Master Thesis

Research on Dynamic Features
Derived From Speech Structure

BEROBENRRNSE Hjén%EJJEI’Jﬁ&&
‘(—ng-%L 7u

9

48-106415 Shinya Shimizu

Department of Information and Communication Engineering,

Graduate School of Information Science and Technology,

the University of Tokyo

Feb. 8th, 2012

Supervisor : Prof. Nobuaki Minematsu






Abstract

Due to the spread of smartphones, automatic speech recognition (ASR) systems are
getting more and more popular as an interface to computers. While their successes have
shown that the ASR systems have reached a practical level, the basic algorithm of state-
of-the-art ASR systems is still Hidden Markov Model (HMM) based algorithm, which has
been the de facto standard algorithm for ASR since 1980s. The HMM-based algorithms
assume the frame-by-frame Markov property to decrease the calculation amount to the
realistic level. Because of the assumption, long-term features, which cannot be defined for
each time frame, such as duration of words, can never be considered. Researchers have
developed various methods to improve the performance of ASR systems with the constraint
of Markov property. However, the ASR algorithms are undergoing a paradigm shift. The
new paradigm algorithms don’t assume the Markov property have been proposed, and they
showed better performance than HMM-based old paradigm algorithms in the practical
calculation time. Those new paradigm algorithms can consider long-term features, which
can never be considered in the old paradigm algorithms. Therefore, effective long-term

features are now being investigated by researchers.

Speech structure is one of the long-term features, which can potentially be a effective
feature for the new paradigm algorithm. Speech structure was proposed as a feature
that is invariant for non-linguistic variations, such as the difference of speakers, recording
environment, etc. While the speech structure has been applied to several applications, such
as pronunciation proficiency assessment, and has shown the good performance, it has not
been applied to continuous speech recognition, because it is not a frame-by-frame feature
but a long-term feature and cannot be used as a feature for the old paradigm algorithms.
On the contrary, the new paradigm algorithms can leverage the speech structure. An
preliminary experiment on combining the speech structure with a new paradigm algorithm
was already carried out and showed the good performance.

However, the current implementation of speech structure is still immature and can be
improved in some aspects. Dynamic feature is one of them. Dynamic features are defined
as temporal derivatives of static features. They were firstly proposed in 1986, and are now
effectively used in almost all the speech systems including ASR, speech synthesis, speaker
identification, etc. However, no algorithms to leverage dynamic features in speech structure
was proposed, and dynamic features are omitted in previous studies on speech structure.

To solve the problem, I propose two algorithms to leverage dynamic features derived
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from speech structure, differential speech structure and trajectory speech structure. By
using these algorithms, the dynamic features, can be effectively used for speech systems
based on speech structure. Several experiments were carried out to show the effectiveness
of proposed methods. By using the differential speech structure 11.0% relative decrease in
word error rate was obtained in an experiment of isolated word recognition. Furthermore,
by using the trajectory speech structure, 28.5% relative decrease in word error rate was
obtained in an experiment of N-best rescoring of isolated word recognition. These results
show that the proposed method works effectively and contributes to the speech structure
as the feature for the new paradigm algorithms.
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Chapter 1

Introduction

1.1 Background

The smartphone revolution has completely wiped out the skepticism whether automatic
speech recognition (ASR) systems can be a next-generation interface to computers. Siri,
which is an intelligent software assistant for iOS including ASR and natural language
understanding system, is widely used among iPhone users to operate iPhone by their voice.
Google, which provides Android OS and is the almost only competitor to Apple in the
smartphone OS market, is providing Google Voice Search and it is also widely used among
Android users. Although users often feel reluctant to speak to their laptop or desktop
computers, they can naturally speak to their smartphones. Thanks to smartphones, the
public interest and demand for ASR systems are rapidly increasing.

While their successes have shown that the ASR systems have reached a practical level,
the basic algorithm of state-of-the-art ASR systems such as [1, 2, 3] are still based on Hid-
den Markov Model (HMM), which has been the de facto standard algorithm since 1980s.
One of the intrinsic difficulties in ASR is the segmentation of utterances. In a simple term,
the basic strategy of HMM-based recognizers is a template matching, which collects the
features of each phonemes in advance and selects the most likely phoneme by comparing
the collected features and the input features. However, because the length of a phoneme is
not constant, to evaluate how likely an utterance is to consist of a certain word sequence,
recognizers have to determine a segmentation of the utterance, which part of the utterance
corresponds to which phoneme. Although recognizers can determine the best segmenta-
tion by evaluating all the possible segmentations, it is virtually impossible because of its
large calculation amount. The HMM-based recognizers avoid this problem by assuming
the feature sequence, which usually consists of FF'T spectrum-based features of short time
frames, are generated by a Markov process. Because it means the generation of the feature
at each time depends only on its present state and is independent of its past and future,
the segmentation problem can be formulated as a shortest path problem for a graph with
edge path costs and the best segmentation can be calculated not by evaluating all the
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speech signal extracting time-by-time segmentation and
spectrum feature evaluation by HMM
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(2) the old paradigm algorithm, HMM-based recognizer

extracting time-by-time
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time-by-time spectrum feature
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evaluation by a certain model

¢ duration features

. (A segmental CRF model)
® pitch-pattern features

(b) the new paradigm algorithm

Fig.1.1: The overview of ASR algorithms in the old paradigm and the new paradigm

possible segmentations but by a Dijkstra-like fast algorithm. However, the assumption
of the Markov property has several disadvantages. By definition, the Markov processes
cannot model the long-term relationships. For example, pitch pattern, which often distin-
guishes interrogative sentences and declarative sentences in many languages and sometimes
distinguishes the meanings of words in pitch accent languages such as Japanese, is con-
sidered as a long-term feature and cannot be modeled by HMM. Actually, HMM-based
recognizers cannot distinguish homophones that can be distinguished by pitch pattern,
and can distinguish them only by their context. Although the HMM-based recognizers
have these disadvantages, various extensions to HMM are developed and they have made
the HMM-based recognizers successfully applied to many systems.

However, the ASR algorithms are undergoing a paradigm shift. While the old paradigm
algorithms, HMM-based recognizers, execute a segmentation and its evaluation simultane-
ously by assuming the Markov property, the new paradigm algorithms do them separately.
In the new paradigm, firstly they segment an utterance by assuming the Markov property

and obtain a segmentation, and secondly they concatenate additional features including
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long-term features and evaluate them without assuming the Markov property[4, 5, 6, 7]
(Fig.1.1) . In other words, they use the old paradigm recognizers as a segmentation
machine. In the new paradigm, long-term features that cannot be modeled in the old
paradigm, such as duration of words, can be modeled[6]. Speech structure[8] is one of
the long-term features, which can potentially be a effective feature for the new paradigm
algorithm.

