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1. Introduction.

In a previous paper entitled “‘Seismic Focus without Rayleigh-waves,” " we
have investigated the nature of origin situated in the semi-infinite elastic body.
We have found examples of focus which radiate no Rayleigh-waves in spite of
the generation of bodily waves. We began this study mainly from theoretical
interest, however in this paper, we will treat a similar problem such as the
distribution of surface stress which generates no Rayleigh-waves rather from the
practical point of view. ‘

Recently Don Leet® published a paper concerning ‘‘delay blasting” which
seems to us an effort to find a technique of blasting which generates no surface
waves. This is of practical importance in seismic prospecting, because the
surface waves often obliterate iater useful phases of P group.

In the following, we will show the way of applying surface stress without
“generating Rayleigh-waves.

2. Fundamental solution.

First we will start from the results obtained by Lamb® in his famous work
“On the Propagation of Tremors over the Surface of Elastic Solid”.

In three-dimensional semi-infinite elastic solid, displacement components %,
v, and 20 which have axial symmetry around the vertical axis are expressed by
using the potentials ¢ and % as follows

. @(I) ’ ) _ 6¢ ’ _Aa_d{ ’ 4)
, u= o +u, v= By +v, w= 52 +w ..., 2.1

1) Y. SATO, Bull. Earthq. Res. Inst., 29 (1951), 13.

2) DoN LEET, “Vibration from Delay Blasting.” Bull. Seism. Soc. Amer., 39 1949y, 9.
3) H. Lamb, Phil. Trans., A 203 (1904), 142.

4) ibid.
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in which
2 2 —_ 2 — 62 _ 62 R 6,2 -
P2410p=0,  pr= 0 g+
|he=pVE (2.2)
2= (A+2u)/p )

and p means circular frequency, while 4, 2 and p are Lamé’s constants and
density respectively.
On the other hand #’, v and w’ are

0 o7 O P
W= pina =ogoz’ T o +ERL ol 2.3)
in which
(P E2)2=0
.................. (2.4) t
2=P2/Vs2 N Vs /t/p
From the assumption of axial symmetry
e 07 1 0, 0°
P=%a T & 66 Toz
where @ is the distance from z-axis.
(2.1) and (2:3) are identical with the foilowing expression.
_ 0% . & L
q= 0o -+ Ga6s oz —} Brooo.. (2.5)
here g implies the displacement component in & -direction.
Adopting the fundamental solution of the type
d=Aexp (—az) J, (&3), Z=Bexp(—f2) ,(&3) ...... 2.6)
where
a=vy(E-R), p=/E—k)
{q={—EA exp (—az)+£8Bexp (—fBz)) Ji(éd) - \
........ (4.
iw:(—a/A exp (—az)+&2Bexp (— fz)) J(éw)
and the surface stress’[rB’_\.z']0 and [;%]0 are, at z=0
[E2o=p] of + 98] smetad- @B o)
% ........ 2.8)
E=n|24+21 00| = w2z~ 1y A—223B) ko)
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3. Surface stress generating no Rayleigh-waves.

Solutions shown in the equations (2.6), (2.7) and (2.8) satisfy fundamental
equation of motion regardless of ¢. Therefore we may take any functional
form for A and B.

If the surface stress such as

G2=pX(E) J(£a) exp (ipt),  22=pZ(E) (D) exp (1) ....(3.1)
are applied on z=0, we must take A and B, so that they may satisfy

2faA— (282 - k3EB=X(©)

{ .................. 3.2)
(282 - kA —23*AB=Z(§)
From this
{A=(—2519X(E)+(252—k‘-’)2(5)> [ F(&) a.3)
B={—@¥—IX(®)+25aZ&) | sFE ‘

F() =5 —kF—4£%ap

Surface displacement ¢, and w, are, putting 2=0 in (2.7), and introducing
the above relations
Qo =[FpX(E)+£{2a3— (2582~ k3 Z(8)] ]1(é) | F(&)
w,=[E{2ap— (252 — B} X(B) + B aZ(§)] Jo(D) | F(€)
‘Even if we integrate the above expressions, with respect to & new functions
§q.dé and §w,dé also represent displacement components upon the free surface
of the same medium. Denoting them by @ and W,

oo

(@= \ [RX+EQ2aB— 28—k Z1 JiEa) | F(&)-ds

....... 35
b= [ E2ap— @8- )X+ aZ] J(60) | FE)-di (>
If X(—8)=X(€) and Z(~8=—Z(E) .coeeinranins (3.6)
Q¥S:O[ 14 {EL(E3)+ Hy (D)} | FE)-d2
= »}S :[ THOGES) [ FE)-dE e, (3.8)
Similarly
w =<’:§1[ THOED) [ FE)-d2 oo, (3.8)
Displacement due to Rayleigh phase is .
!Q[R]=z'7r[k?;3X(E)+S {2ap— 25— k) ZE)] HO(ED) | F(E)em-x -

