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1. Introduction.

In the previous paper entitled ““Velocity of Elastic Waves Propaga-
ted in Media with Small Holes ' we have treated the substance with
small holes which are filled up with some kind of liquid. As a natural
sequel to this work, we will take up a substance with small solid
obstacles, in this paper. Since it is very difficult to treat obstacles of
irregular shape and magnitude, we are obliged to confine our attention
to the case of small spherical bodies of the same size. We will also
assume some postulates which are necessary to develop our theory.

Of course we must strictly examine the validity of our model when
we apply the following theory to some actual problems, e. g. the
velocity of elastic waves in gravel which is constituted by spherical
pebbles and homogeneous matrix.

The calculations in this paper are performed under the following
assumption :

1) We can replace any volume of actual material containing large
number of obstacles by equivalent homogeneous continuum.

2) The obstacles are spherical bodies of the same size.

3) The proportion of the volume of obstcles is small compared
with the whole medium, and its square terms can be neglected without
causing fatal error.

4) The continuity of displacement and stress components strictly
holds at the boundary surface.

5) When the velocity of wave propagation comes into question,
the wave-length is assumed to be far larger than the distance or the
diameter of the obstacles.

These conditions are the same as those of our previous paper, and
so long as they are admitted, we believe that our theory can give a
ready solution of first approximation.

1) Y. SAT0, Bull. Earthq. Res. Inst., 30 (1952), 179.
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2. General type of the solution.”
Now, there are six independent solutions of the elastic equations
which ean be derived from solid harmonics of order n, that is®

Type ¢; b=gradg,

nA+@Bn+1)p )(2.1)

Type 5 =17 rad T Y n(an=_2
ype @ gradw ¢ (n+38)A+ (n+5)¢

Type x; d=[rr, grad 1.]
where b implies displacement, t is a unit vector of radial direction and
¢uy @, and y, are the spherical solid harmonies of order n. Therefore,
using a spherical surface harmonics of order n, we can express as
buy Ony An=1"S,, 77718, e eeeereneaaean, e (2.2)
Introducing these relations into the above expressions
Type ¢; byu.=grad (»*S,)={n,1},¢"!
dyn-=grad (r~"1S,)={—n—1, 1},r"*
Type w; dyns=r?grad ("S,) + a,rr"*'S,={n+ a,, 1},
Don- =12 grad(r=—""1S,) +a_,_,tr""S,

={—n—14+a_n_q, 1},r™" Ceeereeaaaan (2.8)
Type ¥; bdme=[ry, grad (+"S,)]=—1"S,'s8
Dyn- =[r1, grad (#r-""1S,)]=—r"""1S,'3 (n=<0)

in which ‘
{pa (I}nEpSnr'l‘an/t
3 and t are unit vectors of azimuthal and colatitudinal direction.
Here, we must gotice that when n=0, these expressions must be
somewhat modified.
( bJ)U-x-:O

Byo-={—1,0}or™"

bu,0+= {(Xo, 0}0 r

Dooe={—14a_1, 0},  eiiiiaiiiitn e (2.32)
=0, (. a_;=1)

bx0+=0

Dyo-=0

‘ 2) Although we use the term “ general”, the following calculations are still res-
tricted, for they employ only zonal harmonics and do not treat the type of solutions
which involves tesseral harmonics. However, in view of the results obtained, the
results will not be altered even if we use a solution containing tesseral harmonies.

8) Lovr, Theory of Elasticity. pp- 251, 252,
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Corresponding to these fundamental types of displacement, we have
the fundamental stresses which after some complicated calculations®
turn to be

Type (l) ; %¢n+=ﬂ 2(’?’&'—1) {91, l}n -2
Fm-=— 120 +2){—n—1,1}, 7

Type w; Fone=#{(n—3)a,+2(n*—2n—1), 2n+a,}, r"
Fon-=2{—(+4)a_,_,+2(n* +4n +2),
—2n+1)+a_,at,r " Ll (24)
Type ¥: Fune=—pn—1)r""1S,'s
Bpn-=pn+2)r-"2S,'s
When n=0, these expressions must of course be modified as before.