Speech signals contain various kinds of information, such as linguistic messages, speaking
styles, speaker identities, recording conditions, etc. For example, in many cases, spectrums
of women’s speeches have higher energy in high frequency region than that of men’s even if
the contents of the utterance were completely same. Because ASR is a system that extracts
linguistic messages from speech signals, such non-linguistic variations have to be canceled.
To solve the problem, feature adaptations, which transform the features of utterances
by a certain mapping function, and model adaptations, which transform the recognizer’s
model to get close to the speaker of input utterance, are often used[9, 10, 11, 12, 13, 14].
However, such adaptations are reported to be still ineffective in some applications, such
as children’s speech recognition [15]. To solve this problem, speech structure, which is
completely different from the conventional adaptation methods, was proposed[8]. In speech
structure, an input utterance is converted into several distributions of spectrum feature,
and the distances between the distributions are adopted as features that represent the
utterance. By using f-divergence , which is mathematically proved to be invariant with any
invertible and differentiable transformation, as the distance measure, the speech structure
is a invariant representation for non-linguistic information, which is often approximated as
some transformation. It was shown that speech structure works effectively in pronunciation
assessment[16, 17, 18, 19]. In addition, several ASR algorithms based on speech structure
have been proposed|20, 21, 22, 23, 24, 25]. Although it is difficult to combine speech
structure with the ordinary HMM-based ASR systems because speech structure is not a
frame-by-frame feature, it is possible to combine it with the new paradigm algorithms,
which can consider long-term features. Speech structure can potentially be a effective
feature used in the new paradigm algorithms. However, the implementations of the speech
structure is still immature and can be improved in some aspects. Dynamic feature is one of
them. Dynamic features are defined as temporal derivatives of static features. They were
firstly proposed in 1986[26], and are now effectively used in almost all the speech systems
including ASR, speech synthesis, speaker identification, etc. However, no algorithms to
leverage dynamic features in speech structure was proposed, and dynamic features are

omitted in previous studies on speech structure.
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1.2 Objectives of the study

The objectives of the study are to investigate the methods to leverage dynamic features in
speech structure, and to improve the performance of ASR using speech structure. I propose
two algorithms to leverage dynamic features derived from speech structure, differential
speech structure and trajectory speech structure. By using these algorithms, the dynamic
features, which were omitted in previous studies, can be effectively used for speech systems
based on speech structure.

1.3 Organization of the thesis

This thesis consists of 6 chapters. In chapter 1 (this chapter), the background and the
objectives are introduced. In chapter 2, the ASR systems in both the old paradigm and
the new paradigm are introduced. In chapter 3, the basic algorithm of speech structure
and its applications are introduced. In chapter 4, two proposed algorithms to derive dy-
namic features from speech structure are introduced. In chapter 5, three experiments are
introduced and the effectiveness of proposed methods is shown. Finally in chapter 6, the
whole thesis is summarized and several future works are introduced.



Chapter 2

ASR systems

In this chapter, the basic procedures of ASR in both the old and the new paradigm
are introduced. An ASR system consists of an acoustic model, which models the acoustic
feature, a language model, which models the acceptable word sequence, and a decoder,
which searches for the solution using an acoustic model and a language model. Because
acoustic models are focused on in this thesis, acoustic models are mainly introduced and
the details of other parts are omitted.

2.1 Basic procedure of HMM-based ASR

The basic procedure of ASR in the old paradigm is shown in Fig.2.1. Firstly, X, a se-
quence of acoustic features which are usually FFT spectrum-based features, are extracted
from speech signals. Secondly, using an acoustic model and a language model, a decoder de-
cides which word sequence is most likely for the feature sequence. The process of obtaining

the most likely word sequence is formulated as

A

W = argmax P(W|X), (2.1)
W

where W is a word sequence, X is the input feature sequence, and W is the word sequence
selected as the recognition result. Because it is difficult to directly model P(W|X), the
probability of a word sequence W given a feature sequence X, Eq.(2.1) is changed using
Bayes’ rule as

W = argmax P(W|X)
_ PX|W)P(W)
= argé/nax PX)
= argvrvnax P(X|W)P(W). (2.2)

A model to describe P(X|W), the probability of an acoustic feature sequence X generated

from a word sequence W, is called acoustic model. On the other hand, a model to describe
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speech signal feature sequence W = argmax P(W|X)
w

WM»«WWM |$ ’;}:\”;"ZJ...).( ........... i |$ Decoder |$ W

PX|W) 7 K P(W)
Acoustic Language
model model
~— — @

Fig.2.1: The overview of ASR in the old paradigm

P(W), the probability of a word sequence W, is called language model. In this paradigm,
a word sequence W that maximize the joint probability P(X, W) = P(X|W)P(W) is
selected as the recognized result.

2.2 Acoustic features

2.2.1 Cepstrum

Cepstrum is the most widely used acoustic feature in ASR. The procedure to calculate
a cepstrum from a waveform is shown in Fig.2.2. Firstly, a short time period, which
is usually several tens of milliseconds and called as “frame”, is clipped from the input
waveform. Secondly, the spectrum is calculated by Short Time Fourier Transform (STFT).
Finally, the cepstrum is obtained by applying Inverse STEF'T to the log spectrum. Because
the shape of vocal tract, which makes the feature of phonemes, affects the low-order parts
of cepstrum, usually the low-order parts are adopted as the cepstral feature.

2.2.2 Mel scale cepstrum

It is known that humans’ perception of sounds is not linear in frequency domain. The
perception is log-like, and its resolution is high in low frequency region and low in high
frequency region. Mel frequency f,,¢ is defined as

et ) = 2595 Toga (1 + 225). 2.

Several acoustic features that consider these characteristics of humans’ perception are pro-
posed and Mel-Frequency Cepstrum Coefficient (MFCC) is the mostly used one. To cal-
culate MFCC, mel frequency spectrum is first obtained by a filter bank analysis using
mel-scaled triangle windows shown in Fig.2.3. Then, MFCC is obtained by applying Dis-

crete Cosine Transform (DCT) to the mel frequency spectrum.

—6—
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Fig.2.2: Cepstrum analysis
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2.2.3 Delta cepstrum

Although a cepstrum represent a spectral feature at a time frame, it is known that the
time variation of the feature is also important for humans’ perception. As a feature that
represents the time variation, delta cepstrum (Ac) and delta delta cepstrum (A%¢) were
proposed. They are defined as first-order and second-order coefficients of the quadratic
approximation for the time frame and its adjacent L frames, and calculated as

L
__ 7 TCiir
Ac; = Z—L—% (2.4)
ZT:—LT
L 2
__rlaT® —ay1)ciy
AQCt _ ZT—*L< 0 1) t+ : (25)

Zfsz(@aO —af)

where ay = Y 74 ar =8 7% a0 =325, 1, and ¢ is the cepstrum of t-th frame.
It is shown that using the concatenation, @, = [¢f, Acf, AzctT]T instead of ¢; improves

the performance of recognizers significantly[26, 27].

77—
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Jmel (f)

Fnel (f) = 2595 logio (1 + £/ 700)

Fig.2.3: Mel frequency and triangle windows in mel scale

2.3 Acoustic model

2.3.1 Hidden Markov Model

Acoustic models describe P(X|WW), the probability of an acoustic feature sequence X
given a word sequence W, and Hidden Markov Model (HMM) is the mostly used model
(Fig. 2.4). HMM is a finite state machine, which has output distributions for its states.
In Fig.2.4, S; is the i-th state, a; is the transition probability from S; to Sii1, b;i(z) is
the output probability of a feature x from state S;. Although any transitions from any
states are accepted in general HMMs, only transitions from S; to S;1; are accepted in the
HMMs used as acoustic models. That is because each state represents a phoneme (or a
sub-phoneme) and the order of the phonemes have to be maintained. Gaussian distribution
or Gaussian mixture distribution are usually used as the output distributions b;(x). For
ASR, HMMs for each unit, such as word or phoneme, are trained using a certain speech
database in advance.

2.3.2 Training of HMM

In the training of a HMM, parameters 6 = {a;, b;(x)} are trained with some criteria.
Although several new criterion to train HMM has been proposed recently, Maximum Like-

lihood (ML) estimation, which has been a de facto standard since 1980s, is introduced

—8—
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dil 22 33
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X X X

Fig.2.4: A left-to-right Hidden Markov Model

here. In ML estimation, 6 is estimated to maximize the likelihood of the model for given
data X as

0 = argmax P(X|0), (2.6)
0

where 6 is the trained parameter. However, Eq.2.6 cannot be solved analytically. To
estimate the distributions {b;(x)}, the alignment, which features belong to which state, is
needed, and to estimate the alignment, the distributions are needed. Therefore, Baum-
Welch algorithm, which estimates the alignment and the parameters iteratively, are used to
obtain a local optimum. In isolated word recognition systems, HMMs are constructed for
each word. On the other hand, in large vocabulary continuous speech recognition (LVCSR)
systems, it is usually challenging to prepare speech corpus large enough to construct HMMs
for each words. Therefore, HMMs are constructed for each phoneme instead of word and
each word are represented by a concatenation of phoneme HMMs. Furthermore, because
the feature of a phoneme changes depending on its adjacent phonemes, HMMs are usually
constructed for a triple, a phoneme, its previous phoneme, and its next phoneme.

