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Chapter 1 

General introduction 



A cluster is an aggregate of atoms or molecules, isolated in the gas phase. The motivation for the cluster 

science originates ftom both fi elds of molecules and condensed matter. From the molecule point of view, the 

cluster is an augme nted molecule, whi ch is large enough that the statisti cs sta rts to play an essenti a l role. The 

cluster is also viewed as downsized liquid /solid , which a re manageable with sophisticated calcu lat ions developed 

for molecular systems. Recent advance in t he vacuum and the laser technologies has enabled us to generate, 

separate, and investigate the clusters, and many works have been carried ou t on such cluster systems. Thanks 

to those stud ies, the cluster starts to unveil its ow·n face: the cluster is a small scale many-body system, and 

taking it as augmented molecules or dow nsized liquid/solid is somewhat misleading. 

Besides t he conventional physical parameters such as volume and internal energy, the cluster has another 

dimension: the number of the components within the cluster, which is usually referred as "cluster size''. Some 

physical observables of the cluster are strongly dependent on the cluster s ize. The stability of t he cluster is a 

representative example t hat rnanifesls the size dependency. If a cluster with a specific size is stab ler t han the 

others, its abundance observed in the mass spectra becomes la rge, and is referred as ''magic !lU mber". 

In the cluster systems, the stabili ty does not correspond direct ly to t he entha lpy for the cluster dissociation. 

A "stable" cluster here is a cl uster that has a long life time. In a. typ ical case, the binding energy of the cluster 

is smaller than its internal energy. Due to the limi ted degrees of freedom of the cluster , a sufficient amou nt 

of the internal energy may be condensed in an internal mode related to the dissociation via a Ouctuation. In 

that sense, the cluster is not an isolated system but is even an open system, as its cornponents may be changed 

through evaporat ion. Based on the model of the evaporat ing clusters, the relative dissociation enthalpy can be 

deduced from the rate of the evaporation. 

It is a common method to deposit energy into a cluster a nd to pursue t he following process, for s tudying 

the dynami cs of the cluster such as an evapora t ion process. The energy deposition is performed through 

photoexcitation or coll ision with inert gas, being followed by photodissociation or collision-induced dissociation 

(CID ). From a theoret ical poin t of view, the treatment of the dy nam ics is confronted by several difficulties. 

In homogeneous clusters, basic electronic structures of its components are the same by defi ni tion, which are 

interacting with each other. Therefore, the electronic system of t he cluster itself is heavily degenerated. The 

Born-Oppenheimer ap proximation breaks down and many potential energy surfaces start to cou pl e together. 

Those electroni c surfaces must be obtained at the same accuracy, as many elect roni c potential su rfaces are 

involved in the dynamics. Secondly, non-ad iabati c co uplin gs between the potential surfaces must be ca lculated , 

which requ ire elect roni c wavefunctions. Therefore, the pair-wise add it ive model potentials are not appropriate. 

And lastly, the full quantum trea tment of t he non-adiabati c process req uires unrealist ic amount of computat ional 

effort. A part of the degrees of freedom in the cluster shoul d be t reated classically, though l11e partitiOning is 

not st raightforward . 

In this work , seve ral diffi cul t ies in the theo ret ica l treatme nt of the cluster are ta ckled taking an a rgon cluster 



ion as an example. In Chapter 2, an electronic 1-l amittonian for the argon cluster ion is discussed. The most 

widely used method on the calculation of elect ronic states is the ab initio molecular orb ital method. Along 

with the recent amazing advance in the computer technology, the ab initio method has successfully widened 

its app li cability. However, the calcu lation of the electronic states involved in the dynamics of the cluster is 

still beyond ils scope. F'or example, Arj0 has 60 electronic states within 5 eV from the ground state, and 

calcu lat ion of whole of thern is almost impossible even as a single point calculation . Instead of leaning on the 

ab initio method, an electronic Hamiltonian is constructed by us ing the empi ri cal method based on the valence 

bond theory. The Hamiltonian for the large cluster is built from an available information on potential energy 

surfaces of the small cluster by using the chemical intuition of the valence bond structure. Roughly speaking, the 

Hamiltonian thus const ru cted cor responds to an effective C l matrix in the ab initio word. r\11 the 3p valence 

hole states in the argon cluster ion are calculated equivalently. Analytical expressions for deri,·atiYeS of the 

potential energy su rfaces and non-adiabatic coupling vector are also derived for a further use in the dynamical 

calculation . 

In Chapter 3, static properties of the argon cluster ion is discussed. The properties include the most stable 

structure on the ground potential energy surface and transition energies to excited states. At the most stable 

structure, whole charge in the cluster is localized on a few ato ms forming an ion core, which acts as a strong 

ch romophore. In other words, the ion core is solvated in the rest of the neutral argon atoms. A quantitative 

method to evaluate the solvation interaction energy for a certain electron ic state of the ion core is presented 

there. The experirnentally observed spectral shift of the argon cluster ion is exp lained in terms of the solvation 

effect on the ion co re. 

In Chapter 4, dynamics of t he argon cluster ion in the electron ic ground state is discussed. 13ecausc of large 

degrees of freedom, there are many local minima on the potential energy surface. The ground minimum only 

gives a representative structure of the cluster ion , and it. is not suitable to es timate experimental observab les 

from it. However, it is almost impossible to locate all of the minima, unless the s ize of the cluster is very small. 

The local minima may be connected through higher order stationary points, and isomerizat ion a mong them 

may occ ur frequently. Those strong unharmonicity of the poteut ial surface makes it hard to acquire correct 

statisti cs from stationary points on ly, even though all of them arc obtained. 

In the a rgon cluster ion, the interaction of solvent atoms with the ion core is site-specific, so that variation 

of the solvation shell may be important. Instead of finding local minima and taking statistical average over 

them, the molecular dynamics (~ I D) calculation is performed to si mulate th e ph otoabsorption spectra of the 

argon cluster ion. The formula to ca lcu late the photoabsorption cross sec tion from the f\ 1 D struc tures are also 

derived here. 

In C hapter 5, non-adiabatic dynamics, allowing transit ion bct\\"cen different adiabatic states, is discussed, 

based on the phoLod issociaLion process of t he cluster ion. The pltotodissociation process starts from the clcc· 



tronic ground state, which absorbs light and promotes to an excited stale. Evaporation of argon atoms from 

the cluster follows, releasing its excess energy of the parent cluster. A smaller cluster in its electronic ground 

state is left after the evaporation. This implies that the transition from the phot.oexcited state to the ground 

state should take place somewhere during t he photodissociation process. The photodissociation process is too 

rapid for the radiati ve relaxation to proceed, so that non-adiaba ti c t ransit ion should play an important role. 

There have been no works reported on the studies of non-adiabatic processes in complex systems such 

as clusters. One problem is in obtaining many electronic potential surfaces, which are coupled together and 

take roles in the non-adiabatic dyna mi cs. The otller problem is in the a lgorithm to man age the non-adiabatic 

transition. The full quantum calculation is not tractable due to the large degrees of freedom . The conventional 

surface hopping trajectory method gives one solution, but it req uires a 7n·io ri information on the location of 

avoided crossings, which is not available for complex systems. 

Here, the effective Hamiltoni an described in Chapter 2 arc combined with Tully's surface hopping traj ectory 

method. The effective Hamiltonian makes it possibl e to calculate 'vhole the elect ronic states, while the Tully 's 

method enables us to treat non-adiabatic processes consistently without any a priory knowledge on the system 

except for the electroni c Hamiltonian . The underlying concept in the Tully's method is discussed , and modifi

cat ion of the proced ure is proposed for ease of the calcu lation. 'T he meth od is applied for the photodissocialion 

process of Arj and Arj , as examples for the si mple and complex photodissociat ion processes, respectively. 



Chapter 2 

Electric hamiltonian 



Abstract 

Construction of an electronic Hamiltonian for the system of the argon cluster ion is described here. The 

diatomics-in-molecules (D Dt ) met hod is employed, in which the total Hamiltonian is represented as the sum 

of atomic and diatomic Hami lton ians. Because of this structure of the D l ~ l Hamiltonian, t.he derivatives of 

its matrix elements with respect to the nuclear coordinates are readily obtained. The gradient of the potential 

energy surfaces, the non-adiabatic coupling vectors, and the Hessian matrices may be calcu lated from these 

derivat ives. An electr ic dipole operator is also defined in the Dl ;\ I fashion. Some of the potential surfaces a nd 

the transition moments are compared with ab inzllo results for Art. 



2.1 DIM model Hamiltonian 

The Born-Oppenheimer electronic Hamiltonian of a molecu le is written in the atomic unit. system as 

(2.1) 

where the subscript i and j denote e lect ron in the molecule, ..4 and B are the index to the constituent atoms, 

and Z .. 1 is the nuclear charge of the atom A. In the Dlivl formalism, the Hamiltonian above is divided into the 

sum of Lhe atomic and Lhe diatomic Hamilton ians [I], 

(2.2) 

where 7-lAB and 7-l ... t are diatomic and at01nic Hami ltonians, respectively, and n is the size of the cluster, Ar~. 

By use of Eq. 2.2, the total Hamiltonian matrix can be constructed from the atomic and diatomic Ha miltonian 

matrices with a se t. of appropriate basis functions. 

2.1.1 Basis set 

A set. of many-elect ron wavefunct ions {=:A} is emp loyed as a. bac;is set to calculate the matrix elements of t.he 

Hamiltonian for Ar , Ar+, Ar2 and Arj. The wa\'efunction :=:~represents the state with a hole al the Pw orbital 

of the .4-th atom of r\r~, and is approximated as [2] 

( I S AS n, tu= :r:,y,:), (2.3) 

where the subscripts are the index to the of .r-\r atoms in Ar;t'. The functions PA and Si (i = 1 .. n) arc assumed 

to be the exact wavefunctions of Ar+ w·ith the symmetry of Pw and t hose of Ar, respecti\'ely. The spin-orbit 

interaction is ignored in this represen tation, though it is easily inco rporated serniempirically [3]. The excited 

states of Ar and Ar+ are not. considered, as those states are beyond the energy scope of the current. interest.. 

\\.it.hin the DIM fram ework , the orthonormality among the basis functions is premised to be \'alid [1]. 

2.1.2 Atomic and diatomi c Hami ltonian 

:\s the basis functions:=:~ are the product of the atomic waycfunctions, the atomic Hamiltonian matrix is readi ly 

obtained from the experimental valu e: 

(" wlrlcl"")- { -A -n -
(A = a a nd w = u) 

(otherwise) 
' (2.·1) 

ll ere, !P(Ar) is the ionization energy of an argon atom ( 15.76 cV), and 6..tc is the 1\:ronecker's delta. The total 

electronic energy o f n neutral Ar atoms is taken as t he origin of t he energy. 



The matrix elements for t he diatomic Hamilt onian are as follows: 

l Hj/!8 , ({A,B)={C,D)) 

(::::~I'Hcnl::::u) = ArDN(Rcv) (A= Band v =wand A <t{C, D)) 

0 (otherwise) 

(2.5) 

where ArD N{R) is a potential energy fun ction of the neutral dimer Ar2 ( 1 ~~), Rev is a distance between atoms 

C and D, and JfA B is a Hamiltonian matrix of the dimer ion Arj. The potential curve proposed by \\'att.s and 

~lcGee [4] is used for the ArD N(R). 

ArDN (R) = < [exp{o(1- r )} t A;(r- 1)'-~ r2i~+~ 0] 

R 
J' = Rm 

Ao 0.278 c. 1.107 </kn (K) 142.1 

A, -4.504 C's 0.170 R,n (.\) 3.76 1 

.4, -8.33 1 C'to 0.013 u () 3.36 1 

.4, -2.5.27 

A, -102.0 " 12 .5 

A, - 113.3 0.0 1 

(2.6) 

(2 7) 

The Hamiltonian matrix f!AB is calculated from the potential curves of the dimer ion Ari . \Vithin the 

elect ronic space spanned by the basis set {=:~ }, there a re six electronic states for Ari: 2 ~t, 2 fl u, 2 n 9 , and 2 ~~ 

with two fl state doubly degenerated. These electroni c states are expanded by using the simple picture of the 

valence-bond theory as 

2Ej J ( . ") J2 Y ;, +Ye (2 8) 

2f1/: ~(Y~ +Yil) 
2 

(2 9) 

2 11 u 
y -'-(ry + Y') 

J2 " n 
(2.10) 

2flg X _l_ (Y' - yx) 
J2 " I) 

(2. 11) 

2f1/ -'-(r ' - Y ' J J2 " I) 
(2 12) 

2\""'+ I . . ) 
~, J2(Y;1 - Y 0 , (2. 13) 

where the basis set {T~} is same a.'S {=:~}, but quantized in the direction to the body fix ed coordi nate' o f the 

dimcr AD, taking the molecu la r axis as z-axis. Rewriting Eq. 2.8-2.13, a set of the wavcfun ct.ions 

(2.14) 



is connected to the basis set 

(2 15) 

via an unitary transformation U: 

(2 16) 

The Hamiltonian matrix H·-18 becomes diagonal in the space spanned by W..-~ a, and its diagonal elements are 

the potential energy of the electronic state of the dimer ion Art. The mat rix JI··\ B in the 1 .. 18 space is then 

calculated a.o; 

Q, ~(E('Et) + ECE:)) 

1 (' (' 
2(£ · ll u)+ E ·n,)) 

J, ~(E('Et) - E('En) 

1 ' ) ' 2(£(- ll u - E(- 11 9 )), 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.2-1) 

where E()'s are the potential eneq;y for the corresponding elect ron ic states of tlte dimcr ion Ar~, and arc the 

functions of t he internuclear distance between A and B. 

\.Yhen t he molecular axis of the dimcr AB is aligned to 

(x,y,:) =' (si n 0cos¢,sin0sin¢>,cos0), (2.25) 



the set TAo is transformed from the space fixed basis set :=:AB, 

(2.26) 

by rotating 0 around the y-axis, and then rotating¢ around the z-axis. The correspond ing unitary operator is 

n = exp{-iC,¢)exp(-iCyO), (2.27) 

where ly and £z are the angular momentum operator. As {:=:~} are the product of the atomic wavefunctions 

(see Eq. 2.3), the matrix representation of n is readily calculated as 

-(C(O,¢) 0 ) R- ' 
0 C(O,¢) 

( 

cosOcos¢ -sin¢ 

C(O,¢) = cosOsi n ¢ cos¢ 

-sin 0 0 

sinOcos¢ l 
sinOsi n ¢ , 

cos 0 

Finally, f!AB in the =:All space is given as follows: 

)· 
h 

M(or N)= J, 

Is fs 

fr p+ (s- p)x' 

h (s- p).~;y 

h (s- p):x 

f., p+(s-p)y' 

fs (s- p)y= 

!B p+(s-p):', 

(2.28) 

(2.29) 

(2.30) 

(2.3!) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2 37) 

(2.38) 

where (x, y, =)are defined in Eq. 2.25, p and s arc Q, and Q, (or JJ' and J, for the matrix NL respccti\,ciy. 

The potential energy curves of Art are calculated by using nb initio mct.hod. The IIF'-SC F calculation is 

performed on the neutral Ar, Lo obtain a set of molecular orbitals {~ 1 0). Tire MIDI4* (4321/42 1/1) basis set 

10 



is used in the calculation , taking the exponent in the diffuse function as 0.68. The POL-CI method is then 

applied using the l\10 set to calculate the four electronic states of Arj. In making reference configurations, the 

Is, 2s, and 2p orbitals are frozen, and the rest of 15 e lect rons are arbitrarily packed into 3s and 3p orbitals. 