%¢0+=0

Bpo-= 4{1’ 0}0 r

%m0+=/l{3a0k/ﬁl’ 0}0

oo mp{—da b, Ofgm0 e (2.42)
%X0+=O

%xo—zo

If an arbitrary stress is applied to the surface of the equivalent
homogeneous sphere (radius R), it ean be expressed by

WK TR R RN | S B @2.5)
and the displacement at the same surface corresponding to this stress is

[I{nbdm + Lnbmn+ + Mann -1-]1': R
............. (2.6)

If we imply by the notation
o[¢,] the displacement in the
part of the equivalent homo-
geneous continuum of the model

is applied to the outer surface
r=R, it can be expressed by
the next formula

b[(l)n] :Aizb¢7z+ + Bnbdm-
+ Cnbmn+ + «Dnbmn—'

Equivalent Homogeneous
Continuum

Similarly, we have Fig. 1.
4) cf., LOVE, Elastisty. p. 252.




4 Y. SaTo. [Vol. XXXI,

den]=Enbdjns + Fabpn-+ Gubons k- B 2.8)
b[Xn]=Inbxn+ +anxn—
In the part of matrix, we have corresponding expressions ;
{ bu[‘i’n] =Anob¢n+ +Bnob¢n- + Cnobmn+ + Diyodn-
do[@n]=Endsns + Fudgn- + Guoduns + Hudun- evnenrnnnn (2.9)
bo[Zn]=Inobxn+ +Jn0bxn-
and in the part of obstacle,
{ b1[¢n] =An1bdm+ + Cmbmn+
Y E N e O T B € (2.10)
)] [Xn] =I‘n0bxn+
If an arbitrary stress represented by the expression

Z [Kn%dm-r- +L"%mn+ +Mn%m+]r=n .................... (2.11)

2]

is applied to the spherical surface r=R, then the displacements in the
above model are as follows:

in the equivalent homogeneous continuum ;
b= S Kp[p,]+ X Ldlw,]+ 3 M bl

in the matrix ;
D= E Knbo[an] + ; Lnbo[wn] + ; Mnb\)[Xn,] ............ (2.12)

in the obstacle ;
bl = % Knbl[¢)z] + % Lnbl[wn] + % Mnbl[Xn]

3. 9[¢.]- Relevalent solution of A,, B,, C, and D,.
In this article we will determine the quantities such as A4,, B, C,
D, which are involved in the expressions (2.7), (2.8), (2.9) and (2.10),
and also in (2.11), (2.12) and (2.13) implieitly.
Boundary conditions which must hold at the boundary surfaces are
r=R; F=external stress
r=1,; b=
=y eeeeereenieniieeiieaneaan. 8.1)
r=a; =N
g‘a=%1
3.1 Determination of A,, B,, C,, D,.

At first, we will take up the case when the external stress

Xpme=p2m—1){n, L} ceveiiiiiiiiiiiiiiiaia, 3.2)
is applied at the spherical surface
r=R,
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An’ Bm Cm Dn; Ano: Bno, Cng, Dno; Am, Cnl are determined by the
next equations which are obtained from the boundary conditions.

oooooooooooooooooooooooooooooooooooo

or
( fan—-z sz—n—:i szn
nR"* g.R"3 g’
‘ iyt g2 dar
“" ,ron—l ,’.O—n-z ,ron-i-l
LAre ™2 2fure™ fard”
XoaTs" X" e
f 0 0 0
0 0 0
0 0 0
\ 0 0 0
0 0
0 0
— "t —dyryt
— ro'n-(-] — ,',.O—n
—Jare”  — furo"
— Gzl ~Guly "
dza™ dua™"
an+1 a-— n
Jaa” S
G500" [/
ﬁ
in which
. X=pte 1=/t

Dgn+={dy, 1}, "7,
Dyn-={d, 1}, 77",
bmn+= {dsy l}n ,rn+1’
bwn—_—“ {du 1}n 7'—72,

Solving these equations we have

A n=AAn/An

Bn=ABn/An
Cn=ACn/An
Dn=ADn/An

f4R—n_l 0
g1 0
day™ — !
’ro-” _ ,run—l
St Jaro"
gyt Ot *

0 " !
0 a"!

