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1. Introduction.

In the previous paper? we have calculated the velocity of Love-waves withr
a single layer. However, from the observational facts our earth seems to have:
double superficial layer, and calculations for such cases have already been
performed by some authors®. But the general theory of the waves in such
cases has not been fully discussed, and still there even remain doubts about the-

condition of existence and on the nature of dispersion, so we have good reason.

_ to believe that our new calculation has some value.

2. Characteristic equation.

First we will obtain the characteristic equation.

Density &, rigidity mr, velocity of S-waves Vi and the thickness of layers.

H,. are taken as are illustrated in Fig. 1.
We will further assume the following notations

" which are not the same with those adopted in the other

works of us in accordance with those used by H.
Menzel?.
=/ {(V2/V:?)—1} when V>V,

(k=1,2,3)
Eig‘k V< V/;

in which V is the velocity of Love-waves.
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Fig. 1.
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Displacements in three media are assumed to be

Vi={A, exp (is,2)+B, exp (—25,2)} exp (ifz—ip?t)

Vo={Asexp (¢s.2}+ B. exp (—is.2)} exp (Zfe—ipt) ...... (2.2)
Va={ +B; exp (—75:2)} exp ({fx—ipt)
Boundary conditions are : i
at  z=H; @2,=0 ,  172,=0
z=0 ,; ?z,::ag, 7;;1=37£2, Vi=Va weunn.. (2.3) !
z=—H,; ;22=.;;:';, fzgéﬁs; Vo=103
From (2.3), we have '
Cexp (is;Hy) —exp (—isH)) 0 0 0 !
1 1 -1 ~1 0 .
D T — 48, — fhoSe HoSs 0 =0 !
- 0 0 exp (is;Hy)  exp (isosHy) * —exp (is:H:) (2.4
} 0 . 0 TfoSo ) f‘l.l‘zss' f3S3 )
. . -exp (is:H,) :exp (és.H,) -exp (is;H,) -
-which may be reduced to
D=Dr+4-D¢=0
D= pos, cos s1.Hy (- p3"S;5 coS SoH,+ oS, sin $.Hy)
tD° = 38, sin s.Hy (—ps’s; sin SoHo - phoss cos s H;) "7 77 (2.42)
B =g
Further, modifying the above expressions, we have
,{ Dr=Coy (Coot So)
' D¢ = Sy; (—S;2+Cas)
in which
(Cir=H;S; COS SrH): :
\Sir=p;s; sin seHx Uy 2=1,2,3) ceiiiiiiinnn.. (2.4h)
© (when j=3, p; implies pu5) : §

3. Condition of existence.

Now we will discuss the condition of existence®.
Since we assume double superficial layer and the lower semi-intinite body,

‘we have three kinds of media, which we call 4, B, C according to the ascend-

4) This problem was already discusssd by T. Matuzawa. loc. cit. 2)
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ing order of velocity of S-gaves in respective media. Let us further show, for
example, by the notation ( él) that the intermediate layer is the medium of lowest

velocity, the upper is that of middle value, while, the semi-infinite part gives
the highest velocity. Of the 27 possible permutations of the three notations
A, B and C we exclude trivial (on physically identical) cases and have the
following 13 ones; viz.

[1]@), [2]@), [3](%), [4](%), [5](%), [6](§>
[7](%), rslél), [9]@), (10 (%), [11](§> .......... 3.1

[12] (%), [13] (gal).

Since v; must vanish at z=—oc0, s; must have positive imaginary part.
Remembering that

Ssli=a; =f1/{1—(V2/V32)}: .
‘the above condition is replaced by
V< Var i, (3.2)

If V; takes the smallest or one of the smallest value among V. (k=1, 2, 3),
s, and s, also become imaginary from the relation (3.2). Therefore, putting
sy =120y into (2.4a), we have

iD= py05 cosh oo H, (p;05 cosh ooHo+ poos sinh o, H:)
+/L10"1 Sinh 0-11'{1 (#30‘3 sinh G'QHg’l“O'gO';n COSh O'QHQ) =0 ..... (3.3)
Since all the terms involved in this equation are positive, this cannot be
satisfied by the real value of V.