The POL-CI space is generated by exciting 3p electron in the reference configuration into unoccupied orbitals. 

A dimension of the C l calculations is 150 '"""' 170. The calculated potential energies are interpolated by using 

the third order natural spline functions, and used in the calculation of Eqs. 2.21-2.24. The obtained potential 

curves are shown in Fig. 2.1. 

2.2 Gradient of the potential energy surface 

In order to optimize the geometry of the cluster efficiently, or to obtain the forces exerted on the nuclei, the 

analytic gradient of the potential energy surface in terms of the nuclea r coordinates is indispensable. The 

derivative of the potential energy surface for an elect ronic eigen state with respect to a nuclear coordinate is 

written as 

(2.39) 

where Oa is one of the nuclear coordinate, '"·hich beha\·es parametrically in 71, and \lli is the i-th eigenfunCLion 

of 'H., 'HIJ!; = \1;\11;. The right hand side of Eq. 2.39 becomes 

r.h.s. 

The last equation is approved as \li i is normalized: 

(IJI;I IJ/ ;) 

0 
ow, iN, 

(DQ,I Iil,)+(lii ;I 0Q.J-
Using the diabaticity of the basis set, 

the matrix elements of :;a may be calculated from the derivatives of the matrix ele1nents of 71, 

0 (-'" IHI-'") (-'"I off. 1-'") 
DQ, "'" "'n = "',, DQ, "'n . 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(VI5) 

Therefore, the gradient of the potential energy can easily be evaluated if the analyti ca l de rivatives of the matrix 

elements are known. 

The 0 1 ~ 1 Hamilton ian matrix//, which is the matrix representation of 'H, has :Jn x :J11 elcmcnls, '111d each of 

them has to be dif!Crentiated wit!t any of 311 nuclear coordinates. Since If is represented as a sum of aton1ic and 

II 



diatomic Hamiltonian matrices, the derivat ives of the mat rix elements can be decomposed into those of each 

fragment matrix. The derivative of the atomic fragment matrix, JJA, turns out to be zero, as HA is a constant 

diagonal matrix {Eq. 2.4). The diatomic fmgme11t matrix for a given pair A- B, f!A 0 , has 3{n- 2) + 36 non

zero elements (Eq. 2.5). These elements are the functions of RAa, which is the internuclear distance between 

A and B. The first 3(n- 2) elements are the diagonal elements for the basis function ::0(; (C ,P A, B), and arc 

calculated from Eq. 2.5 as 

8ArD\ 

ax A 

8ArDN 

~ 
GArON 
az;-

8ArDN 
GRAll X 

8ArD N 
oR,o y 

8ArDN 
oR,o :, 

{2.46) 

{2.47) 

{2.48) 

where (XA,YA,Z .. t) is the position of the atom.-\, and (x,y,:) is the unit vector directing from B to A. The 

derivative with respect to the position of the atom 8 merely changes the signs of the equations above. The rest 

of 36 elements are those of the 6 x 6 submatrix for::=.:(;. (C =A and ll; v = .r, y, and z), whose e lements are 

given in Eqs. 2.31.-....2.38. The derivati,·es of the elements with respect to the posit ion of the aLomA are given 

as follows: 

of, 
kx3 + (p' - 2w)x (2.49) ax, 

of, 
kx 2 y+p'y (2.50) aY, 

of, kx'= + p'= {2.51) az, 
oh kx 2y- wy {2.52) ax, 
oh kxy2 - wx {2.53) aY, 
oh 

kxy: (2.54) az, 
oh kx2z- w: (2.55) aX, 
oh kxy: (2.56) oYA 
oh 
i)ZA 

kx: 2 - wx (2.57) 

ar, 
kxy2 + p'x (2.58) 

ax" 
of., 

ky3 + (p'- 2w)y (Vi9) 
8\~., 

ar, 
ky'!. = + p' = {2.60) i)Z, 

12 



aJ; 
ax,. 
iJ!s 
aY,. 
aJs 
az,. 

aJG 
ax,. 
DJ. 
aY,. 
aJo 
az,. 

where 

w 

s' 

p' 

kxy: 

ky2::- w: 

ky:: 2
- wy 

kx:: 2 +p'x 

ky:'+p'y 

k:3 + (p'- 2w):, 

p-s 

R,I B 

as 
aR,.a 

ap 
aR,~a 

s'- p' +2w. 

The deri\·atives in terms of the position of the atom 8 are given by changing the sign of the fo rmulae. 

2.3 Non-adiabatic coupling vector 

(2.61) 

(2.62) 

(2.6:3) 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2 69) 

(2.70) 

A non-adiabatic coupling vector is a basic parameter when we consider mo lecular dynamics beyond the Born

Oppenheimer approximat ion. It is also required in a calculat io n of a Hessian matr ix for potential sur faces. The 

non-adiabatic coupl ing vector between two eigcn functions of an e lect roni c l-lamiltonian 1 \II i and l].'j 1 is defined 

as 

(2.71) 

where 'lis a difrerentia! o perator with respect to nuclear coordinates. The vector dij rnay be ca lculated with out 

differentiating the wa\·efunction, which is usually a time consuming process. As W' i a nd 'II i arc thccigcn functions 

or the ll crmilian, 

(2.72) 

is approved fori# j. Appl~·.'ing ag., operator Oil both side or Eq. '2.72, we get 

0 = (2.7 :J ) 

(2.7,1) 

13 



\ .... here Vi and V., are the eigen values of Wi and Wj , respectively, and Oa is an arbitrary nuclear coordinate. 

The last equation is approved from the orthonormality of the eigen functions, {Wi[Wj} = 0. Therefore, the 

nonadiabatic couplings are calculated from the der ivatives of the Hamiltonian as 

(2.75) 

For the case of i = j , dii becomes a pure imaginary and can not be calculated from the above formula. It is , 

however, not required in the fo llowing calcu lations. 

2.4 H essian of the pote ntia l e ne r gy surface 

To survey potential surfaces and to find the stationary points on them, the Hessian matrix for the potential 

surface is a powerful tool. Elements of the Hessian matrix for the surface of the i-th electronic eigen state are 

written in general as 

(2.76) 

where Qa and Qb are arbit rary nuclear coordinates, which appear in the 1t as parameters, and '"i is the i-th 

eigenfunction of the electronic Hamiltonian 'H. , 'H. ..Vi= V; lfJ i. The right side of Eq. 2.76 is expanded as 

r.h.s. a~. (ljld :;, lljJ,) (2 77) 

aljJ, a'H a'H aw, a''H 
(aQ. I aQ, lw,) + (ljJ,IaQ, laQ. l + (wd aQ.aQ, lw,). (278) 

Inserting an identica l operator, 1 = Lk l \11 .)( \jl d, into Eq. 2.78, we get 

{ 
aljJ, fJ1l fJ1l aw, } EPH 

r.h.s. = ~ (aQ. lljJ ·)(IjJklaQ, 1\jl;) + (ljJdiJQ, l\llk)( ~··laQ) + (ljJdaQ.aQ, lljJ ;). (2.79) 

F'rom the orthonormality of {Wi:}, we can deduce that the operator a& behaves as an anti-hermitian, 

(2.80) 

(2.8 1) 

(2.82) 

where • denotes taking a complex conjugate. l\ leanwhile, :;;.. is a her mit ia n: applying u$. to (l.lt j IHIW k), we 

get 
. aH a . a 

(PSLjlfJQ. l ~•k) = aQ. (111ji'HI 111k) + (\k- Vj)( \ll ilaQ. 111'.) (2.8:3) 

and t hen, exchanging subscripts j and k, and using the anLi-hcrmiLicy of the opera Lor ag., we geL 

(2.8'1) 

(2.85) 
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Using these re la tions, Eq. 2.79 becomes 

(2 86) 

where t he fun ction 3((x) gives a real part of x. \Ve ca n drop the te rm k = i, as it. gi,·es a pure imag in ary number 

inside{}. Inserting Eq . 2. 75 in to 2.86, we gel the final ex pressio n of 

(2.87) 

Using the di abatic ity o f t he basis se t. , the matrix representat ion of a~:J:ob is calculated fro m t he Hessia n o f 

the matrix element. o f 1{.; 

(- wl /J''H. 1- ") iJ2 (- wi 'H. I- ") =._. aQ,aQ, =-a = iJQ,aQ, =._. =-a . (2.88) 

There a re 3n x 3n elements in the Hami ltonia n matrix, an J the Hessian rnatrix of 3n x 3n dimension s hou ld be 

calculated for each element. By virtue o f th e s tructure o f the 0 1 ~ 1 Hami lto nian , the ll essian of the ll ami ltonian 

matrix may be calculated from the Hessian of the atomic an d t he diato mic Hamiltonian matri ces. 'The atomic 

part van ishes as it is a consta nt matrix (see Eq. 2.4). The diatomic pa rt , HAD, has 3(n- 2) + 36 no n-zero 

elements. These elements are the fun ctions of the internuclear distance RAD, so that there are only 6.r6 no n-zero 

elements in t he Hessian o f the e lement. The first 3(n- 2) e lements are the di agonal elements for :=:c, C # A or 

B, and whose ll essia n is given as fo llows: 

iJ2ArDN 
ax,.axA 

iJ 2 ArDN 

iJYAiJYA 
iJ2 ArDN 
az,.az, 
iJ 2ArDN 

ax"aY, 
iJ2ArDN 

iJYAiJZA 
iJ2 ArDN 

az"ax, 

(2.89) 

(2.90) 

(2 91) 

(2.92) 

(2 93) 

(2 91) 

where (,.,.Y.tt, )'',~, Z,~) is the posit io n o f the atom .4 , and (x,y,::) is t l1e uni t vector directing fro1n /]to.-\. 

Substituting o ne of the subsc ript A for B changes t he s ig n of t he formulae, and substituting bot h of the 

subscripts doesn't change the sig n . The rest of 36 elements arc given in Eqs. 2.31 ....... 2.38, and their l l essi~lllS arc 

given a'5 fo llows: 

(2 95) 



a'J, 
cr.c'!. y2 + Oy2 + {3x 2 + _t_ 0\'Aay,. RAB (2 96) 

a' J, 
ox2 z2 + 6z 2 + {3x2 + _t_ 

az"az,. RAB 
(2.91) 

a' J, 
o.c3 y + (c5 + 2{3).cy axAaYA {2.98) 

a' J, 
ox3 z + (o + 2{3)x: aXA{)ZA (2.99) 

a' j, 
ox'y: + oy: {)YA{)ZA (2 100) 

D'h 
a.c3 y + 3{3xy {)XA{)XA (2.101) 

D'h 
oxy3 + 3{3xy oYA{)Y,, (2. 102) 

D'h a.cy:' + {3xy {)ZA{)Z,. (2. 103) 

D'h ax'y' + {3(x' + y')-~ a.x.4.aYA R,.a (2. 104) 

a'h ax'yz + {3y: ax,,az,. (2.105) 

a'h oxy2
:: + {Jx:: DY,. {)Z,. (2.106) 

a'h ax3
: + 3{3xz ax,.ax,. {2. 107) 

D'h oxy': + {3xz {)YA{)Y,. (2. 108) 

a'h ax:3 + 3{3xz 
az" az,. 

{2. 109) 

a'h ax2 y: + {3y: {)X ,. {)YA {2. 11 0) 

D'h ax':'+ /3(x' + z')-~ 
ax,. az" R,. o 

{2. 111 ) 

a'h axy:' + {3xy {) Y,. oZ,, {2. 112) 

{)' j, ' 
ax,.ax,. 

crx2y2 +Ox'!+ {3y2 + _P_ (2. 11 3) 
/l,\1] 

a' f., oy' + (c5+5/3)y' + p'- 2w 
a1··,,aY,. /i,\0 

(2. 114) 

{)' f., 
ay2 : 2 + 6::'!. + {3y 2 + _t_ ez,. ez,. /l,\1] 

{2. 11 5) 

a' f., 
o xv" + (c5 + 2{3)xy ex,.m·,. (2. 11 6) 
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where 

fl'I, 
fJXAfJXA 

fl' I . 
fJl ~. fJl : .• 

fl' !6 
fJZ_.f)ZA 

fl' Is 
fJX,,fJl'A 

fl' J. 
fJx_.flz_. 

fJ' Is 
fJY_.flz, , 

{3 

<:>y3 = + (6 + 2{3)y= 

ax'y= + {Jyz 

ay
3 = +3/3y= 

ay=3 + 3/3y= 

axy'z + {Jx= 

axy=' + {Jxy 

oy' z' + {J(y' + =')-~ 
R,w 

ax 2 :: 2 + 6x 2 + /3::'2 + _i_ 
R,,B 

ay' =' + 6y' + /3=' + _i_ 
RAe 

az'1 + (6 + 5/3)=' + p'- 2w 
RAe 

cay='+ 6>:y 

ox=3 + (6 + 2{3)x= 

ayz3 + (6 + 2{3)y=, 

fJk 3k 
fJR,w- R,w 

k 
R_.B 

fP·p p' 
flll,w' - n_.[J 

(2.11 T) 

(2.118) 

(2.119) 

(2.120) 

(2.121) 

(2.122) 

(2.123) 

(2.125) 

{2.126) 

(2.127) 

(2.128) 

(2.129) 

(2.130) 

(2.131) 

(2.132) 

(2. }3:)) 

while w, p' , and 1.: are defined in Eqs. 2.67 ....... 2.70. :\gain , substituting one of the subscript .rl for ll changes the 

sign of the formulae, and subst ituting both of the subscripts doesn't change the sign. 
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2.5 Transition dipole moment 

The matrix elements of the elecl roni c dipole operator a re evalu ated by usi ng the localized point charge mod el. 

The electronic dipole operator, .1\..1 , is divided in to the sum of the atomic dipole operators, _,\..1.-t, as [5} 

, Vj = L ·M". (2.134) 

The matrix representation of lvtA becomes diagonal with the basis set {:=:~} under the loca lized point charge 

model , 

A=B=C'andw=v=(x , y,z) 
(2.135) 

ot her wise, 

where R A = (X A, }''A, Z..t) is the posit ion of atom .4 relat.ive to the center of mass of the cluster. Therefore, the 

matrix representation of ; \..1 also becomes diagonal as 

A= Band w = u = (.c , y, :) 
(2 136) 

otherw ise. 

2.6 Comparison with ab initio r esults: Arj 

The potential energy surfaces of Arj having Coou and C:?u sym metr ies in the electronic ground state a re shown 

in Fig. 2.2. In Fig. 2 .2a, two bond lengths, R 1 and R:., in a linear form (C0011 ) a re varied indepe ndently from 

2.0-4.0 A. ln Fig. 2.2b, the bond angle and the bond lengths wi th R, = Rz are varied in the ranges of60- 180° 

and 2.0....., 4.0 A, respectively. Here, t he energy at the dissociation limit, Ar+ + 2:\r , is taken to be 0 eV. These 

potential surfaces s how that. Arj has a linea r symmetri c equilibrium geomet r)' with R 1 = R2 = 2.60 r\. Its 

bond dissociation energy with respect to Arj + Ar is 0.25 eV. The comparison of the equilibrium structu re and 

the bond dissociat ion ene rgy with other results are summarized in Table 2. 1. In these studies, t he equi li brium 

structure of Arj is symmetric linea r, except for the recent ab initio res ult by Bowers (G]. Our Dl~l result 

overest imates the bond dissociat ion energy by ca. 0.05 eV as com pared wi th the expe rimental results. It may 

result fro m the underestimation of the repu lsive part of the potent.iul energy, as discussed below. 