0 Sra"?
0 Groa"
0 0

0 0 \
0 0

0 0

0 0

0 0

b dua"—l - duazn_l

— a/'n—]. —_— a”‘(—l

=0 ua"? —pfaat

—Yigua"?  — Xlg3la'n)

.............. 8.4)

Sonslt={F1s 91} 0"
%dm—/#'z {fﬁ’gﬂ}n ol

%«:n-&-/p: {f3’ gS}n ,rn

%wn--/lu: {f43 gé}n gt

ooooooooooooooooooo

0
0
— ™" 2
— gy
—fary™" 3
— ooty 8
dypa~""?
a~""2
Fu7=?
Gt 3
A\ [ Sfa
Bn (gl\
C, 0
D, 0
| Ao _lo
B, 0
quo O
D, 0
Anl O
\c../ \o/
(n=<0)
..... (3.5)
ete.
.......... (3.6)
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A, =det (M) =—F"*(f1gs— .S 3)A"G’ g

R =R CH R

M=—E"(Figo—0. £ AT 5)+OE™)
Am= R (gm0 S 05 §)+OR™)
Boa= R(fgi= 0 fOA(g) §)+ O@™)
Ao =R (fin= ) A(g 5) OB ()

where An(g ‘(71) means a minor determinant of the (n—2)-th degree

)

which is obtained from the original A, erasing the ¢-th and j-th rows

and the p-th and ¢-th columns.
Introducing these expressions into (2.7), we have

Mipd—Rin, 1}, + 20, 5)[a(15)

fa.% (/3f4 f104 014
N 1 . ny 1 n
I:{n ) Ji9:— glfs ~{ntan 1) J19s—01 s

t {1, Lt O(R'Z)] (12<0) oen.n 3.8)

On the other hand, from (2.3a) and (2.4a)
BIPd=0  weeeeeeeeriiiaeeeaeeaaeeaans (3.8a) .

4. d[w,]. Relevant solution of E,, F,, Gy, H,.

By a similar treatment, we can obtain E,, F,, Gn H,; Epgyeveens
although, in this case, the external stress takes the form
%wm:p{(n—S)an-{—2(912__271——1),2n+an}n ....... (4.1)
=p{fs s}

Simultaneous equations to determine E,, F,, and so forth are ex-
pressed by the following form ;

DeGmS,  eeeerrrrrereeereereerereeneneeees (4.2)

in which
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(En\ S5\
Fn 93
G, 0
gﬂ 8 and M is same with
= T, S = the previous one.
@ Fno ° O p
Go 0 4.3
P 0 .. 4.3)
E J 0
. nl
\ G, \0/
Solving these equations we obtain
t
En=AEn/An
F,=A,[A
» TR i eererecerstasenstsaenena 4.4

H,=Ap, /A, (n=<0)
in which
Ap= R fgi—gofIA(] §)+ OB™)
Ara= R™(figs=0.£9A(1 5) OB
1 Ba=—B"(fi— 0. /9T 5
F(Fo—gof IR0 )+ O

R Am= B(fgi= )01 5) + O® ™)

and A, has already appeared in the previous section.
Introducing these expressions into (2.8), we have

dlop]=R{n+ a1}

ML D) frgmar

— R ’ I: 30:— 0 4{%, 1}+{—72—1+(X—n_1,1}]
A (1, 2) S19:— 1S
\1,3

+ O(R*"?) (ra<0)  coiiiiiiiiiin.., (4.5)

When n=0, the solution must be obtained in another way. Intro-

ducing the expressions (2.32) and (2.4a) into the boundary conditions,
we have
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dpR 3ayk 0 0 0 ' 3ok
—rg Qg 7977 -yt 0 G 0
dpre™ Bk —4pry® —3agk, 0 Fol=| 0 ....(4.6)
0 0 —a Al — Ayl Go 0
0 0 408 Sk, —3agk: G, 0
from which we arrive at the following solution
1
40 ooy A"(1)
o] =R+ { 1+ %}R I 4.7)

)

in which Aa<;;) is a minor of the (i, p)-element of the determinant of
degree 5 obtained from (4.6). B |

5. bd[x.]. Relevant solution of I,, J,.

In the former sections we have obtained A4,, B,, C,, D, and E,,
F., G,, H,, which give the relevalent solution of the cases of type ¢,
and ,. Now here, we will get the solution of I, and J, which are
necessary to express the displacement of the type ¥,.