CWR] = inlE(2af— (28—} X(B)+ B aZ(E)] HyV(8) | F/(&)sare
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in which
F”(c)—/f F(&) and F(K)=0
If the two factors in [ ] vanish; i.e. if

[R2BX(8)+2{2a8— (22— B Z(E)]s -ne= -
[H2ag— @8~ X+ EaZ Sk k=0 ©.

hold, Q[R] and W[R] both vanish at any point of epicentral distance. Although

{(3.9) are simultaneous equations, the determinant of coefficients fortunately
vanishes: i.e.,

kB H2aB—- (222 -k} !
. ' =0
H2ap— (@2 -k} Fa

§= K
‘Therefore, the ratio of X(—X) and Z(—

K) is uniquely determined.
X(—K)/Z(-K)=—X(K)/Z(K)=

—${2ap3— (282~ /k°[a’]==_zk
which is a constant depending neither on

...(3.12)
- Poisson’s ratio, we will denote it as —

¢ nor p. Since it is the function of
C(o). Then (3.12) becomes as

X(K)/ZUK) = Clo)

.................... (3.13)
4, Numerical calculations.
4.1 Clo).
When A:p=1, or o=1/4; C(1/4)=1.4679
Arp=2, or ¢=1/3; C(1/3)=15652 ............ 4.1)
Aip=o0, or o=1/2; C(1/2)=1.8413
4.2 Surface stress. '
Assume the distribution of surface stress as
[62)eco=0(@),  [22lmo=PB) eeenrrarrenn... 4.2)
‘then
Y= (:OQ’(G) Jiéd)ddd is an evén function of &
and £O*(E) =¢ i 0@ Je@ads ,,  odd

2

Therefore we may adopt the above two functions as our X(£) and Z(¢)
icf. (3.6))
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If we choose the magnitude of both functions appropriately so that X(K)
and Z(X) may satisfy the condition (3.13), then we shall have no Rayleigh phase
from such an origin.

5. Examples.

5.1 Simple harmonic origin. v
A We will show an example of simple harmonic origin in the following

calculations.
First we assume the functional form of ¥{@) and ¢(&) as follows (cf. Fig. 1);

O T T Uw)

! T l/ 777777877017 0777 777

$(w)

Z
Fig. 1.
s@={-"1,  o@=(-" . e<e<ate
U ] 6.1
0, L0 <@ or Gyt <

in which ¢ is very small.

Then X(£) and Z(&) are

x@=¢{" 1@ J¢Eowd
== EUJ(EB)By e (5.2)
I 28 =¢( 0@ Jew)dn
LG

Therefore the condition (3.13) becomes

[ *I{W(Jj (Ka())(ﬁo / —K(Po]o(K@u)CTJo] =C(o)

or.
Ji(Kdo) _

. ! — \ ,(ﬂ AR
Jo(Kao)

C(O’/ wo .....................
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This equation has an infinite number of roots, of which we will show the
smallest two values of K@, as the functions of @,/¥, in Fig. 2 and Tab. I.

‘K = 27 Bo o @
(&= "7 V (Rayleigh) "-'“uRay]eigh))
K e //’“ Table 1.
5 - s
// Qn/wo : Kan
o= 0.10 | 0.2905  3.9802

0.15 { 0.4302  4.0545
0.2 | 0.5640  4.1277

3 0.3 | 0.8070  4.2679
0.5 1.1908  4.5092
T 0.7 | 1.4552  4.6952
g 1.0 | 1.7072  4.8885
| v 1.5 | 1.9315 5.0765
k 2 2.0490  5.1814

i

P 3 269 52020

i ] 5 | 22650  5.3727 .
s 5710 7 2.3053  5.4222
&/T 10 2.3356  5.4546

Fig. 2.

5.2 Aperiodic type of origin.

Usually, in prospecting or explosion a simple harmonic origin is not employed,
and that of the aperiodic type is commonly met with. Therefore, in this.
article, we will discuss such problems. .

The condition (3.13) involves the frequency p, so that even if this relation
holds for some value of p, it does not hold for the other values. Thus we are -
not allowed simply to integrate the solution of (3.9) and get a seismic origin
without Rayleigh-waves.