The DH\'1 potenLial energy surfaces a lso agree in s lwpc with t he ab initio surfaces (7]. Figure 2. :3 s hows the 

potential curves in Dooli sy mmetry as a functi on of the bond leng ths, R1(= /l2). Potential curves calculated 

with an ab initio method a re also plotted in the figure. The ab iuiLio method employed is sa me as that. used in 

the calculat ion of the potential curves o f Ari (p. 10). ,\ good agreement with the ab inil1o results is obta ined , 

especially in the att ractive reg ion. In the repuls ive region, ho\\'ever , the potential energies arc systematically 

smaller than the ab initio results (7]. It might be inherent t.o the Dll\1 method because o f t.he neglect. of the 

overlap integrals in the model. 
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Figure 2.4 shows the comparison of the oscillato r st rength curves of the 0 1 ~ 1 (so li d) and ou r ab i 11itio C l 

(broken) calculations {7]. The curves in Fig. 2.4a are those against the antisymmetric stretchi ng mode , R1- R'!. : 

at a linear conformer (Coov) with a fixed R 1 + R2 = 5.30 A. The curves in Fig. 2.4b a re against the bending 

mode at an equilateral t riangle conformer (C,,) with a fixed R 1(= R2 ) = 2.65 A. The oscillator strengt h cu rves 

less than 0.01 at any Rt - R2 a nd 0 values are not show n in the figure. The agreement of two calculations 

is remarkable, parti cu larly fo r the most prominent transit io n (to 22 :E+ in Coov and to 2:? A1 in C:?u) which is 

the only allowed t rans ition at the equi librium structure (Dooh)- The DIJ\1 method tends to overestimate the 

"forbidden" transition moments at s tructures deviated fa r frorn the equilibrium st ructure. T hus, no serious 

errors in evalu at ing the photoabsorption cross sections are expected except fo r the high Yibrational states. The 

point charge model can account for only the excitat ion of the charge-transfer (or, more proper ly in the present 

case, hole-t ransfer) type. The agreement of the DlJ\1 with the ab initio C l shows that all of these excited states 

are of the hole-transfer ty pe. Though the intra-atomic excitat ions a re included in the ab imlto C J calcu la t ions , 

they bave no cont ribut ion to t he transit ion moments. Tab le 2.2 summarizes a comparison of the osci ll ator 

strength and excitation energy of the 1 2 ~;- 1 2 ~~ transition at the equilibrium st ru cture . All the calculated 

oscillato r st rengths agree with each other except fo r Gadea and Amarouche's. Th e calcu la ted excitation energ ies 

agree well with the energy at t he peak of the observed spectrum, 2.38 eV (520 nm) [8- 10]. 

A calculation for ..-\rf including a sp in-orbit interact ion is also performed within the atoms-in-molecules 

(A D I) approximation [11]. The equ ilibr ium struct ure is not innuenced by int roduction of the spin-orbit in te r

action into the calcu lat ion. The shapes of the potent ial energy surfaces and the oscillator strengths near the 

equ ilibrium structure are not affected either. Accordingly, the sp in-orbit inLeraction is ignored in t he fo llowing 

calcu lation. 
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Table 2.1: A comparison of the bond length (R) and the bond dissociation energy (BDE) of Arj with other 
works. All the equi librium structures are linear symmetric 1 except ror the linear asymmetric structure by Bowers 
eta/. 

Authors method R IA BDE I eV 
This work Dl~l 2.60 0.25 
lkegami et a!. [7] POL-CI 2.65 0.20 
Bohmer and Peyerimhoff [12] il l llD-C I 2.62 0. 16 
\Vadt [13] POL-C IIDiil l - 1 2.67 o.I8 1 o.t3 
Kuntz and Valldorf [2] Dlil l 2.61 0.19 
Gadea and Amarouche [14] Dl il l 2.59 0.17 
Last and George [15] DII S 2.59 0.203 
Bowers et a/. [6] 1111'2 2.4712.73 0.15 
Experiment [16, I 7] 0.18- 0.22 
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Table 2.2: r\ comparison with other wor ks: The oscillator strength (f) and excitation energy (nE) of 1'2:St -
I 2 ~t transitionaL the equil ibrium structure of Arj. 

Authors method f 6E / eV 
This work Dl !\1 0.69 2.36 
lkegami et a!. [i] POL-C I 0 65 2 36 
Wadt [13] POL-Cl 0.61 2.36 
Gadea and Amarouche [14] D l ~ l 1.6 2.34 
Last and George [15] DI IS 0.66 2.26 

26 



Chapter 3 

Static properties 
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Abstract 

The most stable structures of Ar~, 11 = 3......, 27, are determined with the analyLical gradient method for the 

diatomics-in-molecules Hamiltonian. The charge is found to be localized on the central three atoms, which form 

the trimeric ion co re. The first solvation shell C\'Oives around the ion core and is comp leted at n. = 25. The 

distribution of the oscillator strength is evaluated at the optimized structures. The calculation shows that the 

photoabsorption band is in the visible region, which originates from the 2 ~j ....-- 12!:j transition of the Arj ion 

core, and is red-shifted with the increase of the cluster size, reproducing the experimental results. The red-shift 

is explained in terms of the sol\"aled ion core model, in which the excited stale of the ion core interacts strongly 

with the su rrounding solvent atoms. 
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3.1 Introduction 

Last few years, geometric and elect ronic structures of argon cluster cation, r\ r~, ha\·e been intensely studied both 

experimentally and theoretically (1 - 16]. ~ l ost or the experimental results have indicated that the large cluster 

ion consists of a small ionic entity surrounded by neutral Ar atoms. In a number of theoretical calculations, 

the ionic entity was assumed to be a dimer ion (1-4], because or its large binding energy (1.33 eV) [1 7]. In the 

Diatomics-in-~lolecules (Ditto!) calculations, however, Kuntz and Valldorf have shown that a tri111er ion , Ar!, 

is the ion core in the cluster ions up to n::::::: 13 [5]. They have also found that the positi\·e charge starts to 

delocalize on the 4th atom as n increases from 14 to 19. Simi larly, Last and George ha,·e predicted the presence 

of the trimeric ion core in Ar~ , n. = 3 ......, 6, by using the diatomics-in-ionic-systems (DIIS) method [6] that 

introduces a polarization effect into the 01~1 method. BOhmer and Peyerimhoff have performed i\ lonte-Carlo 

(~lC) simulation on Ar~ , n = 3 ...... 27 [7], assuming both dimeric and trimeric ion cores. In comparison with the 

observed magic numbers [8, 9], they have concluded that a trimer ion is more likely the ion core of Ar~ than a 

dimer ion. 

Experimenta ll y, Levinger et al. have measured photoabsorption spectra or Ar~ I 11 = 3 ...... 40 (JO]. They 

observed a broad and intense band peaking nea r 520 nm in the range of 11 = 3"" 15. For n = 15"" 20 , this band 

peak shifts smoothly from 520 nm to 600 nm , and does not change any more.fo r n > 20. This characteristic shift. 

might be ex plained with the finding by Kuntz and Valldorf that the ion core in the cluster changes from Arj to 

Art as n increases from 15 to 20, though they did not exami ne the change of the photoabsorption spectra with 

the cluster size. Haberland et a!. have measured the absorption spectra more extensive!,:.' up to n = 80 [II], 

and have found another red shift between n = 6 and 9. Also then dependen ce of the photoionization Lhreshold 

energies of Arn has been experimentally studied in detail [12, 13]. T he ionization energies of Arn thus obtained 

are well described in terms of the trimeric ion core in a smalln region in comparison with i\IC calcu lations [il 

The angular and the kinet ic energy distributions of both ion ic (15] a nd neut ral [16} photofragments of .r\r~ 

have given a further support of the trimeric ion core model: The bimodal velocity distribut ions of neutral 

photofragments , wh ich is characteristic of Arj I are observed upton~ 13 {~6]. The presence or the trimeric 

ion core is a lso observed in a single crystal of argon, which is regarded as the large cluster-size limil... T he 3p 

valence hole in crystal is selr-trapped among t hree Ar atoms [18, 19]. 

These t heoretical and experimental wor ks indicate that the ion core, Art, is for med in the size range of 

n < 20, but it is still ambiguous in the larger n region whether the ion core of Arj persisls or not. In order to 

solve this prob lcrn, the geometry of the cluster ions (n = 3......, 27) is fully optimized by using the 01 1\1 model 

introduced by Kuntz and Valldorf. The oscillator st rength d istribution from the electronic ground state, is also 

calculated, and the spectral shift observed at n = 15......, 20 is successfully reproduced in the calculation. This 

shift is analyzed in terms of the solvated ion core model , in which the optically-allowed excited electronic state 
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of the ion core interacts with the hole states of solvent atoms. 

3.2 Calculation 

The construction of the DI ~~ Hamiltoni an and the analytic g radient of the potential su rface are fully documented 

in sections 2.1 and 2.2 (pp. 7, II). Here, the algorithm used for t he geomet ri cal optimization of the clusters 

are described. In finding the most stable structures on the potentia l su rface of i.he electronic ground state, the 

steepest descent method is employed us ing t he a nal ytic g radient of the surface. Starling fr om an arbit rary initial 

st ructure 1 all the atoms are m oved in the direction of the grad ient vector. The magn itude of the displacement 

is tweaked in every displacement such t hat the potential energy at a new configurat ion becomes lower than that 

at the previous one. The optimization procedure is cont inued until the absolute value of the grad ient become 

less than 10- 5 eVA -l 

The most stab le structure of Arj is carefu lly determined from extensive calculations of the potential energy 

surface. The initial geometry for Ar~, n = 4,.,.. 22, is generated by adding an Ar atom randomly to the most 

stable structure of the cl uste r Ar~_ 1 • Since many local minima arc ex peeled to exist, 30 to 100 initial geometries 

are examined. For n > 22, several ini t ial st ructures were chosen by inspection. The optimized structures are 

confirmed to have no imagin ary frequency by diagonalizing the Hessian matrix, so that they are not located at 

the stationary points but at the t rue local minima. 

3.3 Results and Discussion 

3.3.1 Bonding energies and magic numbers of Ar; (n = 4 ~ 27) 

The most stable structures determined for Ar~ a re show n in Fig. 3. 1. The blackness of the shade on each atom 

is roughly proportional to the ho le density on the atom in the ground state. The scale of the density is gi'"en 

at the bottom of the figure. For exampl e, the charge density is 0 .5 on the central atom and 0.25 on each side 

atom in Arj. In all the exam ined cluster io ns, the trimer catio n Arj forms the io n core inside the cluster, and 

the surround ing atoms a re left nea rl y neutral in the ground electronic state. 

The stabilization energy of the most stable st ructures against t he corresponding dissociation limi ts, 

En= E(Ar+) + (n- l)E(Ar)- E(Ar~), (3.1) 

is summarized in Table 3.1. The bond dissociation energ ies, ~Eu =En-!- En, arc between 0.06 and 0.08 cV, 

which are in good agreement with experimental values (20]. The general trend of the 11 dependence of the 

dissociat ion energy is consistent with the i\lonte-Carlo calcu latio ns at 10 '' based o n the t rimeri c ion core 

picture [7]. 
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The relative binding energy, D.En/6En+I• is plotted as a function of the cluster s ize in Fig. 3.2. The 

pronounced stability at a certain cluster size n, which is ca lled "magic numbers'', is found as shown if Fig. 3.2; 

our theoretical magic numbers are 13, 16 , 19,22 and 25. On the other hand , the experimentally obtained magic 

numbers are 13, 23, 26, ... by Harr is et a/. (9], and 14, 16, 19 , 21, 23 and 27 by Ding and ll esslich (8). \"ery 

recently, \'Vei, Shi and Cast leman (\VSC) have determined the 11 dependence o f the re lative binding energy 

for Xe~ experimentally [2 1), which is also shown in Fig. 3.2; their magi c numbers are 13, 16, 19, 23, 25 and 

29. It should be noted that the experimenta l magic numbers of Xe~ agree with ours except for n ;:;::; 22. 

This agreement is reasonable because the \,VSC 's experiment determines the magic numbers from the re lative 

binding energies, ~En/6.En+l [21], for the first time. The magic numbers have been dete rm ined so fa r from 

the intensity anomalies in the mass spectra. Jn the latte r type of experiments, there are always possibi li ties 

that the ion intensity is determ ined not only by the stability of the cluster ion, but a lso by ot her factors, such 

as the abundance of the parent neutral clusters and the photoionization effic iency. Note that the remarkable 

instability of Arj0 observed in the mass spect rum (8-10] can not be seen in boLh our and \\"SC's plots in Fig. 3.2. 

This instability may be related to the dynamics in the formation of the cluster ion. 

3.3.2 Structural evolu tion of Ar~ 

As sho\VIl in Fig. 3.1, the neutral atoms surround an axis o f the Arj ion core, aggregating with each other for 

the cluster size from n = 4 to 13. At Arf3 , two 5-membered rings are comp leted in a staggered conformation 

around the ion core. Two rings grow simultaneously, that is, a s ingl e 5-membered ring does not appear at n = 8. 

The neutral atoms are attached at one end of the ion core in Arf4 ......, Arf9 , and a pentagonally pyramidal cap 

is completed in Arf9 . This cap contains a 5-membered ring, but again it is not form ed first. The apex atom 

of the pyramidal cap 1 which first appears in Arf7 , is necessary to stabilize the ring. A neutral a torn starts to 

attach on the other end of the ion core as t he cluster grows from Arj0 ......, Arj5 . Six neutral atoms form another 

cap, closing the first solvation s he ll composed of 22 atoms in Arj5 . 

To see the underlying rules in the evolution of the cluster , and to e lu cid ate the determining fa ctors in the 

stabilization of the cluster, the structural characteristics in each of Ar~ a re discussed below in more details 

and compared with previous works. The most stable structure o f Art is a distorted T-shapc, consist ing of 

an Art ion core and a loosely bound neut ral Ar atom. The neutral atom is bound tlt the side between the 

cen ter and the end atoms of the Arj ion core. It is located at 3.32 A away from the axis of the ion core, 

and shifts by 1.01 A from the central atom to the side o ne. The structure o f the ion core is almost same as 

that of Arj. A linear structure with internuclear distan ces o f 2.65, 2.57, and 3.15 ..-\is also found t.o be a 

local minimum, and the energy is higher only by 0.003 eV than t he distorted T-s hapc. This result. agrees with 

Last and George's (6). On the other hand , Kun tz and Valldorf, and Bohmer and Pcycrimhoff have calcu lated 
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that the linear isomer is more stab le than the distorted T-shaped isomer [5, 7] . In all of these ca lcu lations, 

including ours, the calcula ted energy difference is too small to determine which isomer is more stab le. The 

calcul ated photoabsorpLion spectrum of both isomers (see section 3.3.3) shows that the excitat ion energy of the 

T-shaped isomer is close to those of the trimer ion, while t hat of the linear isomer is shi fted to lower energy 

(as that of the large cluster ions). Exp erimental measurements show t hat the spectrum of Arf is very simi lar 

to that of Arj [10, 11]. Therefore, it is more probable that the most of the Letramer ions a re produced in a 

distorted T-shape under an ordinary experimenta l condition. \Vhy is the d istorted T-shapc more stable than 

the others such as the exact T-shape? The interaction between the ion core and a neutral atom is essentially 

the polarization force, so that the distribution of the positive charge (hole) is important. The ground state of 

the t rimer ion is 2E~ , and the hole is located on t he au 3p orbitals on each atom . The resident probability 

is twice as large on the center atom as on th e end atoms. The d istorted T-shapc is more stable because the 

neutral atom can be attracted by both the center atom a nd one of the end atoms of the trimeric ion core. 

