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- Elastic waves are propagated in sand with only 1/3 of their velocity
in rock. We tried here to explain this property by a simple structural
model. Though many problems are left untouched, we at least succeed-
ed to gain some fundamental formule. ‘ ‘

1. Owne-dimensional model. Consider a large number of elastic
spheres of radius 7 and mass m pressing each other on a straight-line.
In equilibrium, each sphere suffers equal pressure from both sides due
to -elastic deformation, which we could write P(«), where a=2r—a and
a=X,.—X,, X, being the coordinate of the center of gravity of the #nth
sphere. Owing to small displacements, X, changes to X.+x.. If we
write Aa, and AP, for the variations between nth and (z+1)th
spheres, ‘

“Aan=xn+i—xn, ......................................... ‘ .( 1 )
AP,=P,— P=FAa,, (k=dP/da). ------ e (2)
¢ Neglecting higher orders, we may consider that the center of gravity
of ,the sphere always coincides with its geometrical center. Then we
can Write down the equation of motion of the # th sphere
MAg=— Pyt Posr= —b(AQy— Ady,) |
:—k{(xn—x”“)—(xn_l_x")}_ ..................... (3)
Under Born-von Karman’s boundary condition, (3) is easily solved,
putting ,
xn=A expgzqri(a'Xn_yt)}, ........................... ( 4 )

where ¢ means wave number, that is, inverse of wave length. In our
case o¢ must be very small, so that we can neglect its higher orders. Sub-
stituting (4) in (3), mx,+47°a’e*kx,=0.

Hence for the velocity wvi=v/o=a/(k[m)=27/ (k/m)
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To determine %, we could adopt thé formula gained statically by
Hertz". '

P=(3m8)7@r) 0%, 9=\ 2 hmp(N ) (6)
Hence k=d Pldat=(1/7)/ (Fa[2)...........eoevrererren. (7)
Putting (7) in (5), if p means the density, - '
0 =(3/TIp)a/(Q[27). ..o (8)
When A=p, (8) is expressed as
f0,2=0.921(Q/27) S, oo (9)
where v)'=(A+2p)/p=3u/p.

If we eliminate « from (6) and (9), we know u, is proportional
to PUC

Similar results were already gained by K. Iida®.

2. Three-dimensional model. Imagine that centers of spheres form
a space lattice in equilibrium, and pressures are the same at all contact
points. : , '

Let vector R, indicate the center of a sphere in question. If # is
the number of its neighboring spheres, vectors connecting their centers
R, with the center R, are expressed as .

iat;:Rij—Ro, lfj] :1, (]: 1, 2, 7’1/2) ................ ( 1 )
Assuming that the direction of the pressure coincides with t,
AP;=t;- kAo =—Fk(t;—1y, t)t) .co....... e (2)

where 1, is the displacement of the center of the jth neighboring sphere.
Neglegting other forces we get the equation of motion

M=k ws(t;—to, ) =k s(ts+ 1oy =2t t)tye oo, (3)
We put =W exp {27(G Ry—vE)}, .cooiiiiiiiiiiiiiiiiiil (4)

where v/|o|=v and o=|o|s, |s|=1 means the wave number vector.
Now |o| being very small, (3) becomes

me,+ 4Gk S (sH) (tot) =0, vvoreeeriei (5)

or B (@[vo A — DT (A)(st)V 1,=0. ...ooeiiiiiiiii, A..( 6)

From (6) secular equation for (v/2,) may be immediately obtained.
We can solve this third order equation assuming lattice structure. But
this is ‘uninteresting, for, although its three roots depend on the propa-

1) ‘LOVE, “Theory of Elasticity.” p. 200.
(2) K. Iipa, Bull. E. R. I, 16 (1938) 131, 17 (1939) 782.
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gating direction, we practically observe only two sorts of- velocities—
longitudinal and transversal, which should be the consequence of irregu-
lar overlapping of so many fundamental lattices considered above. We
will deal with this problem in the next section.

Here, treating approximately as a continuous substance we  will
determine apparent elastic constants of our model.

Modifying (5) into

mr—ka’e®y 23] (sty(uts) =0,
We get by integration
‘ (o) — ka0~ 3 (St =0 oo (7)

If € is the energy per one sphere (=mru‘/2), and the components of 1, s
and t, are (s, s, ts), (S1, S5y S5) and (¢, tn, 1) respectively, (7) becomes

08/ (0of0)- 3 (Sutss + Satog+ SstyV(ttatsy + thatos + Ustss e oo (8)

Considering (4), we can under continuity assumption define strain
components x...... x; as follows
X= —slzlllv, K= ——321/22/0, ............
Xy= —szz}s/v—sgizz/v, ........................
Hence (8) becomes
28[mvy =3 (it) 1+ Xoly " + Xty s + Kb yalys -+ Xelysn + Xobnbpo)s oo (10)

If p* is apparent density, p*/m means the number of spheres per unit
volume. Then according to the theory of elasticity

28p* [m = (%1C1+ 2aC2 + XaCy + XCs - XiCs +xsce) e (11)

where the right side is written symbolically—c.c; means elastic constant
¢, if developed.
Comparlng (10) with (11), we get

T P D TkT e e eininiin e ee it (12)
where =t T= Loy Ty= [
‘Ty=lpls, Ti=tluln, Te=lube.