External stress in this case, applied to the outer spherical surface
is

Banr=—(1—=1)8,'8  ceetiiiiiiiitiritieanan (6.1)
Boundary conditions are
r=R: %[Zu]z _IL‘C(I)’?'_']')‘S(n’g
r=1; o2 ]="Dol%.]
S =FolXnd  ceee i e e (5.2)
r=a;  d[fd=bl] (n=<0) A
%0[%71] :%l[%n]

in which d[y,], d[x.] etc. are given in (2.8) and so on.

Simultaneous equations to determine I, J,; I, J.,; and I, which ‘ g
are involved in (5.2) take the next form by the matrix expression.
B I T (6.3)
or
(n—1)R*  —(n+2)R™"" 0 0 0
— ,ron — ,).G-n-l ’I'o” ,ru-n—-l 0
Mi=|—xy(n—1L)r* y(n+ 2y "% (=1 "2 —(n+2)ry" "2 0
0 0 a® a™? —a”
0 0 —m=Da"?t (n4+2)a"""* p(n—1)a"!

and
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I, n—1
J, 0 »
S=| I, |, Su=] 0 | errrriiiiiinnnnnnnnns (5.4)
o 0
Inl 0

The solution is easily obtained in the following form

sl
J,— —AI@ /AT ...................... (5.5)
Af=det (M)

Al(g) is a minor determinant of the (p,q)-element of A;.
Hence, at r=R
b[XN]=In(_RnS,;§) +Jn(—R_"'1S,:§)

~| —R+R™ AI@ 1+ 24211 (S58)  (n2<0) ...(5.6
[-R+ AJr(l){m_l}] (S8 (1<0) ...(5.6)
"1

) e (5.62)

When n=0

6. General form of displacement in the equivalent
homogeneous shell corresponding to the general type of stress.

When a general type of stress
%Z ; [Kn%,;bn-p + Ln%mnd- + Mn%Xn+]r=R ------------- (6. 1)

Is given at the outer spherical surface r=R, the corresponding displace-
ment is

b= 3 [Kd[pu]+ Ludleo, ]+ Mad[t,]]  vevvnnnennnnnn, (6.2)

which is now explicity written down by means of the above preparations.

Introducing bd[¢,], d[w,] and b[¥,] given in (3.8), (3.8a), 4.5), (4.7)
(6.6) and (5.6a) we have

b=L0'Rag
+ Zl[Kn-R{n,1}n+Ln-R{n+am1}n+Mn-(—)R]

o 2] ()0
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L N [ G SRR et
LR ()5 F) a0} [ 11, Dm0l

IO I T e

On the other hand, the displacement at the same surface r=FR of
the equivalent homogenecous sphere under the same external stress is

’ "Z_(l) [Knbén—!- + Lnbmn+ + M'nbxn+]1’=R

=LRoy+ S [K,R{n,1},+ L, R{n+a,, 1},+ M, (—)R] ...(6.4)
which is exactly equal to the first and second lines of (6.3). Therefore
the right hand member of the expression (6.3), excluding these two
lines, must vanish. Thus

i G100
LR NN
rr ol D)
P O

or

e e )
+K2{A2(§: >/AG )}.[{2,1}2 ] .

+O(R™) e (6.5)
Since this expression is arranged according to the descending power
of R, an upper term is larger than the lower one. Therefore we will

equate every term to zero from above one by one.
Fortunately the first line involving K; vanishes, for the determinant
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Al(é’ i) is identically zero. (This terms denotes a mere translation of

a sphere to the direction of z-axis as a rigid body.)
Among the remaining terms, the fourth line involving I, also

vanishes, for
1,2
A (1 4) 0

The fifth line involving A1, is a term derived from y,. Now, this
solution implies the mere rotation of a sphere as a rigid body. There-
fore it has nothing to do with the stress distribution.

Now, we must equate the remaining terms to zero. Since L, and
K, take independent values both terms must vanish independently.

AG) =0 e 6.7)

1,2
A (3 4) 0 ©6.8)

7. Bulk modulus.

Solving the equation (6.7), we have the following solution;

fe—Teo— (oo Jey) 3k°+jf‘°( D) e, (7.1
0
which is equivalent to the formula of bulk modulus obtained in our
former paper. (1—p is the proportion of the volume occupied by the
obstacle.)