The most stable st ructure of Ar t is the one that a neut ral dimer is attached perpendi cularly t.o the axis of 

Arj ion core. Similarly to a neutral Ar atom in Art, the dimer is located bet"·een the center atom and the one 

of the end atoms of the Arj ion core. The bond distance of the neut ral dimer is 3.76 A. 
In the present approximation , the interaction energy between t he induced dipole momems of t\' .. "0 atoms is 

not taken into account. By using the distributed point charge model and the polarizability of an Ar atom, the 

interaction energy is estimated to be rep uls i\'e by 0.001 eV, whi ch is too small to influence the structure of t.he 

cluster. In fa ct, our structure is in good agreement with that of Last and George, whose calculations include 

the polarization terms. 

The ion core Ar~ becomes gradually bent as the cluster size increases up ton = 11, because the neutral 

aloms are added unevenly lo the core. Por insta nce, lhe bond angle of {Ar-Ar-Ar)+ in Ari1 ([Ar3]+ Ars) is 

172.4°. ~· l eanwhile, the bond lengt hs of the ion core are still nearly symmetric a nd elongated onl y by 0.3% in 

comparison with those of Ar~. 

The most stable st ructure of Ari3 is an icosahedron that is slightly compressed along the molecular axis of 

the Ar~ ion core, and belongs to the Dsd point group. The structure of the ion core becomes again almost same 

as Ar~. The neutral atoms arc located at 3.32 r\ apart from the axis, which is nea rly equa l to t he di stance 

between the neutral atom and the Arj core in Art . The shortest d is tan ce between two neu tral atoms is 3.66 r, 

which is shor ter by 2.7 % than the bond lengt.h of the nul der \ Vaals dimer , Ar2 . 

Once the cap starts to grow at one end of the icosahedron in the size range from 11 = ltl to 19 , the ion core 

distorts to an ac;ymmetric form (Coov), and the cha rge dist ribution within the ion core becomes asymmet ri c. In 

Ari6 ([Ar3]+ Ar 13 ) , for example, the t\\'O Ar-Ar distances in the core are 2.55 and 2.71 r with t he ,\ r-Ar distan ce 

of the capped site shorter than the other, and t he charge density on lh c capped end is t\\'i ce as large as that 

on the open end. The s imilar charge disparity is found when the trimer :\rj is distorted from tltc sy mmetric 
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configuration. 

In Arl;., four Ar atoms are lined with the spacings 2. 66, 2.58 and 3.31 A, and are surroun ded by t hree 

5~membered rings. Namely, Ari9 has a five- fold sy mmetry. The charge is st ill localized within the th ree Ar 

atoms , as is also ev ident from the geometry of the axial fou r atoms. The dis tan ces between t he axis an d the 

surrounding neutral atoms range from 3.23 to 3.37 A. An isomer of Ar t9 having two t ria ngular Ar3 caps at 

both ends of the ion core of Art3 is also located at a local minimum , but the energy is higher by 0.046 eV than 

that of the most stab le st ru cture discussed above . 

T''lO structures of Art0 a re shown in Pig . 3. 1. In t he most stab le structure, denoted by (20), an additional 

atom is attached to Ar{9 in the second solvation shell. The addit io nal atom is sepa rated by 5.69 A from t he 

axis of the ion core. In the other meta-stable str ucture, denoted by (20'), the atom s ta rts to form a new cap at 

the other end of t he ion core. The energy of (20') is higher on ly by 0.005 eV than that of t he structure {20). 

The relati ve binding energy calculated with the meta-stable iso mer is p lotted by boxes {D) in Fig. 3.2. \\"hen 

another atom is added to form Arj-1, the most stable structure has a neutral dimer at the un capped end o f the 

ion core. In fact , from this st ru ctu re t he isomer (20') is deduced. 

In Ar j 5 , the five--fold axis a nd the center of symmetry appear again as in the case o f Ari3 with a very stable 

packing of neutral atoms , which has been a lso observed by BOhrner and Peyerimhoff [7}. The stru cture of Ari"5 

consists of a linear sym metri c pentamer wi t h the spacings of 3.53, 2.62 , 2.62, and 3.53 A and fou r 5-membered 

rings in staggered confo rmations. The atoms of the inner rings are separated fro m the axis by 3.33 A, whereas 

the atoms of the outer rin gs are separated by 3.22 A. The bo nd lengths of the io n core are symmet ri cal ly 

elongated by 0.8% from that of Ar;j. 

BOhmer and Peyerimhoff have determined the structures of Ar j 4 """"' Arj7 with the second sol vatio n she ll [1]. 

We also examined the similar structures for Arj"3 and Ar i 1 , but found that they a re at local minima. However, 

we can not exclude the possibility that t he more disto rted stru cture with the second shell (not examined in 

the present work) may be the most stable. The second solvat io n s hell appears again in Ari"6 and Ari"7 . T he 

additional neutral atoms are located at the a ln1ost same site as in the mos t stab le structure of Arj"0 , separated 

by 5. iO A from the ax is of the ion core. 

3.3.3 Spectral propert ies of Ar~ 

The distribution of the oscill ator s trength for the transition from the elect ro nic ground s tate is calculated for 

all the clusters at the opt imized geometry. F'igure 3.3 shows the size dependen ce of the oscillator st rcngt h 

distribution. The lengths of the horizonta l bars in the fi gure are proportiona l to the calcu lated os.cillator 

strengths. Up ton = 10 , the most intense band shifts to a hig her energy with Lhc cluster size , while a few 

intense bands start to appear in a lower energy from 11 = II . Hereafter the form er and the latter a rc called 
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the H-b ran ch and the L-b ranch, respectively. In some s izes, the L-b ra nch splits into two or three bands, a nd 

gradually converges to 2.0 eV with the increase of the cluster s ize. An average excitation energy weighted by 

the oscillator st rengths , ~En, is defi ned as 

L\E _ I:; ho{8~- 8?,) 
"- L;ho ' 

(3 2) 

where E:1 is the energy of the i-th excit.ed state and /io is the osci ll ator strength of the transition between the 

ground and the i-th excited state. Th e scr ipt 0 denotes the ground state. The center of the absorpt ion spect rum 

in wavelength, .An. is defined as .Xn = hc/6En, and its s ize dependence is plotted in Fig. 3.4. As show n in the 

figure, An increases abruptly from 520 to 580 nm at n = I L The experiment of Levinger et a/. [10) have given 

this abrup t red shift. However, the present calculations do not predict another red shift observed by Haberland 

et al. in the size range from n = 6 to 9 [11]. This disagreement. may origi nate from the averaging procedure 

(Eq. 3.2), because a t race of the L- branch is found for n 2': 6 in Fig. 3.3. l t. is a lso likely that the L-bra nch is 

st rongly en hanced by the vibrational excitation. The effects of the vibrational excitation on the spect ra will be 

discussed in Chapter 4. 

3.3.4 Solvated ion core model 

As mentioned above, the oscillator s trength distribution consist.s of II - and L- bran ches. A major branch switches 

from H- to L-bran ch in the vicinity of n = 10. In this subsection, we scrutini ze the character of two bra nches 

and the underly ing physi cs in the switching of the main branch. Figure 3.5 shows the charge (hole) distribution 

of a representative final sta te for each branch in Art, Ari 0 , and Ari6 . For com parison , a charge distr ibut ion of 

12Et state of Arj , which is the final state or the visible abso rp tion band [22-25], is also shown. In Art, the 

osci llator strength to t.he excited state in the H-bra nch (the upper part of fig . 3.5b) is larger than t.hat in the 

L-branch, whereas in Ar{6 , that in the L-branch (the lower pa rt. of Fig. 3.5d) is larger. In Ar{0 , the final staLes of 

both branches have the nearly equal oscilla tor strengths. It is concluded by comparing the charge distributions 

of {a), t he upper part of (b) and the lower part of (d) in fig. 3.5 t.hat the core part of the optically allowed state 

has the simi lar charge distribution to that of the I2Et slate of the trimer ion. The following two important 

characterist ics are derived from this observation: (1) the most intense transition is characterized as the intra 

ion core excitation , and (2) as the cluster si ze in creases, this excited state of the ion core is firs t shirted to a 

higher energy , is strongly ri1ixed with the elect ronic states having the posiUve hole in the surrounding (so l\"ent) 

atoms at around n = 10 , and finall y is moved to t he L-bran ch. 

To analyze these characteristic behavio rs, the electronic configuration space, { :=:i; I ~ i ~ 3n }, is divided 

into two subspaces; a core subspace and a su rroundin g subspace. The core subspace, 'Pc, is spanned by Lhe 

core slates ({ ::::0 , I~ a·~ 9 }), where the positi\·e hole is confined in the central three atoms ro rming the ion 

core. The rest of the space, 'Ps, is spa nned by the surrounding states ({ =..p, 10 ~ {3 ~ 3n }) , where t/1e l10ic 
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is delocalized among the solvent atoms. \Vi thin each s ubspace, the Hamiltonian matrix is diagonalized; the 

eigenslales of each Hamiltonia n are t he C-states { <ll f, 0 ~ i ~ 8 } and the S-slates { qo], I ~ j ~ 3n- 9 ) , 

respectively. The energies of the C- and S-stales re lati ve to t he true ground state o f each cluster ion (see 

Table 3.1) a re show n in Figs. 3.6a and b. Figure 3.6a demonstrates that t he C-states remai n the characters of 

the elect ronic sta les of Art. Note that the e lect ros tatic inte ract ion between the ion core and the neutral soh·ent 

atoms is included in the sub-Hamiltonian matri x. The distribution of the 5-stat.es in Fig. 3.6b is irregular ly 

broadened with t he cluster s ize; the irregulari ty is a reflection of the 11Solvenl'' structure. The true eige nstat es 

of the clusters are represented by a linear cornbination of C- and S-states. They are obtained by diagonalizing 

the transformed Hamilto nian mat rix , which has on ly non-zero off-diagonal e lements bet\veen the C- and the 

S-stales. 

The true electronic ground state cons is ts chie fl y of the ground C-slate (<I> ~) alone, because <I> ~ is energetica lly 

isolated from the other stales. Similarly, the true highest exc ited state is mostly t he 8th excited C-state (<!I f). 

The rest of the excited slates are the mixtures of the C- and S-stales, and thus the positive charge is delocalized 

all over t he cluster ion. The energy levels of the excited C-states, especially <~>f, ct>f, and <l)f , are overlapped 

with those of the S-states, resulting in the strong interaction between the C- and the S-states . 

It is the third excited C-state , <Pf, that corresponds to the optically allowed 2 ~t s Late of an isolated Arj . 

The energy of <Pf does not. cha nge with the cluster size as s how n in Fig. 3.6a. The oscillator st rength distribution 

among the true excited states o f the cluster ion may be co rrelated to the distribution of <l)f in the wavefunction s. 

That is, the change of the oscillato r st rength distribution in Figs. 3.3 and 3.4 with the cluster size u results 

from the change of t he mixing of <t)f to the true excited states. VVe ana lyze how the mixing is changed with n , 

particularly around n = l 0. To do so, we extract an effective solvent state, <1> ;1 1 , from the 5-states, s uch that the 

interaction between ~:JJ and <t>f is maximized. First, the S-states, { <t)f }, are unitary-tra nsformed to { ~J'}, 

such that lhe matrix elements (<l>fi'HI<IIJ') (j = 2, 3, · ·, 3n- 9) are zero except for j = l. Unfortunate ly, the 

resulting <I>f' interacts also strongly with the other C-states: the interaction energy with either <l> f or <t>f is 

larger than that with <Pf in the size range from n = 4 to 10. To construct more appropriate <1>:11 , the mixing 

of the C-stales other than <t>f with ct>f' has to be partl y introd uced. Those C-s tates, except for <l)f , that have 

more than 0.1 eV interaction energy with <ll f', i.e., l(<l• fi'HI<t>f')l > 0.1 eV (i i' 3), are inclu ded in the mixin g. 

The effective surrounding s tale, <1> ;11 , is thus determined by diagonalizing a smatl llamil ton ian matri x; <1) ;
11 

is 

eas ily assigned among the e igenstates by seeing the coefficient of cl)f' . 

Once <1) ; / 1 is determined , the problem is red uced to a two- level problem be tween <l) f and <1);/ 1 . The 

Hamiltonian matrix elements are plotted as a function of the cluster s ize, n, in F'ig. :3.7 ; the diagonal clements 

(Ef and c;JJ) in (a) and the off-diagona l c lement lifi g.CSI"" = (<t•fi'HI<l•;u) in (b). The cncrgies'of two 

adiabatic states \j/ 11 and \ll L, obtained by diagonalizing 2 by 2 matrix , a re also plotted in Fi g. 3. 7a. Th e energy 

levels of the core s tate and the surrounding state, E~· and E:JJ, cross at n = 10. Por 11 < 10 , E;11 is lower than 
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Ef, and thus the rnain componen t of W1-1 is the optically-allowed <J> r state. On the o ther hand , for u > lO, 

E;Jf becomes higher than Ef, and t he <t>f state sta rts to contribute s ubstantially to '~~L · Anothe r inte res ting 

finding is that off-diagonal e lement between <I>f and <1> '!1 1 suddenly in creases at n = 15 and 21, which m ay 

result in the app recia ble spectra l shift found in F'ig. 3.4. 

To exami ne the appro pri ateness of the two- le\'e l model, the averaged excitation ene rgy o f \}1 H a nd W L 

weighted by the oscillator s trength (a dotted line) is compared with .6.E,l in Fig. 3.4. The two plots are well 

correlated to each othe r, implying that the present simpli fi ed model wo rks we ll in interpret ing t he observed 

spectra l sh ift with the cluster s ize. 

The abrupt increase of the oiT-d iagonalmatrix element at n = 15 and 21 indicates that the atoms attached 

to the ends o f the ion core play an important role in the core-solvent interaction and the spect ral shift. The 

hole orbitals, which is the molecular o rbital containing the posit ive hole, are shown schematically in Fig. 3.8 

for <t>f (a) and <t> ~JJ (b) o f Ar{5 . The ho le orbita l of <t>f (Fig. 3.8a) is extended along the axis of the io n core. 

In the hole o rbital of <t> ;1 1 (F'ig. 3.8 b) , the atoms attached to the end of the io n core have large coeffi cien ts to 

interact strongly with <I>~. This interaction expla ins t he jump of the off-di agona l e lement at n = 15 and 21. 