2.3.3 Decoding by HMM

As shown in Eq.(2.2), P(X|W) have to be calculated by an acoustic model. In this
section, the procedure of calculating P(X|W) by a HMM is introduced with an example,

-9
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@3 | O O
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x(1)  x(2)  x3) x4 x5 x(6) x(7)

Fig.2.5: The trellis paths of a HMM’s state transition

assuming an input feature sequence of 7 frames, X = {z(1),x(2),--- ,2(7)}, and a HMM
with 3 states (Fig.2.5). The horizontal paths and the oblique paths correspond to the
intra-state transitions and the inter-state transitions in HMM. Let ¢; denote a state index
(1 to 3 in this sample) of ¢-th frame, and g denote their concatenation {q, g2, -+ , g7 }. The
output probability P(X|W) is given by

P(X|W) =) P(X|q.W)P(q|W). (27)

all g

Eq.(2.7) means that P(X|W) is obtained by adding the probabilities of all the possible
paths. However, Because it is computationally hard to calculate all the path in actual
cases, it is usually approximated as

P(X|W) ~ P(X|q",W)P(q"[W), (2.8)

where g* is given by

q" = argmax P(X|q, W)P(q|W). (2.9)
q

The most likely segmentation g* can be solved by applying Viterbi algorithm, which is a
Dijkstra-like shortest path search algorithm, to the trellis in Fig.2.5.

~10-
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2.4 Non-linguistic variations and adaptation methods

for them

So far, the basic algorithm of ASR, extracting cepstrum and modeling it by HMM, has
been introduced. However, the algorithm is not enough in actual use, because cepstrums
change depending not only on the content of the utterance, but also on other non-linguistic
information. For example, if a recognizer tries to recognize an utterance of a person whose
utterance doesn’t appear in the training corpus, the performance will drop significantly. To
solve this problem, various adaptation methods have been proposed. Most of them assume

that the cepstrums are distorted by convolutional noise and linear transformation noise as
¢ =Ac+b, (2.10)

where ¢ is the clean cepstrum, ¢’ is the observed cepstrum, A is the linear transformation
noise, and b is the convolutional noise. Because cepstrum is defined as the IDFT of a
log power spectrum, a convolutional noise, which is represented as a transfer function in
spectrum domain, is represented as an addition ¢ = ¢+ b in cepstrum domain. The char-
acteristic of a microphone is a typical one. On the other hand, the linear transformation
¢ = Ac is typically caused by the difference of vocal tract length. Longer vocal tract
warps the log spectrum toward the low frequency region. It is shown that any monotoni-
cally increasing continuous warping in the log spectrum domain is represented as a linear
transformation in cepstrum domain|28].

To suppress the noises, various methods have been proposed. In the rest of this section,
cepstrum mean normalization (CMN)[29], vocal tract length normalization (VTLN)[11],
and maximum likelihood linear regression (MLLR)[14] are introduced as examples.

2.4.1 Cepstrum mean normalization

CMN is a simple and effective normalization method for convolutional noises. For each
utterance, CMN just subtracts the mean vector of the cepstrum sequence ¢ = %Zthl c;
from each cepstrum ¢,;. Ideally, if the convolutional noise is stationary and the utterance

is long enough, CMN can remove the convolutional noise completely.

2.4.2 Vocal tract length normalization

VTLN is a method to normalize a linear transformation noise caused by the difference
of vocal tract length. VTLN estimates the vocal tract length of a speaker and transform
the vocal tract length to get close to the reference speaker’s one. Practically, the process of
VTLN is not divided into two parts, estimating the vocal tract length and transforming it,
but done directly by transforming the input cepstrum to get close to the reference speaker’s
cepstrum|[30].

—11-—
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2.4.3 Maximum likelihood linear regression

MLLR is a method of model adaptation for both convolutional and linear transformation
noise. While CMN and VTLN transform the input cepstrum to decrease the noises and fit
to the model, MLLR transforms the model to fit to the input cepstrum. Assuming that a
HMM is used as the acoustic model, MLLR modifies the output distributions by applying
an affine transformation to the mean vectors of the output distributions, ' = Au+b. The
transformation parameters A and b are estimated to maximize the likelihood P(X|WV).

2.5 ASR in the new paradigm

So far, the basic ASR algorithms in the old paradigm have been introduced. These
algorithms have some limitations due to their assumption of frame-by-frame Markov prop-
erty. They can never consider long-term features, such as durations and pitch patterns.
However, the ASR algorithm is undergoing a paradigm shift. While old paradigm sys-
tems, HMM-based recognizers, execute a segmentation and its evaluation simultaneously
by assuming the Markov property, new paradigm systems do them separately. In the new
paradigm, firstly they segment an utterance by assuming the Markov property and obtain
a segmentation, and secondly they concatenate additional features including long-term fea-
tures and re-evaluate them without assuming the Markov property[4, 5, 6, 7]. Segmental
Conditional Random Field (SCRF) is a typical new paradigm algorithm and is going to
be used more because its software is provided by Microsoft Research[5]. In the rest of this
section, the basic ideas and algorithms of ASR using SCRF are introduced.

HMMs model P(o|s;), the probability of ¢-th observation o; given the i-th state s; and
finally calculate the whole generation probability P(o|s). On the contrary, SCRFs model
P(s;|o(s;)), the conditional probability of the i-th state s; given the set of observations
which belong to the i-th state, o(s;), and finally calculate the whole conditional proba-
bility P(s|o). Fig.2.6 is a illustration of SCRF. As shown in Fig.2.6, SCRF has states

¢ and o(e), to model the conditional

T

51,82, -+, sy like HMM, and four concepts, e, s7, s
probabilities. e denotes a edge between states, si and s¢ denote the left and right state
of a edge e, and o(e) denotes the set of observations which belong to the state s¢. With
this notation, let fi(sf, s, o(e)) denote any feature function which is defined for each set
of {sf,s¢,0(e)}. The conditional probability of a state sequence s given an observation
sequence o for a SCRF is given by

e MWl 55 0(e))
Y 2q B, A, 57, 0(€))

In the training, the parameters {\;} are estimated to maximize the likelihood P(s|o) with

P(s|o) (2.11)

L1 and L2 norm regularization. In [5], gradient descent is used to estimate the parameters.

In ASR using SCRF, each state s;, observation o;, and feature function fi(sf, s, o(e)),

~12-



Chapter 2 ASR systems

Fig.2.6: A Segmental CRF

correspond to a word, a frame, and any feature respectively. Because the feature functions
fr(sf, s8¢, 0(e)) is defined not for each frame but for each segment, it can be a long-term
feature, such as the duration of a segment (Fig.2.7). In [5], to keep a baseline level of
performance, a baseline feature is defined. the base line feature for a segment is always
either +1 or —1. If a segment and the corresponding word are completely same as the
Ist candidate (the best result) of the baseline recognizer, the feature is +1, and is —1
otherwise. In [6], P(duration|s;), the probability of a duration given a word, is used
as a duration feature by assuming a Gaussian distribution for each word duration. The
levenshtein distances between the phoneme sequences obtained by other recognizers are
the another features used in [5]. While these various features can be defined in SCRF, it is
computationally impossible to calculate these features for all candidates and segmentations.
To solve it, the word trellis obtained by a baseline recognizer is used as a set of candidates
and (Fig.2.8).