Thus of the thirteen cases in (3.1), [1], [3], [7], [10], [11] and [13] must be
omitted. The remaining cases are

@ (). @ (5). & (8). @ (8). & (4). w0 (2). 12 (5)...00

Of these seven cases, the existence of the solutiop of first two cases ([2] ,.
and [4]) is self-evident, and the third one ([5]) has been already treated by T.
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Matuzawa and R. Stoneley™. So we will here discuss the four remaining cases
separately.

3.1 Examples.

In order to prove the existence of Love-waves it is sufficient for us v show
a single example of solutions satisfying the conditions (2.3) for a given succes-
sion of the media. And indeed, we can easily give an example in each case. ,

B
I. Example of case [8].... (é) .

We assume: H,=H,=H,
01=P2=0:=0 . ., ............................ (35)
=100, =ps=p

.~

then we can get the solution of (2.4), which we will give in Fig. 2 and Tab. 1.
For comparison we also give the dispersion curve of simple Love-waves. (Thick-

V7V, _ Table 1.
1.0 /,/,__,—_-,:;_-;::_'.‘——— -
‘8= i . (V/ V)2 fH,
© e . 0 0
/ 0.99 0.10935
4 Lt : 0.95 0.21405
==L TS 0.9039 0.3322
2 0.8 | 0.45%
0.75 0.6471
0 0.64 0.9078
5 10 !5 ee 0.51 1.2169
. . . 0.4375 1.4149
Fig. 2. Dispersion curve of example I (Case [8]). 0.36 1.6844
Abscissa:; Wave length (unit: H,) 0.2775 2.1182
Broken line shows the dispersion curve of simple 0-i9 iggg
Love-waves. (Unit of wave length is same with g 1336 o
above.) ) o
ness of the layer; 2H,. Density; p. Rigidity of upper layer is one tenth of |

that of lowest medium.) A remarkable point which we notice in the figure is
that the phase velocity of simple Love-waves is larger than that of the above
case when the wave-length is fairly large.

A
II. Example of case [6]....(%)

We assume:

5) loc. cit., 2)
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H,=H,=H.
D1=0s=03=0 ceveroeerecnee Ceeeeaas (3.6)
10py =po=3p;=p
The results of calculations are given in Fig. 3 and Tab. II. In this case
the upper limit of wave-length of period exists, and we will call this value as

the ““cut-off period”’, which gives a phase velocity equal to that of S-wave in
the lowest medium®. The proof is as follows.

Table II.
VIV, : o
-8 AL

7800 - Wver | FH

6173 l 1/3 0.8268

0.325 0.8545

‘4 0.319375 0.8840

—/1/10 0.3111 0.9120

2 0.2775 1.0295

' 0.2255 1.272
o L 0.19 1.536
S 10 15 0.1535 2.034

Fig. 3. Dispersion curve of example II 8%32’1/75 ggggg
(Case [6]) 0’1" 'ooo

.When V2=V (1—¢2), (e<1)
=V (E=1D+0(e?), se=/V(r*—1)+0(), (7=Vs/V3) ....(3.7)
33=Z‘€f
Therefore, on neglecting small quantities, velocity equation takes the following
form,
D=po/(r2—1)-12 cos {V/ (#*—1)- &} - prt/ (12> — 1) - sin {1/ (727 —1)- &}
+py (r2—=1)- /2 sin {4/ (1 —1)- &) - p/ (12 —1) - cos {V/ (72— 1)-£}.. . (3.8) *
Since 7. is smaller than unity in this case, the above expression is reduced
to
— )/ (1—r2)-tanh {v/(1—7r.")-£}
+pv (r2—1)-tan {1/ (r2—1)-E}=0 ........ ee...(3.9)

which is satisfied by some finite value of &. (§=0 is an isolated point.)

6) If we judge from the Fig. 3a. of the paper cf T. Matuzawa, V=b; (b3 corresponds to
our V3) seems to be aa asymptote, which however, does not apply to this case. (cf. Fig. 3)
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B
III. Example of case [9]. (él) .