Note that the linear Art mentioned in sect ion 3.3.2 shows the s imila r s pectral shift as the larger clusters. The 

other interest ing featu re seen in Fig. 3.8b is t hat the p orbitals on the atoms in the rings are directed toward the 

ion core a.xis with the in-phase manne r. It is expected that the interactio n between t he ring and the ion core 

increases gradually as the ri ngs are const ructed in the size range from n = 4 to 13 , as seen in Fig. 3.7b. These 

in- phase p orbitals interact with themselves, which is responsible to the systematic in crease of th e diagonal 

element of ~;1 1 . As shown in the end-view of the F'ig:. 3.8b, these orb ita ls have the bo nding characler among 

the intra-ring atoms . .r-\ ho le in the bonding orbita l destabilizes the cluster ion , resulting in the increase of E-;1 1 . 

The present model calculation suggests that the main characle r of the photoexc ited states of Ar~ is always 

the optically allowed state of Arj , so that the photod issociation p rocess is expected to be simi lar to Arj. Indeed , 

up to Art, the velocity distribution of Ar+ fragment ion from the photoexcited Ar;t" resem bles to that o f A.rj [15). 

The Ar+ fragment is unable to be detected for the cluster ions large r t han Ari , probab ly because the exit ing 

Ar+ interacts st rongly with the residual atoms of the cluster and the charge is trans fe rred back to the residual. 

On the other hand , the fast neutral fragments , which are characteristic of the Art photodissociation [16]. are 

observed up to n:: 13 , as an interact io n with the residuals is wea k. Ejection of the fast neutral fragments is 

not observed for n 2::_ 14 [l6] . These resu lts in dicate that th e Ar atoms attached to the ends of t he ion core 

also affect the photodissociation process o f the ion core. The photodissociati on process itself will be discussed 

in more de tail at Chapter 5. 
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3.3.5 Properties of the adiabatic states 

The inner products bet\veen the t rue eigenstates of Ar~ a nd each C-stat.e are evaluated lo reveal how the core 

states { <t>f, 0 ::5 i $: 8 } are distributed in the wavefunctions of Ar~. The absolute values of the inner products, 

l(4•flw)l 

(l(4>fl ll1 )1 2 + l(<!>f+,lll1)1 2
)

112 

for i = 0, 3, a nd 8 

fori= 1, 4, and 6, 

(3.3) 

(:3.4) 

are shown in Fig. 3.9. These C-states correspond to 1 2 ~t, 1 2 ~~, and 22 ~t states of Art for i = 0, 3, and 8, 

and (?nu, (~ fl 9 , and 22 n u fori = 1, 4, and 6, respectively. The C-stales correspond ing to n states of Arj, 

such as <t>f and <t>f, are nearly degenerated. 

As shown in Fig. 3.9c, the inner p roduct with <t>f (f!~: of Arj) is split in higher and lower components 

in energy; the way of the split ting is consistent with th e above model calcu lation. The 12 1"1 9 core state shows 

similar splitting (Fig. 3.9d), suggesting a strong interaction between the S-states and 12 0 9 core states. On the 

other hand, l 2 ~t and 2 2 ~;!' core states (Figs. 3.9a, f) have always the character of t he corresponding pure core 

state, independent of the cluster size. It is because <J>f and <I>f are energetically isolated from all the S-states. 

The transition from 12 E;!' to 22 ~;!' is vibronically allowed for Arj [22] a nd observed in the UV region up to 

n = 7 [26]. The present work suggests that the UV band does not shift with the cluster size. The ! 2 0 " and 

22nu core states (Figs. 3.9b, e) show an intermediate behavior, since the energy levels of (<l>f, <1>f) and {<l>f, 

<t>f) a re in t he lower and upper marg in al region of the level d istri bu tio n o f the S-statcs, respectively. As the 

cluster size increases, the upper part of the S-state begins to overlap with 22 nu core state {<J>f 1 <l>f), while t he 

I' il u core state (<!>f, <!>f) stays near the lower boundary of the distribution (see Fig . 3.6). Therefore, 22 n u 

core state {<I>f, <t>f) interacls more strongly with the S-states. It is reflected in Fig. 3.9e: the 22 ri u core state 

shifts appreciably to a higher energy a nd a group of solvent states that are dominated by {<l>f, <t>f) evolves at 

-2 eV. 

3.4 Conclusion 

1. The most stable s tru ctures of Ar~ , n = 3-27, were determined with the D IM model. 

2. T he shift of the absorption band in the s ize ran ge from n = 15 to 20 [10, I Jlwas well rep rodu ced in the 

calculation. The shift was exp lai ned by an electron ic interaction between t he ion core a nd the surrou ndin g 

solvent atoms. The interaction depended strongly on the position o f the solvent a toms relative to the ion 

core. 

3. Although the excited states of the ion core interacted strongly with the su rro un d ing atoms, t he cha racter 

of Ar! remained even in the la rger clusters. 
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Tab le 3.1: The stabilization energy of Ar~ in the most stable structure. 

n En I eV n E., I eV n E., I eV 
11 2.0i6 21 2.ii3 
12 -2. 151 22 - 2.849 

- !.558 13 -2.237 23 - 2.916 
4 - !.604 14 -2.293 24 - 2.978 
5 - !.663 15 -2.36 1 25 - 3.055 
6 - !.724 16 -2.44 1 26 - 3.113 

-!.795 17 -2.50 27 -3.178 
8 - !.862 18 -2.5 75 
9 - !.932 19 -2.658 
10 - 2.001 20 - 2.715 
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Chapter 4 

Molecular dynamics 
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Abstract 

The photoabsorption spectra of argon cluster ions, Ar;t", a re calcul ated for n = 4 to 25. The in te rn a l rnotion 

of the cluster is accounted for by the mol ecu lar dynamics met hod . The diatomics- in-mo lecu les ( Ditt. l ) potenti a l 

energy su rface is used fo r the calcu lat ion. Th ere a re basically two peaks in the spectra. At a low interna l energy , 

the primary pea k s hifts from 510 nm to 550 nm at n ~ 10, and then sh ifts abruptly to 600 11111 at n:: 1-1 . 

As the internal energy in creases, the spect ra become broad a nd the clea r transition disappears. The spectral 

shift is expla ined by the solvat ion of the ion core in the cluster, with the rest of t he const it uent atoms acting 

as solvent atoms. The first red sh ift is due to the crossover of the energy levels between t.he ion core and Lhe 

solvent shell. The second one takes place because the sokation energy is increased abrupt ly, which is explained 

in terms of the structural change in the solva t ion shell. 

53 



4.1 Introduction 

What is the color of the argon clusters? It is transparent, of course, as both the gas phase and the crystal 

phase of the argon are colorless in the vis ible and the UV regions. On the other hand, the argon cluster 

catio11s Ar~ are tinted {1-6 , 6-10]. The molar absorpt ion coefficient of :-\r~ at 520 nm is indeed as large as 

9 x 104 mol- 1dm3 crn- 1 [2], which is larger than that. of the permanganate ion ~!nO~- ·aq by a factor of 10! 

F'or the larger clusters, the charge is localized on the central three atoms in t he cluster ion forming the Arj ion 

core [7-15L which acts as a chromophore within the cluster. 

The peak wavelength of this strong absorption band is shifted toward red as the cluster size n increases [7 ,8]. 

Levinger et. a/. first observed the red shift as 11 increases from 15 to 20 in an one-step manner. From their n

dependence of the photodissociation cross seclions at se\'eral wavelengths, the peak posit ion is shifted from 

520 nm to 600 nm as n increases from 15 to 20. The furLher shifti ng was not observed fo r the larger clusters. 

Recently, Haberl and et al . have measured the whole photodissociation spectra for each clu ster up to n = 60 [8], 

and found that the spectra l sh ift occurs in a two-step manner. The peaks in their spect ra sh ift frorn 510 nm to 

540 nm as n increases from n = 6 to 9, and t hen sh ift to 590 nm as n increases from 16 to 21. 

In Chapter 3, we determined the most stable structures of the argon clusters a nd found that the expected 

peak positions in these zero Kelvi n structu res do shift to red as the cluster size n increases. The red shift occu rs 

in a one step manner from n = 11 to 18, in good agreement \Vith the Levinger 's observat ion. However , ,,-e fail ed 

to explain the behavior observed by Haberland, especially the first red-shift occurred between n = G and 9. The 

calculated peak position was, on the contrary, shifted to blue in t he cluster size from n. = 3 to 10. 

In fact , an important. aspect of t.he cluster was not. accounted for in the J>revious calculations: The therm al 

motion of the cluster was ignored. The amount of the red shifL is strongly dependent on the position of the 

solvent argon atoms relative to the Arj chromophore. Since the structure of the cluster is very fl oppy, the 

spectra of the cluster may be heav ily afl"ected by the thermal motion. 

In this chapter , the finite temperature effects on the spect ra a re examined by us ing the molecular dynamics 

method. The thermal nuclear motion of the cluster is also discussed from the view poi n t of the solvation effect. 

4.2 Calculation 

4.2.1 Trajectory calculation 

The classical molecular dynamics is calculated on the potential energy su rface of the electroni c grou nd slate. 

The nuclear equat ion of motion is written as 

P; 
(4. 1) 
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dP; 

Tt (4.2) 

where i is the index to the constituent atoms, Qi is the position of the i-th aton1, Pi is the momentum associated 

with Q1 , and 7ll.i is the mass of the i-th atom. The forces exerted on the nuclei, F 11 are obtained from the 

gradient of the potential energy surface of the electronic ground state. The potential surface is calculated from 

Lhe 01~1 Hamiltonian, which is documented in Chapter 2. The analyt ical gradient method is also described 

there. 

The Eqs. 4.1 and 4.2 are numericall,y integrated by using the Adams' formula. The fourth order predictor 

and the fifth order corrector are employed: 

h 
Xt + 

720
(I901dx,- 27T4dx, + 2616d.r3- 1274dx., + 251dx,) Xo (4.3) 

X 
h 

xo + 
288 

(95dxo- 475dx, + 475dx,- 47.5ch3 + 475dx.1 - 95dx5 ) (4.4) 

where x is an integrand ( Q and P), h is width of an integral step, x 1 is the J: value in the previous step, and 

d.xi is a Lime derivat ive of x at i steps before. The derivative dx 0 is calculated by using a set. of J:o. The fourth 

order Runge-Kutla method is used for the preparat.ion at. the startup. 

The integration Lime step ish= 2.4 fs. To calculat.e the gradient, the electronic wave function \11 9 must 

be re-calculated step-by-step at. each geometry. To avoid a full diagonalization of the Hamiltonian matrix, W9 

is solved with the inverse iteration method associated with the Cholesky decomposition of the Hamiltonian 

matrix. The initial value is taken from the \11 9 in the previous time step, and t.he origin of the energy is properly 

shifted t.o accelerate Lhe convergence. 

The trajectory calculation is started at high internal energy: about 20 % of the trajectories dissociate 

thermally within 6 ps. The translational and the rot.ational mot ions of the cluster are eliminated at the ,·cry 

beginning of the trajectory. The surv iving trajectories arc annealed for 10 ......, 25 ps down to an appointed 

internal energy. The origin of the internal energy is taken at the energy of the most stab le str ucture [10] with 

no kinetic energy. The annealing process is followed by an idling run of 1.2 ps and then, 50 snap shots of 

lhe trajectory are sampled at every 97 fs intervals. A Total number of 2500 s nap s hots arc sampled from 50 

independent trajectories. The drift. of the total energy is confi rmed to be less than 0.01 % throughout the 

sampling processes. The momenta of the center of mass and the angular mo111enta around the center of ma'>s 

are also confirmed to remain aL the ini tial value of zero. 

4.2.2 Spectrum calcu lat ion 

The photoabsorption spectrum is calculated a<; an ensemble average among the snap s hot st ructures samp led 

from the trajectories. The phoLoabsorption rate I Vii from the ini tial staLe i to the final stale f of a randomly 
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oriented molecu le is writ ten as 

so 

soi M if I' I(wif) 
1 4rr:! 

tl;rco 3ch 2 ' 

(4.5) 

(4.6) 

where hwif is the excitation energy fro m i to j , l(w)d...v is t he energy o f t he lin early polarized light at the 

angular velocity of w .....__ w + dw passing t hrough a unit area par a unit time, and M ;l is the transition dipole 

moment between i and f . As t he actua l light source is not ideal ly monoc hromatic, the measu red in tens ity of 

the light is not I(w) but 

lob• = { l(w)dw, Jow (4.7) 

where the integration is performed over the line width of the light source 6w at the transition frequency w;
1 

The number density o f photons nc is defined by 

{-1.8) 

The photoabsorption cross section from i to / , O'iJ, is then defined by 

(4.9) 

Inserting (4.5) and (4 ') in to (4.9), we obtain 

{4. 10) 

The pholoabsorption cross sectio n to a discrete excited state, Uif, is dependent on the property of the lig ht 

source, namely the s hape of I(w). Ho\vever, if the final staLe f is distributed continuously around Ow, Eq. 4.10 

may be in tegrated over f smearing out th e J(w) dependence. Jf Ow is sma!l enough that hwif [Mij [2 does not 

change much in the integral region, the integration of Eq. (4. 10) over f res ulls in 

(4. 11) 

by subst ituting the integral variable f for w. Note th at the observed cross section is not an average of uif but 

a sum of them. 

To ca lcu late Uobs fro m the ensemble of the ~II) structure, t he eq . (11.11) is averaged over some finite ~ ..... 
rauge: 

I j " t,j 
Uob•""- so hw,JI M<J i·df -. 

6J JE~>J 6w 

The t ransit ion dipole moment MiJ is written a<> 
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where <f>i and <1>1 a re the nuclea r wa\·e fun ction of the initial and the final state, respec tively, and fL is the dipole 

operator. Here, the integration over the electronic coord in ates has already been performed, and () means the 

integration over the nuclear coordinates only. Approxi matin g <1>1 by the de lta-function, <f>J = 6( Q - Q1 ), we 

obtain 

I j , ' 
Uob•::::- soh-";JI<l>;(QJ)I -Ii'iJ( QJ )i -df. 

D.w JE.>f 
(4.14) 

Assuming that the integration in eq. (4.14) can be rep laced by an ensemb le average over the sa mpled ~10 

st ruct ures, the final expression becomes 

(4.15) 

where the su m over k is taken for the sampled st ructures, and the sum j runs over the excited s tates at the k-th 

st ructure. In the final express ion, all the possible choices of <l> i and of the electron ic states off are incl uded. 

4.3 Results 

The trajectories are calculated at several intern al energies. The tem perature Tis defin ed by the amount of the 

interna l energy E per degree of freedom : 

E = (3n- G)kT, (4.16) 

where k is the Boltzmann's constant. The ph otoabsorp t ion spectra are shown 111 Figs . 4. la- d fo r T= 10 1~ , 

20 K, 40 K, and 60 K, respectively. The resolution of the spectra, ~w, is 10 nm. Note that the temperature 

of 60 K is high enough fo r the large cluster to dissociate in a time scale of nano seconds. Such dissociative 

trajecto ries could not be observed experimentally, but are calcu lated for compar ison. 

As the temperature increases, the spectrum becomes broader and the peak intensity is lowered significantly. 

However , a common feature still remains . The peak at 520 nm in the spectrum of the tetramer , which is very 

close to the spectrum of the trimer, persists upto n= 10 . The peak shifts slightly to shorter waveleng th with 

the in crease of th e cluster size. l\'l ea nwhile, the shoulder at - 550 nm sta rts to grow for clusters with n :::: 8 , 

and overwhelms the 520 nm peak at a round n:::: II . This newly fo rmed peak then shifts abruptly to 620 nm at. 