2.6 Summary

In this section, the basic procedures of ASR systems in both the old paradigm and the
new paradigm have been introduced. The old paradigm recognizers model frame-by-frame
feature sequences by HMM, applying adaptation methods to compensate the non-linguistic
variations. They have some limitations due to their assumption of frame-by-frame Markov
property. They can never consider long-term features, such as durations and pitch pat-
terns. On the contrary, the new paradigm recognizers firstly obtain candidates by applying
an old paradigm algorithm, secondly add several features including long-term features to
the candidates and their segmentations, and finally model them by some algorithm. By
using the new paradigm algorithm, long-term features can be modeled and the demand for
effective long-term features are increasing. In the next chapter, speech structure, which is

a long-term feature and is robust for the non-linguistic variations, is introduced.
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Chapter 3

Speech structure

3.1 Introduction

Speech signals contain various kinds of information, such as linguistic messages, speak-
ing styles, speaker identity, recording conditions, etc. When one tries to get some specific
kinds of information from speech signals, one wants to extract the acoustic features that
represent only the target information and are independent of the other kinds of infor-
mation. ASR systems, which convert speech signals to texts, need the acoustic features
that convey linguistic information only. However, mel-cepstrum-based features, which are
most commonly used, are not independent at all of non-linguistic information. Therefore,
researchers have developed various methods to compensate for non-linguistic variation in
speech features. These methods are, for example, feature normalization, noise suppression,
speech enhancement, and model adaptation. However these methods are reported to be
ineffective in some applications, such as children’s speech recognition [15].

To solve the problem, a method was proposed [8] to extract the acoustic features that are
mathematically independent of the non-linguistic variations. The proposed representation
is called speech structure. In the proposed representation, first, the speech feature sequence
is converted to a sequence of distributions, from each pair of which a distance is calculated
using f-divergence . The obtained distance matrix is adopted as a speech representation
of the input utterance. f-divergence is mathematically proved to be invariant with any
continuous and differentiable transformation, as which any non-linguistic speech variation
is usually approximated. These facts indicate that the f-divergence distance matrix can
be regarded as invariant representation with non-linguistic variations. It was shown that
speech structure can be effectively used for pronunciation assessment[16, 17, 18, 19]. In
addition, several ASR algorithms based on speech structure have been proposed|20, 21, 22,
23, 24, 25].

In this section, speech structure, pronunciation assessment based on speech structure,

isolated word recognition, and continuous speech recognition are introduced.
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Fig.3.1: While an absolute coordinate is usually used as a representation of a phoneme,
the distances between the phoneme and other phonemes are used as a representation in
speech structure

Table3.1: Examples of f-divergences

kind of divergence g(t)
Bhattacharyya coefficient Vit
KL-divergence tlog(t)
Symmetric KL-divergence tlog(t) — log(t)
Hellinger distance (Vt—1)?
Total variation |t — 1]
Pearson divergence (t —1)?

Jensen-Shannon divergence % (t log 2L t T+ log 5 +1)

3.2 Speech structure

Non-linguistic variations of cepstrum are compensated by applying a mapping in most
of adaptation methods. For example, MLLR adaptation assumes the linear transformation
as the mapping and transform the model by estimating the parameters of linear transfor-
mation. On the contrary, in a speech structure, only distances between two distributions,
which often refer to phonemes, are calculated and absolute features are discarded instead
(Fig.3.1).  f-divergence is used as the distance measure between distributions. The f-
divergence between the two distributions p;, p; is given by

f-div(p;, pj) = /pj(w)g (pi(m)> dz, (3.1)

pj(x)
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where ¢ is a convex function, which determine the kind of f-divergence . As shown in
Table.3.1, there exist various f-divergences , including some well-known measures, such
as Kullback-Leibler (KL) divergence and Jensen-Shannon divergence. In speech structure,
Bhattacharyya distance, which is the logarithm of Bhattacharyya coefficient and was found
to work well by previous studies, is used. Let p;(x) and p;(x) denote Gaussian distributions
over R with their means of p; and p;, and their variance matrices of 3; and ;. The
Bhattacharyya distance between p;(x) and p;(x) is given as

1 . 1 %]
BD(pi(@), pj(®)) = S(pi = p5)" 27 (1 = 1) + 5 10%(W)7 (3.2)

where ¥ = (X; + %,)/2. Using Eq.(3.2), (];/ ) distances are obtained from N distributions
in a utterance, and they are used as the representation of the utterance.

In the rest of this section, a proof that f-divergence is invariant for any invertible trans-
formation is introduced. Assume a space X, two distributions p;(x) and p;(z) in X, and
a mapping function h : X — Y, which convert  into y as

y = h(x). (3.3)
Under Eq.(3.3), distribution ¢;(y) in Y is given by
a(y) = pi(h™(y)) I (y), (3.4)

where J(y) is the determinant of the Jacobian matrix of function A~ (y). Then we obtain,

f-div(pi,p;) = / Pi(®)g (ijgo -

= [0 (PGS a)y

_ / 4i(y)g (ZJEZD W

= f-div(g;, q)). (3.5)

Therefore, it was shown that f-divergence is invariant for any invertible and differentiable
mapping. Although it can be also shown that a functional with two arguments f(p;, p;) is
invariant for any invertible and differentiable mapping only if f is f-divergence , the proof
is omitted here.

3.3 Pronunciation assessment using speech structure

One of the application of speech structure is a pronunciation assessment. Here, the basic

procedure of structure-based pronunciation assessment is introduced along with [31]. The
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Fig.3.2: Pronunciation assessment using speech structure

pronunciation assessment task is defined as an estimation of a student’s pronunciation score
which was given by a teacher. A diagram of structure-based pronunciation assessment is
shown in Fig.3.2. A student’s distance matrix S and a teacher’s one T are constructed
with their utterances. In [31], 44 phonemes are pronounced by each student and teacher,
and the shape of a distance matrix is 44 x 44. From a student’s distance matrix and a
teacher’s one, a difference matrix is calculated. The difference matrix between S and T,

{D,;} is defined as
Sy Ty’
Dy =(28—"u) .
! (Sz‘ﬂrTz‘j) 30

In naive implementation, the root mean square of the difference matrix,

[1
Drms - M;sz (37)

is used as a explanatory variable for the pronunciation score. Although regression analyses
can be used to improve the performance, it is practically impossible to apply a regression
analysis with its explanatory variables of all the distance matrix’s elements because the
number of explanatory variables are too many to train the regression machine correctly. To
solve the problem, multi-layered regression analysis are proposed (Fig.3.3). As shown in
Fig.3.3, two steps of regression analysis are applied from the difference matrix to the score,
which means that the regression parameters are shared in rows and columns respectively
instead of assuming the different parameters for all the elements in the matrix. The first
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Fig.3.3: Two-layered regression analysis

regression is an estimation of each phoneme’s score from each phoneme’s distance vector,
and the second one is an estimation of the overall score from the scores of phonemes. By
using this two-layered regression, the number of parameters to estimate decreased from
(]; ) to 2N, where N is the number of phonemes.

3.4 Isolated word recognition using speech structure

An algorithm of isolated word recognition using only speech structure was proposed|20].
The procedure is shown in Fig.3.4. Firstly, an HMM with N states is trained from an input
utterance and a structure vector with its dimension of (];7 ) is calculated by the HMM. Then,
because each utterance has a fixed-dimension feature vector, this is formulated as a simple
pattern recognition problem. However, two major problems are found in this approach.
One is called “a problem of too strong invariance”. Because f-divergence is invariant for
any invertible transformations, different words can have a similar f-divergences . The
other is so-called “curse of dimensionality”. Each utterance has one feature vector with its
dimension of (g ), and it is difficult to estimate the distributions or patterns of such high
dimensional feature with small number of training data.

