2. ERIKRIEIZ AETROEE V i

V=F1(A 1, 0; L)  coiiiiii ittt 2.1

LM AETH 2D (4, wiz Lamé OFEE, p BFEE, L BIE), ®afmcihud, chid
V(2 A 2.2

(&)kr (%) 2.2)

DIZZIE SN AT 5. OB IEE L 28700, #EDTHE V IZEEIC KL .
COTE, ED {23 S TAMIEORNEERT.

UL TC, & UERME (Zofis % H; Lamé R A, o' WEE o' E45) WD 261,
R T S ORIk, Wb

V=G, p 10, 0, L H)Y i 2.3)
DIz & 2TNIE 505, LERBEOEANS, ThizX

v=(2log (A, A s el LYy 2.4

(p) -(.u n « 0 H) 2.4)

ETPNBL TR 650, Cozld LIH 2ZMEUTE2. 23D V 3iEowieEndh, o
W2 Rg . BLRic kDT, MO FEPRIE S HIES S UD AL Th 29050 5 & 2807,

3. fE0T, AMEED VML, F2H U IETIRERIZ 2 3 0Ok 6N AR T
HHH, TOLTORRFRETIEROMY TH 5.

n (E], 2) [E],
3) [EE], 4) [EE],

5) [%] 6 [EI'@L'] ................... 3.1)

. EE
7
o [EE
COMT, 1),2), 4), 5) 1T 3 b ORTTEL ZNTATEHE SN 3. 3) Br— ) i, 7) 12
ZAbor—HELUTELASNTNDE DS, &N TIRESETHNSN TN 6) DFIOD § DIz DN T
VADI R BT, CAULEIEE DR EEE K E ik & O BTS2 TR I TH 5 .
% & 3 RN

%I’b’* Vd-v2/y)4+VvV(QA - nZ/y*ﬁ)-(l - % n’-’)z
=V =02 VI -0y V(I =-02y*2) L (3.18y
nu v=V/Vs,

7EVP/VS H 7*EV*/VS » rEﬁ*/P
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Vs, Vp, V¥ 3k x@iArho Pk, Mk S, kRO FHEOBE.

AL L= HDTFAEDPNHINCIR S N T 2010 X oo, IROFEW I 1355 & TR F e
U, 2O Vi T, v v OERE L TE~H1%. (Table 1, 11, III; Fig. 1, 2, 3, K AL
TN THENT &, T(=p*/p)->0 OB T LDoTERIZ

V(L —u2p*2)e {(1 =12/2)2 — V(1 =0%)- V(1 =p2/y2)} =0

Lish, COfFEN ODA‘ELCJO'CE}'\BIN HHEEL, WAROEEOEED RAHDL — Y — D

7*1 (VI 'L)lc]gh) J: )/’"“'{ j’f‘l V]t:),)lexgh lCUc‘: l./ < ’ d\As 21 {i TZILM\m(D ﬂ)(aj Ji ‘ub\& l/
2t 7. (Fig. 4 21R).

/l_!: Cd o TAMYED VR FTR I NITT LITE 5.

o~ /‘