11 = 13""'"' 14 , and stays unchanged for 11 > 15. 

The experimental spectra are observed at the wavelength longer than 500 nm [8]. f'or the COlllparison with 

the experimental work, the position of the first peak after 500 nm in t.hc calculated spectra is obt.aincd by fittin g 

il to a gaussian funclion. They are indicated in Fig. 4. 1 by small arrows. The wavelength at. the peak is plotted. 

in F'ig . 4.2 as a function of the cluster si~e and is compared with the ex perimcnlal results. T he quaniit.ative 

agreement wilh the experimenta l result is not. sal isfactory, but the two-step red shif1. fea ture is reprodu ced in 

lhe calculation at low lcmperatu res. 
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4.4 Discussion 

4.4.1 Anisotropy of the solvent effect 

As was discussed in Chapter 3 1 the spectra l red shift is du e to the solvent efi'ect of neutral argon atoms on 

the Arj chromophore. To demonstrate the anisot ropy of the solvent efi'ect, the potential energy surface and 

the excitation wavelength of Art are depicted in Fig. 4.3 as a function of the position of a solvent atom. The 

geometry of the central Arj ion core is fixed to that of r\ rj. The excitatio n wavelength is calculated from the 

averaged excitation energy \veighted by the oscillator strength, tJ.£ : 

t<.E = L; /;o(E;- Eo), 
I:,J;o (4.17) 

where Ei is the energy of the i-th cxciled state, ho is the oscillator strength between t he i-th excited stale 

and the ground state, and the sum is taken over all the excited states. A st rong red shift occurs when the 

solvent atom attached nea r the ion core axis (an axial site), while the one attached at. the side of the ion core 

(an equatorial site) does not cause the red shift. The appearance of the Fig. 4.3 does not change much by the 

deformation of the ion core. 

The amount of the red shift is approximately additive with respect to an addition of solvent atoms. The 

excitation energy is estimated with the assumption of the additivity as 

n-3 

t<.E,. = L(L'.t.;- -'>EJ) + L'.E3 , (4.18) 
i=l 

where D.,£;3 is the averaged exc itation energy of the ion core calcu lated without the solvent. atoms, and 6.£~ is 

that of the tetramer ion const ru cted from the ion core and the i-th solvent atom. The shift. in the cxc itat.ion 

energy, tl.En - b.£:3 and tl.En - 6.£3, is compared for several struclures in Fig. 4.4. These structures are 

sampled from trajectories of Ari5 at the internal energy of 80 K. Though the estimated value, D.En - b.E3, 

always overestimate the red shift. , the dev iation from the real value, b. En- b.£3, is fairly small. Judgi ng from 

the additivity, each solvent atom can be considered a.'5 an independent perturber on the phot.oexcited state of 

the ion core. 

4.4.2 Distribution of the so lvent atoms 

Glancing through the trajectories , the cluster is always found to contain a trimer ion core. This basic st ru cture 

remains unchanged even at the internal energy of 80 1\. At high internal energy, o ne of the solvent atoms 

is occasionally substituted for one of the atoms that const ittttc the ion core. Excepting the period of the 

subst itution reaction (about J ps per event ), the trimer core is readily discriminated from the other solvent 

atoms. The solvent atoms are thus distinguished from the ion core, and t heir distribution around the ion core 

rnay be calculated. 
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Because of the additivity of the red shift with respect. to the solvent atoms, a first approximation of the 

amount of the red shift may be est imated from the distribution of the solvent atoms around the ion core. The 

number of solvent atoms per unit volume is calculated as a function of a relative position from the ion core, and 

plotted in Fig. 4.5 for n. = 7, 11, and 15. Note that the integration around the ion core axis is not performed, 

therefore the concentration near the axis is emphasized. 

The distribution of the solvent atoms is not uniform, but it is clearly separated into two regions: the axial 

site and the equatorial site. They roughly correspond to the two potentia l wells in the Fig. 4.3a. At 10 1..:, for 

the cluster size between n = 5 and 13 1 all the solvent atoms are located in the equatorial site. The solvent atoms 

start to attach at the axial site from n = 14 to 18 1 but are slightly apart from the ion core ax is (x axis in the 

figure); some of them are placed just on the axis from n = 19. The distribution of the solvent atoms described 

above closely reflects the most stable structure of r\r~ [10]. because many other isomers are sti ll not accessible 

at 10 K. The tetramer ion is exceptional: not negligib le amount o f the samp led structures have a linear shape 

with the solvent atom positioned at the ax ial s ite [16]. In the larger clusters 1 the solvent atoms are likely to 

gather in the equatorial site to gain the van der \Vaals binding energy, because the potential well in the axial 

sile is not broad enough to keep multiple solvent atoms. The tetramer has only one solvent atom 1 so that it is 

free from the van der \Vaals forces among the neutral solvent atoms, and the linear isomer is accessible. The 

peak due to the linear isomer is thus seen at 640 nm in the calculated spectrum in Fig. 4.la. This peak becomes 

obscure as the internal energy of the cluster is raised. The experimental observation of the peak can be a good 

candidate fo r a thermometer of the cluster, though a good S/N ratio might be required. 

There is a clear threshold between n = 13 and 14 at 10 1\ , where the solvent atoms start to attach at the 

axial site. The threshold becomes less clear as the internal energy is increased to 20 1\. The axial solvent atoms 

are observed for n = 4 and 6, but are absent for n = 5 and 7. A weak peak appears at the axia l site from 

n = 8, and becomes intense from n = 10. A difference from the dist ribut ion at 10 I{ is less significant fo r the 

larger clusters. Note that the structu re of the cluster is sti ll rigid at 20 K 1 at least for the smaller clusters. r\ 

few local minima on the potentia l su rface can be assigned to each t rajectory, a nd the cluster is just vib rating 

around them. 

At 40 K the geomet ry of t he cluster fluctuates great ly. !Jecause t he potent ia l barrier that separates the two 

potential wells in Fig. 4.3a is 3.5 meV (t10 I\), the solvent a toms can mo,·e around the ion core at th is intern a l 

energy. t\ l any isomers arc now access ible on a single trajectory calculation, and the axial solvent atoms are 

always observed for 11 = 4 thru 25. ;\t 60 1\, the solvent atoms move much more vigorously, but t he dist ributions 

of them are simi lar to those calcu lated at 40 K. 

The distribut ion of the solvent atoms described above is strongly reflected on the calculated s pectra' shown 

in Fig. 4.1. In Fig. 4 . l a, there is a small peak at 640 11111 in the spect rum of 1\ rt, which is attr ibuted to the 

linear isomers. The peak disappears from n = 5 to 13 and re-emerges suddenly at 11 = 1·1, bcin~ coincident 

59 



with the appeara nce of the axial solvent atoms. This peak ca n be used as a n indica tor showing whether axial 

solvent atoms are there or not. The shoulder at 640 nm appea rs at 40 1\ in the spectra o f r\rf, in coi ncident 

with the appearance of the axial solvent atoms. For r\rf1 , the s houlder g rows as the intern a l energy is increased 

and the distribution o f the axial solvent atoms becomes intense and broad. The axial soh·ent atorns are a lways 

observed for Arf5 , so that the peak at 640 nm is resident fo r all in te rnal energy investigated. 

4.4.3 Solvated ion core mode l 

The correlation between the spectra l red s hift at n ::::: 14 and the geometry o f the cluster is re \·ealed in the 

previous sec tion. However, th e early red shift near n::::: 10 s hown in f'i g. 4 . 1 is not resolved yet. Here, the 

solvated ion core model (10] is applied o n the ensemble of the present t\ 10 structures. 

The deta il o f the solvated io n core model is described in Chapter 3. Brieny, the space spann ed by a set. 

of wavefundions is div ided into two subs paces: an ion core subspace and a soh·ent subspace. In the ion core 

subspace, the positive hole is localized on the trimer ion core, while in the solvent subspace, it is scattered 

among the solvent atoms. \Vhen th e elect ro ni c Hamiltoni an is diagonalized within the ion core s ubspace, nine 

eigen states are obtai ned. They are the elect roni c states o f the ion co re under the absence o f the interactio n with 

the solvent atoms. Among them, an eigen stale that has maximum t ransition probability from the g ro un d core 

slate is picked up: it is taken as a photo-excited state o f the ion core . ..-\ solvent state that interacts excl us i,·ely 

with the exci ted ion core state is ext racted from the solvent subspace. The interaction between the soh·ent 

state and the rest of 8 core states causes the shift in the energy level of th e solvent stale, whi ch is accounted 

for variationally. 

The distributio ns of the energy levels of the excited ion core slate Ecore and the sol vent state Esoh· are 

calcu lated at 10 K, and a re plotted in Fig. 4.6a. The distribution of the interact ion energy li 1nt between them 

are a lso plotted in Fig. 4.6b. The dist ribution o f Ecore is resident nca r 520 nm . Meanw hile, the energy level of 

the core stale Esolv is first distributed below Ecor~ but shift to a higher energy as the cluster size is increased . 

The peak of the core stale distri bu t io n crosses Ecore at n. = 10, settles down near 470 nm , and shifts fu rther to 

450 nm at n. = 20. The interaction energy Hun becomes large as the cluster s ize is increased. It first in creases 

asym ptoti call y up to 0.2'1 eV from11 = 4 to 13, jumps to 0.45 eV at n = 14 , and t hen shifts furLhe r to 0.57 c\· 

from n = 20. 

The shift of H mt correlates wit.h the dist ribution of the solvent atoms around the ion core. 'The ab rupt 

inc rease of H mt at n = 14 is a resu lt o f t he appearance o f t.hc axial solvent ato ms. ,\ s no prominent changt!s 

are found in the distribution of Ecorc and Esol\·, the spect ral s hift at n = Itt in F' ig. tl.la is attributed .to thi s 

inc rease of H int· Jl ere, Ecore is smal!er than Eso!v, so that it is pushed down by the strong interact io n. To sec 

the correlat ion rno re clea rly, the ensem bl e of r1 = 14 at 10 1\ is divided into two groups regardin g the magnitude 
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of Hint {see F'ig. 4.7). There are two peaks at 0.25 eV and 0.45 eV in the distribution of Hmt· The st ru ctures 

belonging to the first peak (Hm, < 0.3) are collected as the small H,.,, group, and those for the second peak 

(If;"' > 0.4) are attributed to the large Hm, group. The distribution of the solvent atoms is calcu lated for each 

group, and is shown in F'ig. 4.1. The numbers of the stru ctures in the small and the large 11mt groups are 835 

and 1250, respectively. As expected, the sma ll J-/ 1nt group has few axial solvent atoms, while large amount of 

axial solvent atoms is observed in the large Hmt group. 

The other small s hift of Hint started at n = 20 coinc ides with a completion o f the solvent cap at one end of 

lhe ion core. The distribution of Hmt for Arj1 shown in Fig. tl.6b is bimodal, peaking at 0.45 e\' and 0.6 e\'. 

The typical structures contained in both peaks are shown in Fig. 4.8. The solvent shell is opened at one end 

of the ion core in the small Hint st ru cture (Fig. 4.8a). The structure is principally close to the most stable 

structure, where two solvent atoms attach on one end of the ion core besides the pentagonally pyramidal cap 

on the other end. Those soh'ent atoms is moved to the second solvation shell in Fig. 4.8a, leaving one end of 

the ion core free from the solvent atom. On the cont rary, the high 111nt structure has no similarity to the most 

stable structu re. The solvent cage is constructed from two three-membered rings capping both ends of the ion 

core, and two distorted six-membered rings sandwiched between them. Those three-membered rings interact 

effectively with the core state, resulting in the large Hint· Though the increase of Hint is detected at n = 20, 

there is no noticeable change in the calculated photoabsorption spectra. It is because Esolv is s hift ed to the 

higher energy at the same time and the gap between Ecore and Esolv is widened, canceling the increase of llmt· 

Discrepancy between the calculated peak shift and the experimental one shown in Fig. 4.2 indicates that Hmt 

is overestimated in our calculat ion. It is possible that ou r potential energy functi on is deficient, and the axial 

solvent atoms do not in reality appear until n:::::: 20. However, an exper imental study on the photodissociation 

of Ar~ (15) indicates the existence of the axial solvent atoms from n = 14. The location of the potential wells 

in Fig. 4.3a are closer to t he ion core than that in an nb initio result [13], probably due Lo the neglect of the 

overlap integrals in the 01~1 calculation. The interaction energy Hun might become large enough only after 

both ends or the ion core are capped by the solvent atoms, as the spectral red shift is sensitive to the position 

of the solvent atoms (see Fig. 4.3b). 

There is no change at ll = 10 in t.h c distribution of llint, though the spectral shift is observed in Fig . 4.1. 

The red shift. here is due to the crossover between Ecore and Esoh·· In the smaller clusters, Ecoro:. is pushed up 

as a result o f the interaction between the core and the solve nt state. A little blue sh ift is observed in Pig. -1. 2, 

as lfult is small. for the larger clusters, Ecore becomes lower than Esoh·, and is pushed down considcnlbly 

by the large Hua· The solvent stale also gets contaminated with th e core state, and acquires s mall transition 

probabi lity from the ground state. Since the energy level Esolv is pushed up by 11 111 t, it appears as small peaks 

around 450 nm. 

The internal energy dependencies of t.hc distributions of Ecoro:., Esolv, and i1 111 t arc shown in F'ig. 11.9 for 
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n = 7, 11, and 15, along with the calculated photoabsorption spectra. As the internal energy is increased, the 

distributions of Ecore a nd Esolv become slighLly broader, but the overall tendency is the same. The distribution 

of Hin~ becomes much broader, indicating that the spectral broadeni ng is mostly controlled by the distribution 

of Hmt· The peak at OA5 eV appears at smaller cluster s izes for the high internal energy, as a result of the early 

appearance of the axial solvent atoms. 

4.4 .4 Characterization of the ensemble 

Since the magnitude of Hint is sensitive to the geometry of the cluster, it can be used as a probe for this 

geometry. As shown in Fig. 4.7, there are two Lypes of structures in Ar{4 ; one has axial solvent atoms, and 

the other doesn't. The former has a large Hull and the IaUer a small one, so that it is possible to monitor 

the transition between these structures through Hint· A s ingle long trajectory is calculated for Art1 , and the 

variation of Hint is plotted in Fig. 4.10. At 10 1\:, the cluster vibrates around the structure with large Hint· One 

of representative structures is shown in Fig. 4.lla. The stable triangular cap is formed on the right axial region, 

which is responsible to the large H1nt· At 20 1\, the trajectory stays basically at the small H 1nt strucl..ures , but 

the large Hint structure appears on occasion. The typical small and large Hint structures in the trajectory a re 

shown in Fig. 4.llb and c, respectively. The small Him structure is close to the most stable structure of Ar{.1, 

in which one solvent atom is hanging from the solvent shell of Art3 . The solvent ato m occasionally moves to the 

axial region, and the large Hint structure as in Fig. 4.1 lc appears. The large Hint structure a't 20 1\: is different 

from that at 10 K: only a single atom is attached at the axial region, and its position is not so stable. Besides 

the axial solvent. atom, the other equatorial solvent atoms form a firm solvation shell around the ion core. At 

40 K and 60 K, the solvent atoms move vigorously and the substitution reaction involving the exchange of ion 

core and solvents atom takes place frequently. No solid solvation shell can be assigned to the trajectories. 

