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The problem of generation of elastic waves attracted the interest of
many seismologists in our country, and a number of excellent papers are
published”. But in these works, boundary conditions are not without some
restriction. In this paper we will take up this point and show how to
remove this restriction and give the boundary condition in a most general
form. .

The equation of motion of the elastic solid in spherical polar coordinates
(R, 6, ) are written in the following form......
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where P, density
AH.a.... Lamé’s elastic constants

#, v, w..radial, colatitudinal and azimuthal components
of displacement

g, W, Oy ... cOMponents of rotation
AL, volume dilatation
If we denote the displacement vector by 9, we can write
@_—‘Uﬁ‘*‘]@‘l‘z@k .................................... (2)
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U@=g1‘ad P
1D=rot (1‘1,, O, 0) ............... EEIRTTRRP PP ( 3 )
L®D=rotrot ;¥, 0, 0)

where

Using these notations we can write the solutions of the equations of
motion as follows (omitting the time factor exp(ipt)) :—

<1>=f (hR)Picos 0)(A cos m + A’sin mp)
=R g(kR)Pu(cos 0)(B cos mp~+B'sinmp) ......... (4)
;¥ =Rg(ER)Py(cos 8)(C cos me +C’'sin mp)

where (P7(cos)...... assoc1ated Legendre function by Ferrer’s definition --
f(hR)=(hR)" _H‘+1; (hR)
g(kR)=(kR)" ZH‘ DLBR) o (5)
R=pp/( +2p), F=pplr '

From (2), (3) and (4), we get

u= { A fg; +C ”O;; 1y }PZ‘(cos O)cos me
+{ ! df C’n ”+1) }P;"(cos 0)sin me

vz[{Af +C}e—‘—i~(5?g)}(% P(cos 0)+B'm Shl] 6——" }cosmqv (6)
+ H AL f +C’ 112 d(g?g)} ;6 Pcos 0)—Bmg fi-gf’zn(cos 9):|sinm<p

w= [m{A’f %%@}Sé P (cos 0)— Bg d P,'{‘(cos 9)}cosm¢
+[ R d(dRRg)}s—l?ll_Pm(COS 0)—B'g ;0 Pr )]sin;ﬁq:

Now, putting ,
QIEA df +Cn(n+1)g ”[,=Al—df c'mn n(n—i—l)

R b b - R g
f 1 dRg) /f ,1 dRg)
c=A% +Cp T S (7)
B=Bg s B'=B'g

we obtain
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(u=A Py’ - cos mp+A' Py - sin mep

@ pn. . 1 pm
v_{GdGP” +B'm— Pn]cosmgv

sin 6

5/ @ pn_qr 1wl
+ dﬂpn %msinan]smmgv ........................ (8)

[
w= [(5 ’m;,rll?PZ‘ ~ QS—Q%PZ‘] cos mp

+[—C§m 1 P,’;‘—-L’S’%P;"]sinmtw

_ sin 6 d
* where Py means P (cos¥).

Hitherto, the boundary-value problems, in which the displacements
are given on the spherical surface R=a, have, on account of the forms of
expressions in (8), always been introduced in the following scheme?®.

{“=D' Py(cos 6) - cos mp o)
I
or
u=0
= 1 _Kulv . '
V=Em—p Pil(cos 6)-cosmp ... (10)

w= —Emdigﬁl?(cos 0) - sin mo

But these are very unsatisfactory, because in the expression (9) » and w
are both zero, and in (10) » and w must satisfy some definite relation,
which made us unable to give v and w both arbitrarily. This fact is
clearly pointed out by Mr. S. Honma in his initial-value problem®. In
this paper we will study how to remove this defect, and give the dis-
placement #, v and w all arbitrary on the spherical surface R=a.

Now, we assume A
u:U(G’ ¢), V= V(e’ ¢)’ w:W(G’ ¢) .................. (11)
on the surface R=a and will show that the coefficients A, A,B,B,C,C

2) 8. Syow~o, loc. cit. (1) second paper.
H. Kawasumt and R. Yosarvaua, loe. cit.
‘W. INoug, loc. cit.
5. Howxuma, Kensin Ziho, 12 (1942), 106,

3) loc, cit. (2)
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are uniquely determined, if certain conditions are satisfied which enable
us the following treatment.