This case is fully discussed by T. Matuzawa, so we will only give the ex-
ample of calculations in this paper. o .
The assumption of this case is ‘
3py=10,=py=p - /
H,=H,=H,
P1=P2=P3=0 cevervrrnncnnnns eee(3.10)

Numerical results will be found in Fig. 4 and Tab. IIL.

Table III
;/M V/vae | FH, (

L 1 0

‘6 0.941 0.1443

0.725 = 0.2802

‘ 0.584 0.375

JI/10 0.500 0.450

-2 0.389 0.658

0.325 0.962

0.244 1.881

° 5 10 15 0.200 2.556

Fig. 4. Dispersion curve of example III 0.149 3.084

(Case [9]). 0.125 6.556

. 0.1 20

C
IV. Example of case [12]... (g) .

Existence of solution can be easily supposed by the former three cases. We
will only give an example, of which no explanation will be necessary.
The assumption of this case is:
H. =H,=H, )
DP1=P2=P3=P <oeeeoronsscsnsorssssnans 3.11)
B =10p,=3p;=p
The results of calculations are given in Fig. 5 and Tab. IV. In this case,
too, there exists the cut-off period. For, putting 1/ (r,*—1)=7v/(1—7r,%) into (3.8),
we have
pav/ (r2—1)-tan {v/(r:2—1)- &}

e ..(3.12)
—V/ (1—7%)-tanh {1/ (1—-73)-£}=0,
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Table IV.
VIV, e e
8 v/vie | fH,
7600 ( / 1)_1 7 i
o3 =t 0/3 | 0.8268
0.325 | 1.1120
-4 0.319375 , 1.1940
;T/Ts 0.311 | 102997
2k 0.2775 | 1.645)
, 0.2256 = 2.209
0.19 2,267
° 5 10 15 0.1536 | 3.78
0.1351 4.808

Fig. 5. Dispersion curve of example IV 0.125775 | 5.706
(Case [12]). 0.1 | .

from which we can easily obtain the above conclusion®.

Summing up the discussion of this article we may assert that the condition
of existence of Love-waves in double superficial layer is:
“The velocity of lowest medium is not the smallest of three values corres-

ponding to three media.”

4. Discussion of the paper of H. Menzel.”

H. Menzel discusses in his paper published some ten years ago that the group
velocity of Love-waves propagated on double superficial layer has a disconti-
nuity at the point where the phase velocity of Love-waves takes equal value
with that of S-waves in the intermediate layer. He asserts that the above inference
is to be confirmed theoretically as well as by observation?>. Our doubt on this
statement resulted in the following discussion.

His theoretical evidence resides in his calculation that the denominator of
the expression for group velocity vanishes whea the phase velocity takes the
value v/ (#./p:). However, he does not examine whether the numerator does not
vanish at the same time, so that his evidence is not sufficient.

In this article we will show that the said numerator vanishes at the same
time with the denominator and the limiting value of ratio, after all, becomes
finite.

7) See also the foct-note of p. 439.

8) loc. cit., 2)

9) It is quite easy to percieve that apparent discontinuity in the velocity may result
if the identification of a wave at two stations is mistaken by one wave length.
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Denoting the group velocity as U, we have

_dp
U=
_y. b dv
V+ V dp U
1_1/, p arv
»~U-_7(1 T EE) et 4.1)
Putting e=1/V2 e (4.2)

in (4.1), we have

o=y (ol &)

while e is’an implicit function of p defined by (2.4), therefore

1_1/,, pDy
o= (D) 4.3)

where the suffixes p and ¢ mean partial differentiation.

We employ a new notation

= 1IViE e, 4.4)
then
se=pV (er—e)
i 1
O .= (Cir— s, H.S:
p Cr="5Con—sthS)  ovenii (4.5)
0 1
A W= Dk ;. 74
oj)S’ P(S;—i—s/ Cir)

After a little calculation
(Dc)p = (Cﬂl)p(C32+S22) + Cﬂl{(CSS)P+ (S'.‘f.’)p}

= 315{(2021 — 511,80, 82H,511) Cio+(— Saot Coo) (25114 5:.H,Ch) ¥
) ....(4.62)
Similarly

(D?).n = ;) {(ZCsl—SxHasﬂ —8H,5:1) Seo - (— SaatCao) SaHoCot} . .. ... (4.6b)
From (4.6a) and (4.6b) we can get pD,.