The distribution of Hint for the long t rajectory is compared with that of the ensemble of structures used 

in the spectrum calculation, to vie\v the property of the ensemble from the in teraction energy. The results 

are shown in Fig. 4.12. At 10 K and 20 K, there are significant differences between t he distribution for the 

long trajectory and that for the aggregate of short trajectories. The potential barrier between several isomers 

is too high for the clusters to overcome at these internal energies. Therefore, the si ngle long trajectory is 

not sufficiently long to cover the accessible phase spaces. It would require an impractically long trajectory to 

accomplish this. The fifty short t rajectories are employed in the spectrum calc ulation, but it might be still 

unsatisfactory, as the number of the str uctural isomers increases explosively with t.he d!.!grec of freedom (17]. If 

more trajectories were incorporated in the calculation, the spectrum shown in F'ig. t\.la and b might b~ much 

broader. On the other hand, both of the distributions arc simi lar at 40 1\: and 60 Kl due to the highly variable 

configurations adapted by the soh·ent atoms around the ion core. ,\t these internal energies, the systern behaves 
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ergodically with respect to Hmt· The fluctuation within each s hort trajectory is narrower, indicating long time 

fluctuations p lay an important role in the distribution o f Hmt· 

In addition to the consta nt internal energy ensen1b le, constant temperature ensernb les a re a lso calculated. 

The kinetic energy of the cluster is kept constant in this ensemble, so that al l the isomers are accounted for 

equally, even though the potent ial barrier between them is too high to overcome. 1\ot.e that in the constant 

internal energy ensemble, a high energy isomer has less kinetic energy, and even hi ghe r energy isomers are not 

accessib le. The spectra are broader for the constant temperature ensemble, especially at lo\' ... temperatures. The 

high Hmt st ru ctures are observed e\'en for the small clusters, since high energy isomers become accessible as 

desc ribed above. The overa ll spectra l shapes are similar to those for the constant in te rn a l energy ensemble. 

At 10 K, however, t he spectra for the intermediate s ized clusters of 10 =:; n $ 13 are different: the prominent 

peak in Fig. 4 .la is corrupted and a tail toward long wavelength arises. The energy levels of Ecore and Esoh· 

distribu te closely in this size range, so that the spectra are very sens itive to H
1
nt· In the constant temperatu re 

ensemb le, the struc tures wi th different Hmt, such as those in Fig. 4.11 a and b, are treated independently, which 

results in the flat spect ra. 

4.5 Conclusion 

A formula to calcu late a photoabsorption spect rum from classical t rajectories is derived and app lied fo r the 

argon cluster system. In t he calculated t rajectories, the t rimer ion co re is intact even at high internal ene rgy, 

and can be d ist ingu is hed from the so lvent a toms. The ca lculated spect ra shift tO\vard red with increasi ng cluster 

size, qualitatively reproducing the experimental observations. The red s hift. a t n ::: 10 is exp lained from the 

crosover of the energy levels between the ion core and the solvent shell. The othe r s hift at 11 ~ 14 is due to the 

increase of the solvation interaction between the ion core a nd t he solvent s hell. The magnitude of the interaction 

energy is correlated well with the structure o f the solvent shell around the ion core. The correlatio n is attributed 

to the an isotrop ic interaction between the photoexcited state of the ion core and the solvent atoms. 
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Figure 4.1: The photoabsorpt.ion spectra calcu lated from the trajectory ca lculations. The Sin a l! arrow indicates 
lhe peak position ob tained by fitting the first peak after 500 11111 with the gaussian fun ct ion. The temperature 
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Figure 4.3: The pot.ential energy surface of (a) the elect.ronic ground stat.e of Art and (b) the expcct.at.ion value 
of the excitation wavelength. The geometry of the 1\r~ ion core is fixed at t.he sym 111clr ic linear shape with 
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ordinate represent the x- andy- coordinates of t.hc solvent. atom, respectively. Only the first quadrant. is shown 
in the figure. 
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(a) (b) 

F'igure 4.8: Th e st ru cture of Ari1 wi th (a) a sma ll interaction energy and with (b) a large interaction energy. 
The dark color of the atoms reflects t he charge density on Lhem. Th e bonds connecting between the solvent 
atoms are drawn as a guide of eyes. 
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Figu re 4.9: The internal energy dependence of the photoabsorption spectra, energy levels of the core state and 
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the middle figure , the distribution of the energy level of the core state is plotted in a solid line, and that of the 
solven t slate is plotted in a broken line. 
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(a) (b) (c) 

Figure 4.11: Some typical structures of Art4 . The dark color of the atoms refl ects the charge density on them. 
(a) The stru cture at 10 K with the large interaction energy. (b) The structu re at 20 K with a small in teract ion 
energy. (c) The structu re at 20 K with the large interact ion energy. The bonds connecting between the solvent 
atoms are d rawn as a guide of eyes. 
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Figure 4.12: The distribution of the interaction energy between the core state and the solvent state. The 
distribut ion for the single lo ng trajectory is plotted in a solid lin e, while then ca lcu lated from the ensemb le of 
short t rajectories (used in the calculation of the spectra) is plotted in a broken line. The internal cne;gics of 
the trajectories a rc 10 1,;, 20 1,; , 40 1\, and 60 1,;, from top to bottom. 
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Chapter 5 

Non-adiabatic molecular dynamics 
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Abstract 

The non-adiabatic traj ectory calculations are performed for the photodissociation process of the argon cluster 

ion. Two methods, hern i-quanlal dynamics and Tully's sur face-hopp ing method, are exa mined for Ar j, and 

their resu lts are compared. The Tully's method is app lied for Art. Velocity distribut ions of photofrag ments 

are calculated fo r both neutral and ionic fragm ents, and compared with experimental res ults. 
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5.1 Non-adiabatic molecular dynamics 

5.1.1 Born-Oppenheimer approximation 

We start from the exact quanturn treatment o f the molecu la r system. The SchrOdinger equation o f molecules 

including the nuclear coordinates is \vritten in the atomic unit as 

'H4> 
. il <l> 

{5. 1) 
,_ 

ill 
'H ~V + Te +Vee+ VeN + VNN (5.2) 

- 'Lv + 1le~ , {5.3) 

where 1{ is t he full Hamil tonian of the molecule. The first two terms in 71. , TN an d Te, are the kine tic energy 

parts of nuclei and electrons, respectively : 

T,v 

T, 

I: 1 v' 
A - 2JIIA A 

'\' 1 ' 
~ -2\7~, 

{5.4) 

(5.5) 

where A is an index Lo atoms, a is an index to electrons, and t\!A is a rnass of the atom A. Th e res t of t hree terms 

are the Cou lo mbi c potentials; Vee for eledro n-electron, VeN for e lect ron-nucleus, and ~VN fo r nucleus-nucleus 

term. 

a-1 l 

I: I: ;:-, 
a b a 

{5.6) 

I: I: 1~A 
A a a 

(5.7) 

I: I:' ZAZ/J> 
A /J 1'AD 

{5.8) 

where ZA is an nuclear charge of atom A, and 1·.ry is d istance between x andy. 

The e igen value and e igen fun ctions of the electronic Ha miltonian , 1fet, is defined as 

{59) 

where the nuclea r coord inates Q appear as parameters in t he e lectroni c wavefun ct io n IJ! i. Total wavefuncLi o n 

including the nuclear coordin ates is expanded in the se t o f {\II i} as 

<l>{q , Q, l) =I: 'if ;( q ; Q),P;(Q,l) {5.10) 

Inserting Eq. 5. 10 to Eq . 5. 1, multiply in g <l>i from the left , and in tegrating: over the e lec tro ni c coordinate q , we 

get 

(5.11) 
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In the Born-Oppenheimer approx imation, the right hand side of Eq. 5.11 is neglected. This approximation 

is justified as the right hand side is smaller by a factor of the mass ratio 1/AIA than the left hand side. Under 

the approximation, Eq. 5.11 is rewritten a'S 

If the electronic state is lJik at t = 0, 

<l>(q,Q,O) 

<;i;(Q,O) 

lJik(q; Q)9k(Q,O) 

0, (i cf k), 

(5.12) 

(5 13) 

(5.14) 

equation 5.12 is solved as ¢i7-;.;(Q,t) = 0. In other word, the electronic state does not change eternally under 

the Born-Oppenheimer approximation. 

As is apparent from Eq. 2.75 (p. 14), the non-adiabatic coupling vector dij• wh ich appears in Eq. 5.11, is 

not negligible where the difference between Vi and \!j is small. The Born-Oppenheimer approximation wilt be 

broken down there, and the electronic transition between \1! 1 and Wj becomes possible. 

5.1.2 Dynamics beyond the B-0 approximation 

Solving a set of Eq. 5.11 to obtain nuclear wavefunctions { ¢;) is still not possible for the large system as 

clusters. The hybrid method described in this section abandones the full quantum descript ion of the system. 

Alternatively, the electronic system is drived by the quantum mechanics while the nuclear motion is treated 

classically. 

Assuming the nuclei follow the trajectory Q(t) (calculation of which is discussed later), the electronic state 

is propagated in time as 

(5 15) 

Here, the elect ronic Ha miltonian 7-te~ is indirectly dependent on time through the nuclear coord inate Q. The 

electronic wavefunct.ion \liTo is expanded with the diabatic basis set, {:=:i}, as 

lJITD (q , t) = L C.(t) =:,(q). (5 16) 

Inserting Eq. 5.16 into Eq. 5.15, the set of the equat.ion determining {Ci} is obtai ned: 

fJC, ·'\'c (- I I-) 8t = -t L i =..k 1id =-i 

; 

(5.1 7) 

The nuclear trajectory is calculated by integrating the classical equations o r motion, Eqs. 4.1 and 4.2 (p. 54). 

In the present work, two schemes arc examined to calculate the fo rces exerted on nu c l ~i, F( hcrni-quant.al 
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dynamics (HQD) method [I] and a method proposed by J. C. Tully [2]. The Tully's method is referred as CSI! 

(coupled surface-hopping trajectory) method, hereafter. 

Difference between two methods is in the selection of the electron ic wavefunct ion that determines the motion 

of the nuclei. In the HQD method, the forces exerted on the nuclei are evaluated by WTo(t) by using the 

Ehrenfest theorem, 

(5.18) 

As the eleclronic Hamiltonian 'H.e~ depends on time through Q, 'li To propagates in time as a mixture of the 

adiabatic electronic states, even if a single adiabatic state is taken as an initial stale. Therefore, the nuclei mo\·e 

on an averaged adiabatic potential energy surface, a nd physically mea ningless results may be produced, which 

will be demonstrated later. 

In the CSH method, the forces are calculated from the grad ient of the potent ial energy surface for a certain 

adiabatic state, ITt< [2]. In other words, the nuclei are restricted to move on the {-th adiabatic surface. The 

electronic state 'It t is selected statisLically from the adiabatic states according to the '·fewest switches" algorithm 

[2] as follows. 

To begin with, a trajectory running on an arbit rary {-th adiabatic surface is considered. The population of 

the current adiabatic state \II( in Ill To, a{, is given by 

/\(/2. 

(w(JwTD)· 

The time dependence of a{ is monitored, and the transition to the other ad iabatic stales is invoked if 

- tJ.td( > (. 
a( 

(5.19) 

(5.20) 

(5.21) 

where ( is a uniform random number between 0 and l, tll is the interval between sequential evaluations of 

Eq. 5.21, and a"( is a( differentiated by t ime, da(/dt. 

Once the transition is invoked, 1td is fully diagonalized and a set of adiabatic states, {Wi}, is obtain ed. The 

electronic state \liTo is now expanded as 

The t ime derivative of Xi is calculated a.c; 

dx; 
dl 

Since l{l i is indirectly dependent on time through Q, the fi rst term may be represented as 

8 1 

(522) 

(5.23) 

(5 25) 



- L X; rl;; · Q, (5.26) 

where Q is the nuclear coordinate differentiated by time. The second term of Eq. 5.24 becomes, by using 

Eq. 5.15, 

Finally, we get 

'~;' =- ,Lx; rl;; · Q- ix;\li. 
j 

The time derivative of a{ is calc ulated from Eq. 5.29 as 

a, (rlx, . ) 2!R (itX< 

- _Lx,_, , 
i;t{ 

x,_, 2a1 ( x( x' rL,, . o) 

(5.27) 

(-528) 

(5.29) 

(5.30) 

(5 31) 

(5.32) 

where X( is the complex conj ugate of X f. X· The j =~part and the las t term of Eq. 5.29 is neglected, as these give 

pure imagina ry numbers. The value .Y{-i is proportional to the transition probability from the ~-th adiabatic 

state to the i-th adiabatic state. In definition , .X£.-i is real and anti-symmetric; that is, X{-i =-.Xi-£.· 

Now, the adiabatic state that governs the nuclear motion after the transition is selected by us ing the following 

procedure: 

(1) An adiabatic state, \jl/ , is selected from the set of the adiabatic stales, (ljl;). The probability that the stale 

W, is selected is proportional to X(-1· If X(-1 is negative, the probability is set to ze ro. 

(2) The nuclei are decelerated (or accelerated) in the direction of d(t to compensate the increase (or decrease) 

of the potential energy from V( to \li. This step is necessary for the energy conservation rule to hold. If 

the available kinetic energy is less than Vi- \1(, the transit ion from \fl ( to \11 1 is ignored and the t rajectory 

calcu lation is continued on the ~-th adiabatic state. 

(3) A further transition from Wt has to be considered next, because even if .X(-I is positive, i1
1 

could be 

negative. Such a state is improper to be selected, as the transition is invoked by watching the reduct ion of 

a(, and the reduction of a( requires Ot to increase. The probability to remain o n '"i is given by U
1

, while 

the probability to in\'okc a furth er transition to \lim is • .Yt-m· The negati"e probability is treated as zero, 

ac; in the first step. \ Vhcn the furth er t ransition to 1.11 111 is determined , then replace f. with I and J with 111, 

and go back to step 2. Otherwise , the trajectory ca lculation is restarted on the 1-th adiabatic state. 

82 



Jn the original prescription p roposed by Tully, the variation of the project ion of ll'T o onto every adiabatic 

states, {yi}, arc monitored in time to determine whether or not the non-adiabatic transition takes place [2]. 

This procedure requires full diagonal ization of 1tt1 at every steps. To avoid the diagonalizatio n , the or igina l 

prescription is slightly modified as described above. In the present work, the adiabatic s tate 'li( , which is neces

sary to ca l cu late~' is obtained with the inverse iteration method assoc iated with the C holesky decomposition of 

the Hamiltonian matrix. The initial value in the iteration is taken from the previous t ime step, and the origin 

of the energy is properly shifted to accelerate the convergence. The derivative of { wit.h time is numerically 

evaluated by using the 3rd order Newton backward difference formula: 

(5.3:3) 

where the time step his taken as same as the integral step in Eqs. 4.3 and 4.4 (p. 55). Thus, the full diagonal-

ization of 'Het is required only when the non-adiabatic transition is invo ked. 