First, the problem of too strong invariance and the solutions are introduced. As written
in Section 3.2, because f-divergence is invariant for any invertible transformations and
non-linguistic variations are often represented as some invertible transformations, it is
concluded that f-divergence is invariant for non-linguistic variation. However, this logic
only says that f-divergence is invariant for non-linguistic variation and doesn’t say that f-
divergence is invariant only for non-linguistic variation. f-divergence can be also invariant

for linguistic information. In ASR, a feature which is invariant for non-linguistic variation
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Fig.3.4: Isolated word recognition based on speech structure

and not invariant for linguistic information is desirable. To solve this problem, multi-stream
structure was proposed[20]. The multi-stream structure assumes that the transformations
caused by the difference of vocal tract length, microphone and stationary environment noise
are approximated by a linear transformation by a band matrix. For example, in [32], the
transformation used in Vocal Tract Length Normalization (VTLN) is shown to be written

in a linear transformation A,

1 a o?

0 1—a? 200 — 203

A=10 —a+a® 1—4a%+ 3a?
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where « is the parameter of frequency warping, which is estimated in VTLN. Furthermore,
assuming |a| < 1 and approximating it in first-order, A is approximated as

1 « 0 0
0 1 2 0

A=10 —a 1 3a ---|. (3.9)
0O 0 -2« 1 ---

In this approximation, A is a tridiagonal matrix. Considering them, it is appropriate to de-
rive a feature which is invariant only for transformations by band matrix. The multi-stream
structure was proposed as features which are invariant for band-matrix transformations
and not invariant for full-matrix transformations. The concept is illustrated in Fig.3.5.
In multi-stream structure, the feature space is divided into subspaces, each of which is
composed of several successive dimensions. In Fig.3.5, each subspace has 3 successive di-
mensions, which means they are invariant for tridiagonal matrices like Eq.(3.9) and are not
invariant for full matrices. The block size s is a parameter that determines the strength of
invariance. When the block size s is equal to the dimension of cepstrum M, each subspace
has only 1 dimension, which means they are invariant only for diagonal matrices, and the
invariance is weakest. On the contrary, when the block size s is 1, it corresponds to the

ordinary structure without multi-stream, and the invariance is strongest.

While multi-stream structure can control the strength of invariance and it provides bet-
ter features for ASR, it increases the number of dimension by several times. Because the

dimension of the structure vector is (N ) and much higher than that of ordinary cepstrum

2
features, multi-stream structure makes the curse of dimensionality more serious. To solve
the problem, several methods of dimensionality reduction have been proposed, such as
random projection and Linear Discriminant Analysis (LDA) [21], Principal Component
Analysis (PCA) and LDA[22], two-layered LDA[33], and parameter sharing[34]. As an
example, the two-layered LDA is introduced. The basic procedure of structure-based iso-
lated word recognition using two-layered LDA is shown in Fig.3.6. Firstly, a HMM with
N states is trained from an utterance. Secondly, structure vectors are calculated for all
the subspaces. Thirdly, a dimensionality reduction is applied to each stream using LDA.
Finally, the dimensionality-reduced vectors in all the streams are concatenated and LDA
is applied to the concatenated vector. Then, the dimensionality-reduced feature vector is

obtained for each utterance.

In this section, the isolated word recognition using speech structure has been intro-
duced. Recently, an algorithm of continuous speech recognition using speech structure was
proposed[25]. In the next section, the algorithm is introduced.
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Fig.3.5: Multi-stream structure

3.5 Continuous speech recognition

An algorithm of continuous speech recognition using speech structure was proposed|[25].
It rescores the result of HMM-based recognizer by using speech structure, which can be
seen as a naive implementation of the new paradigm algorithms introduced in Section.2.5.
In this section, the limitations of the previous methods to leverage speech structure for
ASR and the solution for that are introduced along with [25].

There are two reasons why the previous studies on isolated word recognition using speech
structure cannot be applied to continuous speech recognition. One is the number of dis-
tributions in an utterance. In the previous studies, a HMM with fixed number of states
is trained from an utterance to construct speech structure. However, as long as a HMM
with the fixed number of states is assumed, it can never be applied to continuous speech
recognition, because the number and the kinds of words cannot be known in advance. The
other one is the number of models. Generally speaking, it is practically impossible to
train models for all the words. In most of continuous speech recognition tasks, because
the number of words are too many to train the models without overfitting and the models
are trained for each phonemes, the number of which is much smaller than that of words.
However, in the previous studies on isolated word recognition using speech structure, the
model is inevitably trained for each word because the speech structure is defined for each

—9292 -



Chapter 3 Speech structure

word.

To solve the problem, N-best re-ranking of the result generated by an HMM-based ASR
system was proposed. The basic procedure is illustrated in Fig.3.7. While a HMM with
the fixed number of states is trained from an utterance and the fixed number of distribu-
tions are obtained in the previous studies, variable number of distributions are obtained
according to the candidates and its segmentations generated by HMM-based ASR in this
approach. The procedure of extracting distributions and calculating the distances between
them is shown in Fig.3.8. Firstly, N-best candidates of word sequence for an utterance
are obtained by an HMM-based ASR system. Secondly, the segmentation of the utterance,
which part of the utterance corresponds to which phoneme, is estimated for each candidate.
Thirdly, the distribution of each phoneme is estimated according to the segmentation. Fi-
nally, the Bhattacharyya distances between phonemes are calculated. Then, the distances
are obtained for each candidate, and it solves the problem of determining the number of
distributions, because the number of distributions is determined for each candidate. In
addition, statistical models are build for the each phoneme pair, while they are build for
each word in the previous studies. The procedure of building and applying statistical edge
models (SEMs) is shown in Fig.3.9. In this figure, an edge means a distance between two
phonemes. In [25], using the edges obtained by the training data, Gaussian mixture model
(GMM) of the edges are trained. Assume there are P phonemes, (123 ) models are build.
Once the models are build, the likelihood for each edge in each candidate can be calculated.
The structural likelihood for the n-th hypothesis A, L,.(h(™) is defined as

Zall(i,j) Lij (65}”)

st“(h(n)) - K ’

(3.10)

where Lij(e?j) is a log likelihood of the edge obtained from the n-th hypothesis calculated
by the corresponding SEM, and K is the number of edges in the n-th hypothesis. Using
the structural likelihood L, (k™) and the HMM-based likelihood L g4, (™), the score for
re-ranking Lqy(h(™) is defined as

Lall(h(n)) = LHMM<h(n)) + wsrLsr(h(n))7 (311)

where wy, is a weight for the structural likelihood, which is determined experimentally.

3.6 Summary

In this chapter, the basics of speech structure and its applications have been introduced.
Speech structure was proposed to solve the problem of non-linguistic variation. In speech
structure, an utterance is converted into several distributions and the distances between the
distributions are adopted as features that represent the utterance. Because f-divergence ,

which is proved to be invariant for any invertible and differentiable transformations, is used
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as the distance measure, speech structure is invariant for non-linguistic variations, which
is often approximated by some invertible and differentiable transformations. Although two
major problems, too strong invariance and curse of dimensionality, were found, several
solutions, such as multi-stream structure and multi-layered dimensionality reduction, have
been proposed and speech structure is successfully applied to pronunciation assessments
and isolated word recognitions.

Furthermore, an algorithm of continuous speech recognition leveraging speech structure
was proposed. It rescores the result of HMM-based recognizer by using speech structure,
which can be seen as a naive implementation of the new paradigm algorithms introduced
in Section.2.5. Because speech structure is not a frame-by-frame feature but a long-term
feature, it cannot be used as a feature of old paradigm algorithm, it can be a effective
long-term feature used in the new paradigm algorithms .