7.1 Weighted mean of the compressibility.

Some thirty years ago, Adams® made a comprehensive investigation
upon the compressibility of heterogeneous medium. He concludes that
at a high pressure (2bove about 3000 bars) the compressibility of a
rock is the average (according to volumes) of those of constituent
minerals.

At a sight this conclusmn seems very natural, but the weighted
mean (according to volumes) of the compressibilities 1/k, and 1/k, of
two materials is (s, implies Poisson’s ratio.)

1-K
pE—{—( p)__mfn(l P) } ...... ceeen(7.2)

b) loc. eit., 1) Expressions (4.8), (4.9).
6) L. H. ApAMS, Beitr. z. Geophys., 31 (1981), 315. Afterwards he modified his
theory a little. of. Journ. Franclin Inst., 208 (1929).
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while the corresponding value calculated by means of (7.1) is

1 1[ 3(1—K)(L—0r) ]
=14+ (1—p) y (K=kiky) ..... 7.3
T +( 1012(1_200)_!_[{(1_*_00) ( 1/ o) (7.3)
‘and these two expressions are generally not equal.
Equating the right hand members of (7.2) and (7.8) we can easily
find the condition when Adams’ simple theory strictly holds. This gives

A=20)A—=K)P=0 = ciiiitttennerrsnannnes (7.4)
which is statisfied by
op=1/2 or K=1  iiiiiiiiieiieenns (7.5)

The former condition implies that the material of the matrix is in-
compressible, while the latter gives k,=k, or the condition that the
compressibilities of the pebble and the matrix are altogether equal.

8. Rigidity.

The equation A2<é’ 2):0 gives the rigidity.

In Mackenzie’s paper™, when he calculates the bulk modulus, he
arbitrarily applies the hydrostatic pressure, and when he aims at the
rigidity, he uses the spherical solid harmonics of degree two, but
without sufficient proof. Therefore one fears that another way of
calculation using other types of stress distribution may give another
result.

However, in this paper, we have employd a general type of solu-
tion, and arrived at the same result with the former paper in regard
to the bulk modulus. Also with respect to the rigidity, we arrived at
a similar conclusion, which means the method of applying the stress
given by the spherical solid harmonies of degree two was justified.

We will now procced to the solution of (6.8).

Ag(},): i):(} ......................... (6.8 bis)

After some complicated calculations the above equation assumes the
following form :

7y J. K. MACKENZIE, ‘““The Elastic Constants of a Solid Containing spherical
Holes,”” Proc. Phys. Soc., B63 (1950), 2.
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AZG): 2) = 1+ 5007y (— o+ 2) { —~ Sty + (Bt + 107,)}

[~ o=@+ D@5+ 50 +1)

@
+ (10— I)F 5(at_3—2)
0

+0@/r) |
=0 i e e 8.1)
in which
_4@n+1)6,—2(3n+1)
~4gy+n+5
X:/‘/ Ho
szﬂl/ o
o, 1s Poisson’s ratio of the matrix.
Since the first line of the expression (8.1) does not vanish, terms
in [ 1 must be equal to zero.
Therefore we have, as the first approximation, the following formula

(X —1) {221+ 8) (25— 5) + 52y, + 1)} =(x‘—-1)7—ft—:5(a_30—-2)

(2%

or

_ _ 15(%1—1)(1_0'0)
p— ,uo[l +(—p) 5 e 550)] ........... 8.2)

If we put %,=0 (, or p,=0) into the above expression, we have

F=Pol:1 +(1—p) :%] .................... 8.3)

This is equivalent to the formula introduced by Mackenzie® and the
author®”, and applicable to the case of hollow or liquid sphere.

9. Other elastic constants.

We have obtained two independent elastic constants; i.e. & (cf.
(7.1) or (7.3)) and g (cf. (8.8)), from which we are able to deduce other
elastic constants and the velocity of prepagation of waves with long
wave-lengths.

The principle of calculation is very simple in each case. We will
only show the results here.