However, there is a way to get rid of this inconvenience. If we assume -
the two functions X(£) and Z(¢) to be identical (excluding the constant factor)
and make the ratio X(&)/Z(¢) equal to C(s), then the condition (3.13) holds .
regardless of p. Of course we cannot choose such functions strictly satisfying
the above relation, for X(£) is an even function of & and Z{(¢) is an odd func- .
tion. So we choose two functions, of which one is even and the other is odd,
nearly equal on the positive half of real axis. Then the condition (3.13) can .
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be approximately satisfied throughout the range of p, and we can make the
Rayleigh-waves extremely small compared with the ordinary seismic origins. -

Pairs of two functions having the said property are not few, but we will

) here show an example most simple and common.
1L.O
‘ /
5 _ =
X(¥)>~~
V)
0 5 10 15 20 25
' Fig. 3
We take
£
and Z(&) = E +1 -tanh2Z ... .. ..l (5.4)

then the stress distribution at the surface is

~—~ P

[2]:-0=¥(@) =\ X&) Ji(¢a)ds

v 0

.............. (5.5)
[22].-0= 0 @)= Z&) Jo(¢@)ds
Introducing (5.4), we have® /
(0@)={ iy Meadz=Ki(@)
' @)= égﬂ -tanh 2:-J,(¢)dz
; =)o]o(€5)d$ \ 5+1]0(5w)d +) (tanh 25— 1)5'*'1 Jolé@)d.
=L -} L@ -Lo@)+ tanh25-1) 5 Tiald:
........ (5.6)
The evaluation of the above expressions are performed in the following

way.

Tab]e of e<Ki(z) is found in Watson’s famous book®.

5) WATSON, Theory of Bessel Functions. p. 425.
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‘Table of L) cannot be found in any book, so we calculated the value '
of I(x)— L.(z) by the formula® . Py

Lx)— T, 2) :—Z—S /dexp (_—rc cost)df ........... .(5.%)l

TJo

using Simpson’s %—rule (téking the interval as 10°).
‘The last term of ¢(@) is modified into

{ (tanh 25~1)E._,5ﬁ]0(5c5)d€+)a~--d5 i (5.8) :
and
' ;-ooi e ¢ y . .7§~. - .
|)a < ‘\a l anh 2= 1| E_+1 |]0(6w)lds ]
< {T(—tanh22)d:
va
< 2\ exp(—4&)as .
= exp(—42)/2 e 5.9
5 Table II.
o(57) 5| T@) | L@-L@ S:" 0@)
4 ' "* —
0 %0 1 036 o
. I
0.2 | 4.776 | .882 .036 | 3.578
10} :
1 &(@) 0.4 2.8 .71 | .035| 1.238
3 0.6 1.303 .695 .035 | .541
\ 0.8  .862 .620 033 | 243
1.0 .602  .559 032 .0%0
S 1.2 .435. 501 .030 | .017
2 1.4 .321 .452 .028 | —.024
1.6 .241 .410 .026 | — .06
1.8 .183, . .37 024 | —.036
| 2.0 140 .342 .022 | —.05) \
2.5 .04 .279 .016 | —.054
3.0, .040 282 | .01l|—.083
3.5 .02 198 | .008 | —.032
"‘ é e 4.0 012 171 005 | — .024
© = S w4 45| .007 .15 | .003 | —.017
Fig, 4

6) loc. cit, 5) p. 68,
7) do., p. 425,
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»

Therefore if we assume a to be 1.8, the error due to the integral iais smaller
than 0.0004. The first term of was integrated numerically.
The results of computations are given in Tab. 2 and illustrated in Fig. 4.

.,

6. Conclutions.

The above discussions are interpreted as iollows.

If the stress distribution of simple harmonic type are applied on the free
surface of the elastic body and their functional form are appropriately chosen
so that the condition (3.13) is satisfied, then Rayleigh-waves is not generated
from such an origin. Of course, we can find any number of examples, of which
we have given only ona simple case in $5.1.

If the stress distribution varies its iatensity according to an arbitrary
function with respect to time, the above circums‘ances become more complicated,
and we cannot find the distribution that strictly satisfies the condition of no
Rayleigh-waves. However we can find examples which nearly satisfy the
.conditions, and the calculation given in §5.2 is a simple cas= of such cases®.
If we put X(&) and Z(¢) given in (5.4) into (3.7) and (3.8), we must calculate the
terms which appear irom the poles of these two functions. However these,
terms decrease rapidly with @, so that we have no need to take them into
«consideration.

We hope the above theory will be usad effectively for practical purpossas.

41. v — ) AL R aREID O 54
WIRRTRIT 2 R OBR R

PAREREEPEEE D FEMICHE D Z N2, L= )~ TAET I L, T oo PELI LR
TLDIPTH DY, WNBENOFMHITITEDOTHE, v =)~k 2BELEeztLdVEINT
vt B L2 05 BEERIFETNE, FRINICL, MRSy, Fkd 2 8
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8) We chose these functions not because they agree well with our theory, but because
‘they are simple and the calculation may be performed easily; so that if we do not mind
the trouble of complicated numerical calculations, we can give sets of functions which
watisfy (3.13) more strictly. -