Next we will consider eD..
Introducing a new notation

N
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We have ,
0 o= — L 0,Cu— s LS
e k= 2 o274 ESILA D)
................. (4.8)
gé Sk = —"‘ere*{ijjk'*'kakaCjk}
Therefore
(D=~ . [Car{(ar+15) Coa+ 275510}
— {738 H3S01 (Csat San) + 7252 HoCiy (Sz— Cas)}] 4.9\
(DS)e= — 21e—[Sn<—<‘01 175) Saat (3 7) Cas)

+ {718y H,Cy1 (— Sie+ Coo)—725:HoS ;1 (Csot S ]
Introducing (2.4b)

—2¢D.= 02{( - 52H2C32+S?>2) Sll+ C21522+52H2 (C‘JI(SS‘_’ —Coa)— S;1S00)>
+{73C0, Capt (— (11 +75) Ssu+71Se0) Sia+ 7151 Hy(— S Cse +(— Sset Ceo)Cra)y
....(4.10)

Near the point V=1V,, neglecting the terms of 0{s.”}, we have

Jp(DO}p-—- (24355~ cOS §.Hy — 5. H, - 282 sin §:.Hy ~ s:Hz+ Sy p78:
{ A (— o S5+ SoH+ 11282) - (2Syy+ 8, Hy - Cip) +0{(s2%y ... . (4.11)
pD%)p=0{s:")

or, simplifying further,

DDy = 1125:Cyy { 2/;2 . i:l + ( — /—/fj; s, H,—3 //‘l ‘53H2+2) tan s;H,
/ 1’«‘3,
(= st 1)31H1} ............. (4.12)

and similarly

_ - g [( 2 g, - _pal Ss g 1
20(D) = pusiC {22 (g Ao sl 1) tansifh— 5 St ]

ey

. 1y’ Sy .
+[—0sH-J’-» -tan s;H, +7;
15141, mos n s+ s

+7%,(tan s; H; +51H])< —-/ﬁ”—ssH-_-+1>

—'737/';;; s-H: tan s;H1] } ................... (4.13)
in which fe=[/Tr-v,

Using the above two expressions, we can obtain the value of U.
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[5] = A oD=2eDyyr, i (4.14)

Employing the numerical constants of T. Matuzawa!®

k 1 2 3
Pr 2.7 3.0 34 gr.cm™"
Vi 3.3 4.0 45 km. sec™!
Mg, 29.4 48.0 68.9 km. gr. sec.
H, 20 30 km
we have
SfolH:=147

s H=0.67, s:H.=70.46
(PDy) [ (—2¢D.)=0.156 ,

and if we adopt the values due to R. Stoneley !V, H,=H.=H, and

k 1 2 3
Pr - 2.7 3.0 3.4 gr.cm™"
Vi 3.15 3.90 4.40 km. sec™!
we have
JfoH:=1.02

S]H;7=0.75 ’ SGH;7=Z.0.48
(pD.) | (—2eD.)=0.220 .

If we introduce these numerical values, it will be soon noticed that the
value of U in every case, takes finite value (U/ V-.=0.865 (Matuzawa), 0.820
(Stoneley)). Thus we may conclude that group velocity does never become
infinite at the point.

40. Fmwm W o W 5 11
ZOOKREEE LD 7 T
WAEFRRET  He W H %k

HEICZF D 2B 0 7 7Y DTAEREE, SOoONWHRRA® S JliPE 2 b~y HTH o o
B DR LERNE ETH D, AL, ZHOCShp—F, TIHE I LAE RN
X, 77O ERMBAEEL, ch VERE RIHFEELA v,

H. Menzel (X, 2T 7 7 W OMAHMEE A [T OMBE e & L 4 2 BT T, FEMEEAMIIRICA
A2 EEBRLEY, chiZdLPEVTH I,

10) loc. cit., 2)
11) loc. cit., 2)