8) loc. cit., 7). Expression (19).
9 loc. cit., 1). Expression (3.2).
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) ,z=zo[1+(1_p)<_ld—_offo>

. (1-K)1+ay) 5(0— 1)(1 —2¢)
o e e i

a:aol:l +@1 —P)(— (1200 (1 _J"z)>

Jo
1-K 5(1,—1) }]
. + ...(9.2
{2(1 —20)+K(1+0,) 2¢.(4—500)+(7T—bay) (-2)
On the other hand, density ¢ is
0=0[1l—(1—=p)A—=D)] = it (9.3)
in which &, and 8,=Ds, are the density of the matrix and the obstacle

respectively.
From (8.2), (9.1) and (9.3) we have

v,=71+a-pnlia-p)

—(1—=K)(1+o00) + 10(%, —1)(A —=20) }:\ er(9.4)
21 —25) +KQ+0,) 2¥:(4—5060) +(7T—bay)
1 15(7(1—'1)(1"0'0)
Vs=v{1+ 1— _{1—1) + }] .. (9.5
| 1A= DN o 4 D5y + (T—b5ay (:5)
as the propagation velocity of longitudinal and transverse waves in this
composite medium.

\

4

10. Numerical examples.

10.1 When the obstacle is rigid.
When the embedded spherical body is rigid we must take
K=o0, F1==00.  eeeeassereracerasaanns (10.1)
Therefore, we have from (7.3), (8.2), (9.1), (9.2) and (9.4).
k=, 1+(1 p)g(l "v)], .
1+,
15(1—00)]
2(4—5ay) 1’
3(1—ay)
260(4—5a,) 1’ ...(10.2)

o=00—1+(1—P) (1—002);]1—200) {l—il-o _2(4550)}] ’

V=V 1+ 3 {28550 sa-D)} |,

pr=p] 1+(1—p)

A=2| 1+ —p)

4—50,
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1

[ V= Vsc[l +(1—p) L

2

These formulae will be
applied when the bulk
modules and the rigidity of
the embedded obstacles are
far larger than those of
the matrix. It will be
interesting to compare them
with the formulae which
are applicable to the case
of vacant spherical holes™.

Figs. 2a, b, ¢ and d
show the variation of k/k,,
#/te 2/2 and /o, as funec-
tions of (1—p). The para-
meter in the figures 1is
Poisson’s ratio o, of the
matrix.

10.2 When the holes
are filled with water or ice.
Suppose a soft material
with a sound velocity as
small as
V=500 m/sec,
and
0o=2.0 gr/ecm?,
oo=1/4.
Then

s vanf]

k/ko M/Mo

Fig. 2. Variation of %/ky, p/pe and /o
when the embedded obstacle is rigid. Abscissa
is 1—p, or the proportion of volume occupied
by the obstacle.

4= ,=1.667 % 10° dyne/cm?.
If water is contained in the holes of this material, we have

Iy =2.1x10" dyne/cm?,

o=1 gr/em?,

or combining with the above values we can easily obtain

K=761/k0=75.6
D=51/60=0-5

10) loc. cit., 1). Expression (3.2).
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Putting these numerical values into the expressions (7.1), (8.2),
(9.1), (9.2), (9.4) and (9.5) we get

E=2.178 x10° [1 +1.76(1 —p)] dyne/cm?,
#=1.667 x10° [1—1.96(1 —p)] dyne/cm?,

2=1.667 x10° [1 +4.23(1 —p)] dyne/cm?,

0=0.250 [1+3.10(1 —p)]

V,=500.0 [1+0.803(1 —p)] m/sec,
V,=288.7 [1—0.729(1 — p)] m/sec.

which are plotted by full lines in Figs. 8a, b, ¢, d, e and f.
If the water in holes freezes, we must introduce other values of

k, and ¢, instead of those given in (10,4).

x10° dyne/cm?
3 /
'2 L

1+

m/sec
600F -
4001
v
200} P

0 05 10 .1.5
€

x10°dyne/cm?

2f

1 o

0 05 10 15
d

In this case we assume™

0,=1/1.09 gr/em?,
a1=1/3
Then we have
{ 4=Db.56 x10" dyne/cm?,
4, =2.78 x 104 dyne/em?®.
Consequently

{ V,1=38480 m/sec,

... (10.7)

Fig. 3. Numerical values of
the elastic constants &, p, 4, o
and the propagation velocity 7V,
and Vs, assuming the material
constants

Vpo=500m/see, §y=2.0gr/ems,
6021/4.