We know immediately that Cauchy’s relations are satisfied, which is
also natural seeing that the assumption of central force is made.
From (12) important formule are gained. Thus

CizF €13+ C3=Cas + Cs5 + Ciey
ntCrtCn= (n/Z) P*?)qz - 2(612 +Cizt+ 623). .................. (13)
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3. Elastic constants of an aggregate of aeolotropic bodies, when
regarded as if the whole were an isotrope.- Suppose an aggregate of
many small bodies of one kind. Their crystal axes are arranged in
all directions, and in their average we should like to treat the aggregate
as ‘an isotrope.

We write strain components #; and elastic constants ¢;; in matrices -

. X1 Cn...... Ci ‘ .o
xz( : ), C:( ) ..................... (1)
Xs y "Cos

2E=x%CX, ..ot (2)

where 2* means the transposed matrix of x. v

The direction of each crystal axis determines the rotation 7 from
fixed position, so we write E” and &” in (2) to show their rotated position.
If V(r) means the representation of rotation group in terms of x, we
may write

X=V(eeeeaeiiinn e (3)
Then 2E =" Cx=x*(V*(CV#H))ae cvveeeea.. wen(4)

We define the energy E, of the resulted isotrope as the average of
all £7, that is
2B =x*Cr=2(1/02) f Eao. ... e (5)
where ©Q means the volume of the parameter space of rotation 7.
From (5) and (6)
C'=(1/9) f VEACV(IAR. oo (6)
Now our problem becomes clear—being given C, to determine C'.
To make use of the theory of representations, we must first de-
compose the matrix V(7). This will be done by transforming V() with
a constant matrix 7T

UN=T" VAT, U A=UB" oo (7)
If we put ~ CT=T*CT, C*=T*CT, .ooooooooooooron... (8)

we get from (6) and (7)
CT=(1/0) f U CUPAR oo (9)

As x is a symmetric tensor of rank 2, U(r) must be decomposed
into. two irreducible parts Of 1Ist and 5th order, Then, from the well
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known lemma of Schur concerning irreducible representations, we know
at last that (9) is a diagonal matrix, and its diagonal elements are

ClolT'—'C'xry 56};— ssz+633+C44+655+Cg6§ (]>2) ............... (10)
Thus we must only know T to determine C°.

In the space of homogeneous polynomials, solid spherical harmonics
are the bases of irreducible representation of rotation group. To the
representation of 5th order corresponds spherical function of order 2.
Adding to them an invariant (**+3°+2%, T will mean the transformation
from these six functions to the components of the symmetric tensor, 2 .
¥, 2, 2yz, 2zx, 2xy. To calculate T is then an easy task.

Finally we calculated ¢7, from the second equation of (8), and putting
them in (10), we got ¢Jj. Determination of C* was the consequent result
of the first equation of (8) written in the following form

C=(T*)C T oo (11)

The obtained C° is a symmetric matrix, and the components except
the followings. are all zeros.

Cu— Cu— 633— (3/15)(011 +Cnt+ 033) + (2/15)(613 +Cn - C]z) + (4/15)(044 + ¢+ Ccc),
623:031:(:12: 1/15)( ” +(4/15 ” )—(2/15 ”» )’ :
== = (1/2)(C =€) rvevreeereeeeseemranaee e (12)

From this result C° can be interpreted as the tensor of elastic cons-
tants of an isotrope, as we expected.

Application of this section is not restricted to the granular structure
only, but here we will not go further.

4. Conclusions. Applying the last section to our case, that is, if we
substitute 2-(13) in 3-(12), we get immediately

= (n/30)p*v/, S =(n/10)p*v* =3¢z ...oviiinnnn. (1)
¢ and ¢ depend only on the number of neighboring spheres, and
not on lattice structure. This is a remarkable fact. (Equation (1) could
also be gained by directly averaging 2. (3).)
Then the velocities of elastic waves are

vE=u/(ch/p¥) =/ (1/10), v*=4s {(ch—c})/2p%} =0,*/s/3. ...(2)

These are the desired results.

To consult with experimental data, a slight deformation should be
made on the expression of v, We define statical pressure P, as the
force per unit area acting perpendicular on the plane imagined in the
granular aggregate, Consider a polyhedron wrapping a sphere made up
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of tangential planes at contact points, and replace its surface area with
that of the equivoluminal sphere. Then P, may be expressed as

: Py=(nP/Amr) 0 /pf® (3)
From (2) and (3)
v,%=0. 930671(P(./p)”G -0, —(n/lO)l”(p“/p)‘”9 ......... (4)

Values of &, are shown in Table . We compared the results with
K. Iida’s experiments®,. assuming temporarily Py=p*gh, the coincidence
‘was somewhat satisfactory with sand but not so good in case of lead
and rubber, and the remarkable change due to porosity (=1-—p*/p) could
not be well explained.

An example of the numerical calculatlon :is in Tab..IlI, which we
think proves qualitative correctness of our theory.

For the results in this paper, so also for the faults, if any, one of
the authors, Takahashi, is responsible.

Table II. Wave-velocities in a Sand, when
Table I, Values of é,. p= 27g/cm v,=5000 m/sec. and &,=1.

n 6 8| 10  po bar | .00 01 1 100 | 1000
p¥p | 52| 60| .70 v mfsec | 167 230 497 | 1070 | 1570
& 90| 90| 1.04 v 91 138 287 618 907

Values of p¥*/p due to L. C.
Graton and H. J. Frazer are
quoted in Jida’s paper.

(8) K: Iips, loc cit, -