Y/
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Speech structure
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Dynamic features
derived from speech structure

4.1 Introduction

Dynamic features are defined as temporal derivatives of static features. They were firstly
proposed in 1986[26], and are now effectively used in almost all the speech systems including
ASR, speech synthesis, speaker identification, etc. However, dynamic features are reported
to be ineffective in previous researches on speech structure[20]. In the previous researches,
dynamic features of speech structure are defined as a speech structure constructed with
dynamic features (Fig.4.1). It is true that the speech structure constructed with dynamic
features are also invariant to transformations, it is slightly different from the original con-
cept of dynamic features. Dynamic features are defined as temporal derivatives of static
features. Because the distances between phonemes are adopted as features and the origi-
nal cepstrum-based features are discarded in speech structure, dynamic features in speech
structure should be temporal derivatives of the distances between phonemes instead of the
distances between cepstrum-based dynamic features (Fig.4.2). As the implementations of
the temporal derivatives of speech structure, two algorithms are proposed. One is differ-
ential speech structure. Differential speech structure is similar to the original concept in
Fig.4.2. It directly defines the derivatives of distances between phonemes by assuming each
phoneme distributions moves along with the mean of the derivative of its cepstrums. The
other one is trajectory structure. Trajectory structure doesn’t define the derivatives of
distances directly. It firstly assumes each time frame has different distribution using tra-
jectory HMM][35] while ordinary HMM assumes several states and the distribution in each
state is constant in the state. Secondly, the distance vectors are obtained for each frame.
Finally, the temporal derivatives are obtained by the sequence of the distance vectors like

deriving dynamic features of cepstrums.
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Fig.4.1: Speech structure constructed with delta features

4.2 Differential speech structure

In differential speech structure, the temporal derivatives of Bhattacharyya distances
(BDs) are directly defined. Assume that an HMM with N states are trained from a
utterance. By calculating B Ds from every pair of the states, a sequence of distance vector
[s1, 81, - ,Sn] is obtained. s, is a distance vector of the n-th state,

BD(Ps(ta)te7 P(l)

state

T
) BD(PS(ta)te7 Ps(tzzzte)a e BD(Ps(Zz)tm Ps(t](\zft)e)] : (41)
Where Pg(m)te is the output distribution of the k-th state. Assuming Ps(m)te( ) is a Gaussian
distribution A (c|p™ X )and the mean p™ temporally moves with keeping the variance
¥ (") constant, the temporal derivative of s,,, As,, is defined as

0s, dup™
B8n = 4.2
? Cop™  dt (4.2)
The k-th element of As,, Ast ig given by
AS;’C) aBD( Statea Ps(tate> d#’ (43)

op™ dt

Because BD(P( n  pW

states © state

) is given by

(n) (k) \ _ 1 (n) ()\Tx—1/,,(n) (k) l X
BD(Pstate? Pstate) - 8(“‘ i ) by (ru’ 2 ) + 9 10g(‘2(n)‘1/2‘2(k)|1/2)’ (44)

(n) 4 53(k) k) . .
where ¥ = 2282 Ast) is obtained as

(4.5)
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In addition, d’:lin) is approximated by the mean vector of delta cepstrums which belong to

the n-th distribution as

Wat %
~ — Act, (46)
dt Ln all ¢ in n-th state

where L,, is the number of frames that belong to n-th state. Then, As,, is defined for each
S,, and they can be used as dynamic features derived from speech structure.

4.3 Trajectory speech structure

While in the conventional speech structure we trained an HMM with N states and ob-
tained (g] ) BDs between each pair of the N state distributions, in the trajectory structure
model, we assume that each time frame has its own unique distribution. In other words,
we can have a coarsely quantized distribution sequence from a classical HMM and a finely
quantized sequence from a trajectory HMM. Using these two distribution sequences, we
can calculate a BD between a fine distribution and a coarse distribution. Fig.4.3 shows
an example of feature sequence, its speech structure, and its trajectory structure. In the
standard approach, a feature sequence [x1, o, - , @] itself is often used as a representa-
tion of the input utterance (Fig.4.3(a)). In the conventional speech structure, we train an
HMM with N states, calculate BDs from every pair of the states, and obtain a sequence

of distance vector [s1, 81, ,8n|. 8, is a distance vector of the n-th state,
T
Sn = BD(Ps(gz)te? Ps(tlogte% BD(PS(IZLLI)t€7 Ps(t%zte% T BD(Ps(tr;)te? ngge)] . (47)

Where Ps(:l)te is the output distribution of the n-th state. Because Bhattacharyya distance
is symmetric, we just pick up (gf ) distances out of the N? distances. These (];[ ) distances
are used as a representation of the input utterance (Fig.4.3(b)).

In trajectory structure model, after we train a classical HMM with N states, it is

used to derive frame-dependent distributions. Then, we obtain a sequence of distribu-

tions [P}ilme(a:), Pﬁlme(a)), e ,P}fa)me(a:)}, where T is the total number of frames and
P}?ame(a:) is the distribution of the ¢-th frame. Each P}gme(w) is calculated from tra-

jectory HMM [35], which derives the temporally changing distributions of static features

by imposing the explicit relationship between static features and dynamic features. The
(t)

rame

detailed procedure to obtain P (x) is described later. By using T fine distributions
and N coarse distributions, at time ¢, we calculate a distance vector whose i-th element is
BD between the t-th fine distribution and the i-th coarse distribution. Since this vector
can be obtained at each time, we have 7' distance vectors with their dimension being V.
(Fig.4.3(c)). The distance vector at time ¢, d;, is given by

T
),---,BD(PY  pNIy (4.8)

frame’ = state

)7 BD(P(t) P(z)

frame> ~ state

di = | BD(P{}),,00 PY)

frame> * state
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Here, a sequence of the distance vectors [dy,dy, - - - ,dr] is used as a representation of the
input utterance. In addition, since the distance vector is obtained at each time, we can
calculate its A and A? features and concatenate them and d,.

So far, we have introduced the basic procedure to derive TSR model. In the rest of this

section, we introduce the detailed procedure to derive P(i)ame(a:) based on trajectory HMM.

Let « denote a concatenation of an input feature sequence [zclT, :cQT, ce ,w%}T, each x; is a
concatenation of a static feature vector and its A and A? features, [cf, Ac], ACHT. Let
M denote the dimension of ¢;. A and A? features are defined as weighted sums of adjacent

static feature vectors as

L
Act = Z w(l)(T)Ct+T7 (49)
T=—L
L
A’c, = Zw(Q)(T)cHT, (4.10)
T=—L

where L is the length of window to calculate dynamic features, and w™ (7) and w®(7) are
coefficients for ¢;,,. Because each x; is calculated by an linear transformation of ¢;, there
exists a matrix W such that

x = We, (4.11)

. . . T
where ¢ is a concatenation of a static feature sequence [c?,cg, e ,c;] . Because the

dimension of ¢ is MT and that of x is 3MT, W is a 3MT x MT matrix. Using the

coefficients wM (1) and w®(7), W is given as

W = |w,wy,- ,wr], (4.12)
w, = [w§°>,w§1>,w§2> : (4.13)
n n n n T

w = [w (1 =) Lyrr, w™ (2 = ) Daprs, - w(T = O Lapns,] - (4.14)

Note that w§") is actually much sparser than it is seen in Eq.(4.14), because the delta
coefficient w(™ () is non-zero only if —L < 7 < +L and L is usually much smaller than 7".
When we assume this feature sequence is generated by an HMM that has N states each of
which has a single Gaussian as output distribution, the probability of & given alignment g
and HMM parameter A, P(x|q, \) is calculated as follows.

Pa|q.8) = [[N(@il p. %) (4.15)
— N(alig Zq) (4.16)

where ¢ is the index of the state to which ¢; belongs. p, and ¥, are concatenations of

sequences ft,, and Y, respectively.