(Ag=ji9=1.667 x10° dyne /ecm?2)
Full line shows the case when the
holes are filled with water

(k=2.1x101dyne/cm?,
01=1.000 gr /em3),

while the broken line shows
the case when the water was
frozen.

V p1=38480 m/sec,

01=1/1.09 gr/ems3,

o =1/3.

(A, =5.b6 x101 dyne /ecm?,

pu1=2.78 <1011 dyne/em?)

11) Y. SATO, Bull. Earthq. Res. Inst., 29 (1951), 223. See foot-note 17).
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Y=t/ 1 =167
{ K=Fk/lk,=267 ceeeans Ceteeneenees (10.8)
D=¢,/6,=0.459
Introducing (10.7) and (10.8) into the previous formulae, we obtain
the following numerical expressions :

le=F, [1+1.79 (1—p)]
J p=py [142.02 (1—p)]
i=2 [1+1.60 (1—-p)]

l sy [L_0218(1—p)] T
Vo=Vnll+1.211(1—p)]
Vi=V,[1+1.281(1—-p)]

the values of which are plotted by broken lines in the same figure

with the former case. The most remarkable difference is to be seen in
Figs. 8b and 3d.

veen(10.9)

Lo SRS EUITIN L (R 5 Bk oM s

WESHIGET 2 MR FE Kk

RO 5\ TELLY NS R BRI O REFH ORI oMM 4%, Mackenzie® o5 i H T
b, ST THoREWIEOHMEI OIS &M BN LR ThH - 1. i,
ROPEHEIDFE - THLEAER S ARZIE LS, ARLTE, ZoRE5SHCTHBHENE
25, BUADEHCILE O 5 i o s L WAHIEEZ T » 7. Mackenzie 0=, 47k
ETFNRHEANT LT, AR RO AN E LTEKEY, RIMEZER 0 AL 2
ROFRETHALNDL ) RIG I E L THkz. LL, R AFEEEREE LT
TOREL bR, BLTEDRS A1 MAEAR & IAT 5, — Rt AR E 5~
LED, EOSTHILTLLHHO Z & T,

TLT, ZOWNTH, ESNROBEECHENONBINNEMEL T, ZhicktT 5iEE R,
T, EEDINIIED HRESCEHTAIC L - <, —BRoOlE 3 EREOhIRORIEEAE L
THLILE. o LTEFYSEY HIie 65 1X2), equivalent homogeneous continuum
LB o TR R DT, 5 &, KT RO 2SI E kT 553,
FIMEEZSIC DV T 2 K OIREEDEDY, 3 D%V » TL 535 . 8- T, Jaic Mackenzie 33
HAL, XE22E - TREFEIELVWIOTSS S ENEHINRS (§ 8).

2 L TR bR B SR, HRETRMERIC DLW T, ROFHIEEOBE LR TS 5. (7.1), (7.8)
21 BRI OW T, 2 XOMEEE Bd TEHIIRT~E, BHEETE 5%, A%
TR B eEHETS. CoRT, WORIER 0 EBHE I S rELh AR E—FF 59, O.
B OEHEREUT, k& n EHLBEBREDERS. (9-1)~O.5)ZR)

BEAPHEOENMRL, ZThiimd s oEGFE=Y KOHA T UIALhS & Lok
NBED,O—IBL o EL DR TH B, BEZRRVRERVIODR 5 THB, (§ T.1)
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BmE oM E LT, RITIROSE (§6.1), koMéE, Thabk T g i bhiatha (§5.2)
BiTo T R (10.2), 52K a, b, ¢, d, 3 L0k (10.6), 10.9) L4358 a, b, e, d,e,f 12
RLTHB. (§10)

LLEOEIIE T4 b » THRIROAE LI2iiHL Gl & A § D,

1) Z#HORMEEUHYNOERNE b » BFIREARE LTSl L e RS TS %
ce,

2) HUIIAUCAE SORTHEZ L,

3) JUIEIEITATC LY AHHOHERADRNEL, TOZROTRAMLTL S Lo

AL &, '

4) R CREG LISt H L &,
B) FEMIYOME B BRHCHE, WE AR O EIEPERIC  bNTHORARE

BT OISFShB L &,
nEThB.