First, expand U(Y, @), .V(H, @), W(b, ¢) into Fourier series
U (8, p)= > U™ (cos 8) cos mp + 2, U™ (cos 6) sin mp
V (6, p)= 2. V™ (cos 0) cos mp+ 2, V™ (cos O) sinme ......... (12)

W(6, )= W™ (cos 6) cos m@+ 2, W™ (cos 6) sin mep

- Comparing the expressions (12) with the generalized forms of (8) (in which
9, A’ etc. are respectively replaced by ZZ%I ZZ‘H etc. and equating

the corresponding right hand sides of the twb sets of equatlons respec-
tlvely, we have

Z_,QI”‘P"‘ U™ (cos 6) e, (13-1)
ZQLT, n =UW(COSG) ..................... (13'2)

m_d_ m m’ 1 m — m 0 .
2(@,, dgpnmnmsingpn) V™ (COS 0).roovoreeens (13-3)
‘ . d 1, ,

m_ @ pm__qm T g .
Z(L&; 70 P; SBn,m 3 n) V™ (cost) ....ooooiennnn (13-4)
Z(@;r' 1 pro szsm Z‘>=W’"(cosf)) .................. (13-5)

sin 8
i Sy 1 mrs d m’ 0 .
z( cpm_LoPr—w dgpn) W™ (oS 0) oo (13-6)

A" and A are directly obtained from (13.1) and (13.2) by using the .
orthogonality of P functions.

Ym = 2"2+1 EZ+Z§: f U™ (cos 6) P (cos 0) d(cos )

=W’ = 2n+l (n—m)! f U™ (cos 8) Py (cos ) d(cos 0)
2 (m+m)!

Next, we W111 consider the other unknowns. Gp and %% are involv-
ed only in (13.3) and (13.6), and G}’ and % in (13.4) and (13.5). So, we
will at first take up (13.4) and (13.5). _

Multiplying sind on both sides of (13.5) and then operating d% we
get :



<

Parts 1~4.]  Boundary Conditions in the Problem of Generation of Elustic Waves.

m’ d m m d d
%‘(@n ma—g—Pn, — B, d6 {Sln 6 dg
Then multiplying —m on the expression (13.4) and- adding to (15)

Zﬁsn(—i{smadm‘}+m L Pr)="2 isin0 W} —mv™

}) jg fsind W™} ... (15)

A do do sin 8 do
<0 a’ d s 1
— 6 m — a2 n
or 2 — B sin ( dG”P P R ey m)
=L S OW™ = V™ oo (16)

do

On the other hand, associated Legendre function P} satisfies the follow-
ing différential equation with respect to ¢

a’
m _ m 2]
d&“‘P (cosG)+{n(n+1) —}P (cos8)=0...(17)
Introducing (17) into (16), and dividing both sides by sin 6, we get
1 d ,
w Py = ow™ KR 18
>'n(n+1)B5 P <ind 40 {sinbW™! —mV (18)

From this expression we can easily determine 8%, as we determined A7
from (13.1). Namely,

P = 2n+1 (ﬂ”m)!fl[ 1 igsinewm(cosg)g

2n(n+1) (n+m)! sinf df
—mV™ (cos 6)] - P2 (c0s0) d(COSO) v, (19)
By ‘the similar manner-we may get 6. The result is as follows :
mr 2n+ 1 (n m) ! 1 d mne
Y =— 6 6
o+ 1) (n+m)vL[ sind go SOV CosO
—mW™ (cos 9)] - P (cos®)d(cosO) ... (20)

Using the above solutions we can obtain B, 6% easily ; if we substi-
tute &, —B3 and V", —W™ in place of 6}, 37 and V", W™ respec-
tively, then the expression (13.4) changes to (13.3), and (13.5) to (13.6).
Therefore the unknowns B}, G are at once obtained from the expres-
sions (19) and (20) by applying the above substitution.

m_ 2n+1l (n—m)! 1 d s
By = 0 [/}
2n(n+1) (n+m)’I1[sm0 do’ (Sinf W™ (cosf)!

+mV™(cos 9)] - P (cos8)d(cosb) ..o, (21)
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Cn= 2n+1 (”'—m)!fl: 1 d {Slngvm(COSG)
-1

2n(n+1) (n+m)! ).l sinf db
+mW’”'(cos€)] - P*(cos ) d(cos 0) T (22)

Thus the quantities Ay, A7’ etc. are all solved explicit}y. And the
next step to be taken is to obtain A5, Ar  etc. But this is very simple.
Solving (7) with respect to A, A’ etc. we have at once

{}? d((geg)I n(n};-l) }/D
=g Y- e
=l )
¢ =L+ elp ,
B=1gy
g
Beé%l
where D= i_‘if?ﬂ ) n(nI;- D .
;1 e |
R R dR

and all R, involved in the above expressions are substituted by @ after
the differentiation is performed. (The affixes m and # are abridged for
brevity.) _ ‘

In this way, the values of A, A’ etc. are uniquely determined when
we give the values of #, v, w on the spherical surface by the “expression
(11), so long as the operations so far performed are permissible. This
fact means that the boundary-value problem given on the spherical sur-
face is completely solved.