T
Ial/q — [M;? I’l’qTQ7 oo ’I_LqTT:I (4.17)
S = diag[Se, Se s Serl (4.18)

y —=4qr
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Because x satisfies Eq.4.11, there exist a mean vector ¢, and a covariance matrix P, such
that

Pzl q,A) = N(Wc| pg, ) (4.19)
= KqN(c| ¢q, Py) (4.20)
where,

R,e, = 7 (4.21)
R, = W'U;'W =P, (4.22)
rq = WU pg, (4.23)

(2m) M| Pyl 1
K, = ex U — T, P . 4.24
a A p{— 2( Hq rq)} (4.24)

An actual example of ¢, pq, and ¢4 is shown in Fig.4.4. The covariance matrix Py is
not a diagonal matrix, but still a band matrix, in which only diagonal elements and their
adjacent elements are non-zero. To obtain an independent distribution for each frame, we
approximate P, as a block diagonal matrix as follows

P, ~ diag [p{),p. -+, p{"]. (4.25)

Finally, we obtain an independent distribution for each frame.

T
Nle| &g, Py) = [ [ N(er] €. pY). (4.26)
t=1

where Eg) is a vector with its dimension of M that corresponds to the ¢-th time frame.

From the above equation, we can define frame-dependent distribution P(mme(ct),

P} e(e) = Nel e, p?). (4.27)

Then, the distance vector at time ¢, d;

T
,BD(P  pMy (4.28)

frame’ * state

), BD(P( ) p®

frame> =~ state ) )

di = | BD(P{}),00 Pl

frame> =~ state

is obtained. From the sequence of distance vectors, Ad; and A2d, are calculated like
ordinary delta cepstrums.
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Fig.4.4: Observations of lst-order mel-cepstrum, means of the original HMM, and the
mean of the trajectory HMM
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Chapter 5

Experiment

5.1 Pronunciation assessment based on differential struc-

ture

We carried out an experiment of pronunciation assessment based on differential structure.
The basic procedure is same as the one introduced in Section 3.3 and Fig.3.2. To compare
the pronunciation of a student and that of a teacher, the mel-cepstrum distributions of
each phoneme is estimated for the student and the teacher. Because each distribution
is estimated from a small number of samples, it is difficult to estimate the distribution
correctly. To solve the problem, maximum a posteriori (MAP) estimation, which estimates
the distribution with a prior distribution, is applied to estimate the distribution for each
phoneme. It is shown that MAP estimation works effectively to estimate the distributions
for speech structure in previous study[36]. The phoneme independent prior distribution is
calculated by empirical bayes using all the training data. While the score for each speaker
is estimated in Section 3.3, the score for each phoneme pronounced by each speaker is
estimated here. Let K denote the number of phonemes, pl(f) and p,(gT) denote the distribution
of k-th phoneme pronounced by the teacher and the student respectively. The feature

vector of k-th phoneme pronounced by the student, d, = {dl(:), dl(f), e ,dng)} is defined

using speech structure. The [-th dimension of dy, d,(f) is given by
0] O]
—t
il = |2 k) (5.1)
NONMO)
k k
where
sv) = BD@Y . pY), (5.2)
tY = BDE", p"). (5.3)

In addition, differential speech structures, Asg) and Atl(f), are also calculated by the algo-
rithm introduced in Section 4.2. Using these features, the score for each phoneme is esti-

mated by using a regression. We adopt ridge regression as a regression algorithm. Ridge
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Table5.1: Conditions

Sampling 16bit/16kHz

Window 25ms Blackman Window & 1ms Shift

Feature mel-cepstrum 10 dim.

Distribution Gaussian distribution with diagonal covariance matrix

The number of distributions 23
Estimation of distributions  MAP estimation

regression is a linear regression with Tikhonov regularization. Ordinary linear regression
estimates the regression parameter 8 by minimizing the error as

0 = argminz (yZ — OTar:i)T (y,- — HTmi) , (5.4)

where x; is the feature vector and y; is the corresponding objective variable. On the other
hand, ridge regression estimates € by minimizing the error and the L2 regularization factor
as

0 = argminz (y, — OTmZ—)T (yi — HTa:i) + ab70, (5.5)

where « is a hyperparameter which is determined experimentally. By adding the regular-
ization factor, the overfitting is suppressed and the generalization ability is improved. In
this experiment, the feature vector x; corresponds to dj, or [dg, Ad;f] T, and the objective
variable y; corresponds to the score of the phoneme.

5.1.1 Experimental conditions

In this experiment, English Read by Japanese (ERJ) database[37] is used. We used 10
vowels, including 5 diphthongs and 5 monophthongs, shown in Table.??. The number of
speakers is 45. The proficiency score is given for each phoneme of each speaker. The score
is four-level rate (1 to 4), in which 1 means the worst and 4 means the best, labeled by one
phonetician. The correlation between the estimated score and the manually labeled score
is adopted as a performance measure. Using 45 speakers, leave-one-out cross-validation (44
speakers for training and 1 speakers for evaluation ) were carried out. We compared three
features, 1. static structure vector, 2. static structure vector and structure of delta (pre-
vious method), and 3. static structure vector and differential structure vector (proposal).
The structure of delta means the distances between the distributions of delta cepstrums
(Fig.4.1). The hyperparameter « in ridge regression (Eq.(5.5)) is set to a = 1.0 from

preliminary experiments. Other conditions are shown in Table 5.1.
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Fig.5.1: The proposed method achieves better correlations in average than other two meth-
ods

5.1.2 Results

The results are shown in Fig.5.1. The correlation between the estimated score and
the manually labeled score is shown for each phoneme. As shown in the figure, the pro-
posed method shows better correlations in average. Especially, the correlations of several
phonemes that is almost zero or minus in other two methods are improved significantly.
The results show that the proposed method works effectively in pronunciation assessment.

Table5.2: The list of words
Diphthongs | kite(/a1/) how(/au/) sage(/e1/)

oils(/o1/)  float(/ou/)
Monophthongs | hot(/a/) hatch(/z/) touch(/a/)

raw(/o/) test(/e/)
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Table5.3: Conditions

Sampling 16bit/16kHz

Window 25ms Blackman Window & 1ms Shift

Feature mel-cepstrum 12 dim.

HMM Gaussian with diagonal matrix, 25 states and 23 distributions

Estimation of distributions MAP estimation

5.2 Isolated word recognition based on differential struc-

ture

In the previous section, it is shown that differential speech structure works effectively in
pronunciation assessment. In addition, an experiment of isolated word recognition using
differential speech structure was carried out. The basic procedure is same as the one
introduced in Section 3.4 and Fig. 3.4. Firstly, an HMM with N states is trained from
an input utterance and a structure vector with its dimension of (g) is calculated by the
HMM. Then, because each utterance has a fixed-dimension feature vector, they are solved
as a simple pattern recognition problem. In this experiment, differential structure vector,
which dimension is also (gf ) is concatenated to the static structure vector. The output
probability of a structure vector s given a word w, P(s|w), is modeled by a Gaussian with
diagonal covariance matrix. In addition, multi-stream structure introduced in Section 3.4
is applied. In multi-stream structure, the cepstrum space is divided into several subspaces,
each of which has several successive dimensions, and f-divergence is calculated for each
subspace. By increasing the number of subspaces, the number of f-divergences increases
and the invariance gets weaker.

5.2.1 Experimental conditions

We used Tohoku University and Panasonic isolated spoken word database [38], which
contains 212 kinds of Japanese words spoken by 60 speakers. The word length varies from
3 morae to 7 morae. We used the utterances by 30 speakers as a training data set and ones
by the other 30 speakers as an evaluation data set. Other conditions are shown in Table
5.3.