Initial-value problem in the theory of elastic waves, studied by Mr.
S. Honma, is in its essential part, equivalent to the above problem. If the
initial displacements are given by

uo—UO(Ry ’ (p)y Uo— V;)(Ry 67 ¢)9 W= WU(R’ 9: w) Ceeneaens (25)
and the functions U,, Vi, W, are expressed by the integral form such as

mmﬂﬂpfﬂﬁ$WxQ@% ..... e, (26)
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which are uniformly convergent with respect to R, then we may treat
the integrand by nearly equal manner with U™, U™ etc. of (13) and
integrate with respect to s.

In the potential theory there are two types of problems; one is that
of Dirichlet and the other is that of Neumann. In the former case
potential is given on some closed surface, and in the latter, normal
derivative is given. In the theory of elastic waves, however, it has little
meaning to give displacement potential on the surfaces. In the above
theory so far shown, displacement components were given on the spheri-
cal surface, that is to say the first derivatives of potential were given.
Therefore, this problem corresponds to that of Neumann. But another
type of problem is possible; that is to give normal components of stresses
on the closed surface. This is a particular subject which has no cor-
responding one in the potential theory, and because of the important
” in the field of mechanics this is a subject of great

interest.
The stress components are given by
Trn =4 @+2p9;‘e
1 ov
Tro {R_aﬁ(f}?-)fr = 59_} .............................. (27)

'TR?%#{ kslinﬂ %Z+R5%<%>}

y From (2), (3) and (5) we get the following relation :—

¥ _ oY .
1) ===4+FY 28
nn+1)— Y C (28)
where V¥ is ;¥ or ,¥ as already defined in (3).
Introducing (4) and (28) into (27), we get
Tww= Py - cos mp+D' Py - sin mp
|3 d pn o
Tro= [&d—Pn + G ,,,] cos mp
+ P;i' -G m 1 P:’:] SINMP......cc.eennn. (29)

H

sin do
d

Y
¢ 26

ke
[ "m 1 HPZ;‘ @E—Pfi']cosmcp
[

+

n

n] sin m@
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where D=4 {—Kk2f+2/tg;éf;} +C- 2un(n+ 1)3% (~§-)
| D=A"{ " j+C - "
|5 =rla-2-5(L)+c (2 dR(Ile d(geg))-i—k’ I 30)
F'=pid- " +C- o . .
¢ =R (%)
€=B.

Now the forms of the equations (29) is completely similar to (8) provided
A A, B, B', € ¢ are interchanged by D, ¥/, €, €', F, J’ respectively.
Therefore the problem, in which the normal components of stress are
given on the surface R=a, is theoretically equivalent with the former
case. The only difference existing in the two cases is that the equations
which determine %, %’ etc. (equations (7)) and D, D’ etc. (equations (30))
have not the same coefficients. After getting ®, ®' etc. by the appli-
cation of expressions (14), (19), (20), (21) and (22) we may solve the
linear equations (30), and obtain A, A’ etc. as follows :—

A=p{$<2d§2(-}€i<£egl>fkﬂg)-—%-2n(n+1)%(§)}/E

A'=p{D'( " =g~ {E

c={-2 pé({?) 3( - xh’f+2pj]§2>}/E

C'={-9'- "  +F " WIE oo (31)

B=@/R%(§)

=G|
where FE= sz—l—Z;td;{ 2#n(n+1)dR<§)
N EPPPoS (32)
w2 e(%)  Heap( i ) ¥e) :

and after carrying out the differentiation, all R’s are replaced by a.

In this paper we have studied the problem of the generation of elastic
waves, in which the boundary conditions on the spherical surface are given,
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in most general forms; and showed the solutions explicitly. Thus the
previous defect pointed out by Mr. S. Honma, in boundary—or initial—
value problem, is excluded altogether.

In concluding this paper, the writer wishes to express sincere thanks
to Dr. H. Kawasumi and Mr. S. Honma for the valuable advices and
suggestions throughout this study.