5.2.2 Results

The results are shown in Fig.5.2. The x-axis is the number of streams. Because 12
dimensional cepstrum is used as a baseline feature, the max value of the number of streams
is 12. As shown in Fig.5.2, proposed method shows better results than conventional one

in any number of stream. In both conventional and proposal, the best result is obtained
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Fig.5.2: Word error rates obtained by static structure (conventional) and by static feature

concatenated with differential structure (proposal)

when the number of streams is 12. When the number of stream is 12, the word error rates
of proposal and conventional are 8.1% and 9.1%, which means 11.0% relative decrease is
obtained by proposed method. In addition, because the difference between conventional
and proposal is bigger when the number of streams is smaller, it can be thought that the
differential speech structure can ease the problem of too strong invariance like multi-stream
structure. These results show that the differential structure works effectively in isolated

word recognition.

5.3 N-best rescoring based on trajectory structure

N-best rescoring based on speech structure is proposed in [25]. We carried out an ex-
periment of N-best rescoring based on trajectory structure (TSR) models. The task is
isolated word recognition. Let Lp,,m(x|w;) denote the log output probability of @ given
word w;’s HMM, and L. (c|w;) denote that of ¢ given word w;’s TSR model. The rescored
log likelihood Ly (x| w;) is given by:

Lall(m|wi) - Lall(m|wi) + wtsrLtsr<c|wi> (56)
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where wy,, is the weight of TSR model. The procedure to calculate the log TSR likelihood
Lis-(c|w;) is shown in Fig. 5.3. To calculate Ly (c|w;), a classical HMM trained for the
input utterance is needed. For that, we first trained a speaker-independent HMM for each
word, which is used as initial model. The parameters of this initial HMM are updated only
by the input utterance and the resulting HMM is used to derive the TSR model. If we do
not use speaker-independent word HMMs as initial and background models, the resulting
HMM of an utterance and that of another utterance will show different alignment patterns
between states and feature vectors even when the two utterances are of the same word.
Because the feature vector in speech structures is composed of distances between HMM
states, it is essential to satisfy a condition that state 7 in an HMM and state ¢ in another
HMM keep the same linguistic function when these two HMMs correspond to the same
word. Using an utterance-specific but temporally aligned HMMs, we obtain a TSR vector
sequence.

We can use some commonly-used sequential models like HMM, where plural alignment
paths are allowed between a feature sequence and the state sequence of the HMM. In our
case, however, because alignment between the TSR vector sequences and the retrained
HMM is already determined, TSR vectors of a state of the HMM are modeled as Gaussian
distribution. Finally the log likelihood L, (€| w;) is given as

Lys(c| w;) Zlog./\f (d,| ,u,qt) E )) (5.7)

where d; is the t-th TSR vector, ,u,EZ? and 255? are the mean vector and covariance matrix
for the n-th state in w;, and ¢; is the state index to which the ¢-th frame belongs. We
adopt the Viterbi path q* instead of considering all the paths. It is possible to consider all
the paths but it is very costly.

5.3.1 Experimental Conditions

We used Tohoku University and Panasonic isolated spoken word database [38], which
contains 212 kinds of Japanese words spoken by 60 speakers. The word length varies from
3 morae to 7 morae. We used the utterances by 30 speakers as a training data set and
ones by the other 30 speakers as an evaluation data set. In the training, the parameters of
TSR model p,q(Z) and 25;? are estimated to maximize Eq.5.7. We set TSR weight w;g, in
Eq.5.6 as 1.0 x 107! by preliminary experiments. For rescoring, 10-best words are used as
candidates. Other conditions are shown in Table 5.4.

5.3.2 Results

We compared three methods, HMM only, HMM rescored by TSR, and HMM rescored
by TSR with its A and A2%. The results are shown in Table.5.5. As shown in the table,
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Fig.5.3: Procedure to calculate TSR likelihood for each candidate
rescoring by TSR decrease the word error rate by 23.3% relative and rescoring by TSR

with its A and A? decrease the word error rate by 28.5% relative. The results show that
TSR works effectively in the isolated word recognition.
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Tableb.4: Conditions

Sampling 16bit/16kHz

Window 25ms Blackman Window & 1ms Shift
Feature mel-cepstrum 18 dim., its A and A?
Delta Window Length 20 frames

Word HMM 8-mixture with diagonal matrix

25 states and 23 distributions

Tableb.5: Rescoring by TSR decreases the word error rate

Scoring method Word error rate
HMM 1.37%
HMM + TSR 1.05%
HMM + TSR + A TSR + A2 TSR | 0.98%
N-best Oracle 0.04 %
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Conclusions

6.1 Summary

Speech structure was proposed as a feature that is invariant to non-linguistic information,
and was successfully applied to pronunciation assessment, isolated word recognition, and
continuous speech recognition. However, dynamic features have not been used effectively
in speech structure, while it was shown that dynamic features work as effective features
in almost all speech analysis. In this paper, I proposed two implementations of dynamic
features derived from speech structure and carried out some experiments to show their
effectiveness.

First, I proposed differential speech structure, which defines temporal derivatives of
speech structure. It assumes each cepstrum distribution moves along its delta cepstrum
and obtains the temporal derivatives of the distances between cepstrum distributions. Two
experiments were carried out to show their effectiveness. One is an experiment of pronunci-
ation assessment. By concatenating the differential speech structure to conventional static
speech structure, the correlation between the estimated score and manually labeled score
is improved. The other is an experiment of isolated word recognition. Similarly, by con-
catenating the differential speech structure, 11.0% relative decrease is obtained. Through
these two experiments, the effectiveness of differential speech structure is shown.

Second, I proposed trajectory speech structure, which defines a time sequence of speech
structure and derive its dynamic features like ordinary delta cepstrum. It assumes each time
frame has its own distribution so the time sequence of distances between the distributions
can be obtained. The frame-dependent distributions are derived from trajectory HMM. I
carried out an experiment of N-best rescoring of isolated word recognition using speech
structure, which itself is a new approach to isolated word recognition using speech structure.
By concatenating trajectory structure to the conventional static structure, 28.5% relative
decrease in word error rate is obtained. The results show that trajectory speech structure
works effectively in N-best rescoring of ASR.



Chapter 6 Conclusions

The differential speech structure and the trajectory speech structure can be used in any
applications using speech structure. Considering the results obtained in the experiments,
it is expected that these two approaches to leverage dynamic features in speech structure
improve the performance of other applications.

Furthermore, ASR algorithms are undergoing paradigm shift. While the old paradigm
algorithms assume frame-by-frame Markov property, the new paradigm algorithms can
leverage long-term features by re-evaluating the candidates generated by the old paradigm
algorithms. Therefore, the demand for effective long-term features is rapidly increasing.
The speech structure and its dynamic features might potentially be a long-term feature
which is effectively used in the new paradigm algorithm.

6.2 Future works

Although several new paradigm algorithms in Section 2.5 are introduced, I carried out
only an experiment of N-best rescoring, which can be seen as the naivest implementation
of the new paradigm algorithms. Therefore, some experiments of combining the features
derived from speech structure with the high-performance algorithms, such as segmental
conditional random fields and structured support vector machine, should be carried out.

In addition, the relationship between speech structure and TANDEM approaches [39, 40,
41] should be investigated. While trajectory speech structure calculate the distances be-
tween the frame-by-frame distributions and the phoneme distributions that are trained from
an utterance, TANDEM approaches calculate the utterance’s frame-by-frame likelihoods
of phoneme models that is trained in advance and adopt the likelihoods as the feature.
The distance used in speech structure and the likelihood used in TANDEM is intrinsically
the same thing. The biggest difference between trajectory structure and TANDEM is the
models to calculate the likelihood/distance. While the models are trained from the the
input utterance in speech structure, they are trained from the large amount of training
data in TANDEM. Therefore, speech structure can be seen as an adaptive implementation
of TANDEM approach. It indicates that speech structure can be applied to the applica-
tions to which TANDEM is applied and another improvement on speech structure can be
obtained by applying the algorithms used in TANDEM.

Because there exist not a few approach to improve speech structure and the demand
for long-term features is increasing, it is expected that some algorithms based on speech
structure can be effectively combined with the state-of-the-art ASR systems.
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