\Vith the procedure above, the swarms of t rajectories are branched into t he adiabatic states, {\.l!i}, \\·ith 

branching ratios proportional to Oj. The following two simple examp les verify the validity of t.he procedure: 

Case 1 A linearly-connected three-stat.e model shown in Fig. 5.la is examined first.. \\·e assume that the 

trans ition probabilities between the pairs of the states satisfy the following relations: 0 < .\"2-J < .\"1_::!, and 

X 1_ 3 = 0. The initial trajectories are on the state IJi 1 , that is, N1 (0) = N and N,(O) = N3(0) = 0, where N;(t) 

is the number of trajectories running on I.Tti at t.ime t. .N is the total number of trajectories, N = N 1 + N2 + N3, 

and is constant. In terms of ai (the probability stay ing on the state \II i), the initial condiLion is a,(O) =I and 

a2(0) = a3 (0) = 0. In t.his model, the number of trajectories on \li 1, N1(t), decreases with time; its rate follows 

Eq. 5.21 as 

(5.34) 

The solution of this equat ion is simp ly 

(535) 

Following the first step of the procedure, only \11 2 is the candidate for the state to be jumped non-adiabatically. 

From the third step, the branching ratio of staying on ll'2 versus t he transition further to \113 is it::!/(02.\"2-3) 

as shown in Fig. 5.la. Therefore, the number of trajec tories on \l!2 changes wit.h time a .. <; 

dN, (dN,) ( 0. 2 ) 
Tt = - Tt a,+ x,_, · (5.36) 

By inserting Eqs. 5.31 (a 1 =-X,_, and a,= X,_,- .\'o-3 > 0) and (5.35) in Lh e Eq. 5.36, we have 

dN" df = Na,. (5.37) 
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The number of the trajectories on \ll3 in creases monotonously, as no out- fl ow fron1 the third state is allowed. 

The rate equation is 

dN3 (dN,) ( X,_3 ) 
--;[! = - dt iL2 + X2-3 I 

and by inserting Eqs. 5.31 (a 1 =-X,_, and a3 = X 2_ 3 ) a nd 5.35 in the Eq. 5.38, we have 

dN3 _ N. 
dt- "3· 

(5.38) 

(5.39) 

Thus, consistency between the numbers of trajectory (N;) and the probab ility of the state (a,), N;(t) = N a,(t), 

always holds. This resu lt is not t ri vial. 

Case 2 A cyclically-connected three-state model defined in F'ig. 5.1 b is examined next. The transition prob

abi lities a re assumed to sat is fy the inequality, 0 < .X3 _ 1 < X 2 _ 3 < X 1_ 2 . The initi a l conditions are the same 

as in case 1. For the first state, \l/ 1, we have the same equat ion as in case 1; 

(5AO) 

F'or the rate equations of IJI2 and W3, we have a sum over an infinite series as 

dN, 

dt 
"" a, ( x,_3 x3_, )" a, 
2:::- N,;;-;- i• 2+.\",_3a3+X3-1 iz,+X2-3 
n=O 

(5.41) 

dN3 

dt (542) 

By inserting Eq. 5.31, the sum can be easily evaluated and we have Ni = Na, again. 

\Vi th t.he above modification, the CS II method becomes practical for studying multi - level non-adiabati c 

processes with many degrees of freedom such as the Art (n > 3) system. 

5.1.3 Comparison between HQD and CSI-I method 

The HQD and CS H methods described above are applied to the strongly non-adiabatic system to examine their 

credib ility. On the potential energy surfaces of Arj , there is a co ni ca l intersection between the electron ic ground 

state (Wo) and the first excited state ( WI) in a C,, con formation (see Fi g. 5.2b). The initial conditions for the 

trajectory calcn\ations arc artificially to be set up to exami ne the non-adiabat ic transition nca r the conical 

intersection. 

In the examp les shown here, the initi al geometry hac; C:?v symmetry with 2.6 ,\ of the bond lengths and 

130° of the bond angle. The initial electronic stale is the first excited adiabatic s tate, \ll I· ;\bout 0.1 c V 'kin et ic 

energy is deposited at l = 0, and the trajectories are pursued 20000 integration steps( ....... Ips). All other details 

of the numerical procedure arc the same as those described in the sect io n 5.2.3. 
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The results of the HQD a nd CS II calcu lalions arc sum mar ized in f'igs. 5.3 and 5.4, respectively. As is seen in 

Fig 5.3c, the sudden changes of the IIQD wavefunction are found at t ::e 0. 14, 0.30, and 0.46 ps. At t ::e 0.14 ps, 

the non-adiabatic interact io n is relatively small , and '-IITosl ill maintains the character of 41 ,. At l :::::: 0.30 ps, 

the interaction is large enough that the transition to IJI0 practically takes place. At l :::- 0.46 ps, however, the 

interact ion is not large enough and the back-transition to \{1 1 ends o nly ha lfway, so that IJITo becomes the 

mixture of lllo and W1 hereafter. The energy expectation value o f l{!To (the solid lin e in Fi g. 5.3b) reflects t.he 

character of the HQD wavefunction, and eventually it becomes the middle of the Vo and V,. r-\s shown in 

Fig. 5.3a, one o f the bond length osci llates per iod ically while the res idu a l atom dissociates monotonously after 

t ~ 0.46 ps, which indicates the dimer formation. However, the dimer vibrates on an averaged potential energy 

surface of Vo and V,; Vo is strongly bound while V1 is weakly dissociative. Thus, the resulting HQD t rajecto ry 

is rather meaningless as was correctly pointed out by Tully [2]. 

On the other hand , in the CS H calcul ation, the transition from \11 1 to \11 0 occurs only o nce at t:::::::: 0.12 ps, as 

seen in Fig. 5.4c. The nuclear motion is govern ed by IJ! o after the transition, that is, a dimcr is forrned at this 

point. The dimer vibrates definitely on t he potential energy surface of the adiabatic electronic g round state, 

and thus the trajectory is qualitatively different from that of the HQD calculat ion. In the trajectory shown in 

Fig. 5.4a, the center atom and one of the outer atoms form a di mer ion. If we run many trajectories, however, 

the timing of the non-adiabatic tra ns it ion changes with the sequence of random numbers in Eq. 5.21, and thus 

the final product does. For example, a dimer ion can be formed fro m both of the side atoms, o r a meta-stable 

triangu lar Arf can be formed, even if the trajectories start from the identi ca l initial condition. These \·arious 

dissociation pat hways can not be considered sepa rately in the 1-IQ D ca lculation , but, in some sense, they are 

averaged. 

5.2 Photodissociation dynamics of Arj 

5.2.1 Introduction 

The st ructures and dynamics of a rgon cluster io ns have att racted extens ive attention both ex perimentally and 

theoretically [3-26]. A positive hole is thought to be localized on an ion core formed of eiLher two or three atoms 

in the cluster ion. The rest of lhe atoms so lvate the ion core. In th e precedent chapters 1 we have shown thal Lhe 

size effects 0 11 the photoabsorption spectra observed in the cluster ions {II, 12] can be explained in terms of the 

solvent cn·ect, even though the solvent and solute cons is t o f the sa me elements. In se veral theoret ica l studies, 

the diatomic ion , Arj, is ass umed to be the ion core [3-6L because of its large binding e11crgy ( 1.33 cy [21]) , 

and a few experimental resu lts have been analyzed in terms of this dimcric ion core model [I i , 18]. On the o ther 

hand, many recent theoretical and expe rimental st udies strongly suggest th at the trimer is th e ion core in the 
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Ar cluster rather than the dimer [7-12]. Under the impulse of these s~ u dies, the electronic structures and the 

photodissociation dynamics of Arj have been studied extensively. 

The photoabsorption spect rum of Art has been observed by several groups (20-22]. There is a strong visible 

band near the wavelengths of 480- 540 11111 (21,22] and a relatively weak UV band near 270- 310 nm (20]. 

The trimer ion d issociates into Ar+ + 2Ar by excitation of either band. The velocity dist ribution of Ar+ 

fragments produced by exc itation of the visible band has been determined experimentally ( 17 -19,23]. A bimodal 

distribution is clearly observed; 75 ...... 90% of the Ar+ fragments produced have a kinetic energy of about 0.4 eV 

(fast fragment) while the rest of 25,..,. 10 % have almost zero ki netic energy (s low fragment). The ratio of the 

slow fragments to the fast ones increases with the excitation energy [19,23]. 

On the basis of the theoretical calculations, the visible band is assigned to '~t- 1 2~t (10,24,25]. The 

equilibrium structure of the electronic ground state (1 :!~t) is linear [7-l 0, 15-J i], so that the fast Ar+ fragment. 

is produced from the side atoms of Arj while the slow Ar+ fragment is produced from the central atom. 

However, if the dissociat ion proceeded adiabatically, no slow Ar+ fragment should be produced, because the 

central atom possesses no charge in the excited stale ( 1 :!~t)- Therefore, the experimental observation imp lies 

that non-adiabatic transition to the other elect.ronic states must occur during the course of the dissociation. To 

simulate the photodissociation process of Arj consistently, the non-adiabatic molecular dynamics, namely, the 

HQD and CS JJ methods are applied. 

5. 2.2 Sampling of t he ini t ia l co nd itions 

The initial geomet ries and momenta for the HQD and CS JI calcu lat ions are sampled from the classical trajec

tories on the e lectronic ground state of Arj. The geomet.ries and n1omenta are assumed not to be changed 

by the e lectronic excitation. In the classical traject.ory calcu lations on the ground stale, the internal energy 

is deposited among 4 vib rational and 2 rotat ional motions so that the micro-canonical tem perat ure of Arj 

becomes 100 I<. The deta ils of the numerical methods are given in the section 4.2.1 (p. 54). T he equ ilibrium 

structure of Arj in the electroni c ground stale is symmetric linear, but. it is very floppy and severa l vibrational 

quanta a re thermally excited [7, 10, 19, 25,26]. The classical sampling method is justified in t his way. Fro m 

20 trajectory runs, 1000 points a rc sampled for the initia l geometries and momenta. Though the number of 

the sampled poi nts is not very large, it is sufficient because of simp li cit.y of t he poten Lial energy su rface of t he 

ground state. 

The first, third, seventh, and eighth excited electroni c states arc se lected as the init ia l electro n ic stales o f 

the trajectory calculations. The first, third, and sevent h excited states correspond to I :! n u, l:!E:, an? 2:! n u 

in 00011 geometry, and have considerable oscillator st rengths between the grou nd state (J::!~~) in th e visible 

region [10]. T he eighth excited state, \vhich corresponds to 2:!~~ in Dooll geo met ry, has a comparab le osc illator 
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strength, but the absorption band appears in the UV region. The photoabsorption spectrum is ca lculated from 

the samp led points by using the method described in the section 4.2.2 , and shown in Fig. 5.5. The wavelength 

resolution of the spect rum is 30 nm . The experimental spectrum (20,21] is also s hown by square and diamond 

symbols in the figure. The calculated specl rum is in good agreement with the experimental one, although 

neither of the peak position nor the peak height are adjusted. This agreement guara ntees the credib ili ty of the 

current model. 

5.2 .3 Trajectory calculations 

The HQD and CS H methods are used for the non-adiabatic t rajectory calcu lations. Equations 4.1, 4.2 and 5.17 

are numerically integrated by using the fourth/fifth order Adams' formula (see Eqs. 4.3 and 4.4 on p. 5.5). As 

the electron ic coefficients { Ci } in Eq. 5.1i oscillate rapidly with Lime, the integration time step must be as 

short as 0.05 fs. The intermediate representation to accelerate the integration [I] does not work properly in 

the present case, because some of th e off·diag:onal elements (1tei}ij arc as large as the energy difference of the 

corresponding diagonal elements, (?tel)ii- (1-ledjj· In the CSII method , the equation 5.21 is eva lu ated every 

four integration steps to facilitate the numer ical derivative of a{ (Eq. 5.33). 

Starling from the initial conditions described in the previous section, each trajectory is pursued for 10000 

integration steps, which corresponds to ca. 0.5 ps. The potential energy surfaces of the excited states are all 

repulsive, and 0.5 ps is long enough for the fragments, Ar+ + 2...\r, to separate fa r away each other. The 

statistical averages o f some physical pro perti es are evaluated at the end-poi nts o f the trajectories, and they are 

summarized in tables 5. 1 and 5.2. The averages are taken with a weight factor proportional to the osc illator 

st rength between the ground and excited states at the initial geometry. 

The velocity distributions of the ionic and neutral fragments are shown in F'igs. 5.6 and 5.7 for the JIQD and 

CS II calculations, respectively. The velocity of the center o f mass is taken as zero. The resolution of the velocity 

distribut io n spectrum is 0.1 km/s. In IIQD , WTo is expanded in terms of the adiabatic states at the end o[ 

the trajectory, and the charge distribution over t_he fragments is eva luated with the adiabatic wavefunctions. In 

CS H, W{ at Lhe end of the trajectory can be used directly Lo evaluate the charge distribution. As experimentally 

reported (16-19,23], the bimodal velocity distribution of the Ar+ frag ment is clearly seen in both the HQD 

and the CS II distribution spectra for the third, seve nt h, a nd eighth excited states. The ca lculated velocity 

distribution o f th e neut ral fragments is also bimodal, which has al so been observed experi menta lly [l6J. The 

peak positions of the slow and fast neutral fragments are equa l to those of the corresponding ion ic fragments. 

The kinetic energy o f the fast fra gments arc 0.41 cV, in agreement with the expe riments [16-19}. The ~at i o of 

the slow to the fast neu tra l fr agments is different from that for the ionic fragments, because one dissociation 

event produces two neutra l Ar atoms and one Ar+ ion. 
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5.2.4 Discussion 

Photoabsorption spectru n1 

As shown in fig. 5.5, the major excited state in the visible absorption band is the third excited state. The first 

and seventh excited states, however, have cons iderab le contribution to the spect rum, in the longer a nd shorte r 

wavelength, respectively. Both excited states have 2 rl u symmetry, and therefore the optical t ransition from the 

ground state, 12 Et, is forbidden in Dooh geometry. The opt ical transition becomes a iiO\ved mainly by bending 

vibration [10,25] (see Fig. 2.4 in p. 24), so that they are enhanced when the cluster temperature is increased. 

Experimentally, a s houlder has been observed in the absorpt ion spectrum of Arj at the longer wavelength, 

545- 555 nm [2 1, 22]. Chen et a/. (22] have noted that the shoulder is enh a nced as the temperatu re of the 

cluster increases. Therefore, this shoulder can be assigned to the t ra nsit io n from the ground state to the first 

excited state [25). It should be noted that fourth and fifth excited states, both of which correspond to 12 fl, in 

Dooh geometry, have a lmost zero oscillator strength from the ground state [10), and do not cont ri bute to the 

spectrum. 

The transition to the eighth excited state, which is 22 ~t in Dooh geometry, also becomes allowed by vibra

tional excitat ions. In this case, the antisymmetric stretching mode plays an important role (see Fig. 2.4 in p. 24). 

The potential surface of the ground elect ronic SLate is very nat along this coo rdin ate, and several vibrational 

quanta can be readily excited. Therefore, the UV band is also expected to enhance when t he temperature of t he 

cluster increases. The position of the absorption band at 280.....,. 300 nm in Fig. 5.5 is in good agreement with 

the experimental spectrum [20]. It shou ld be emphasized that the asym metri c linear conformer (Ar r\r)+ Ar , 

which DeLuca and Johnson claimed {20), is unnecessary to explain t he UV band. 

Photodissociat ion dynami cs 

As shown in Figs. 5.6 and 5.7, the HQD and CS II methods gi\·e sim ilar resul ts o n the velocity distributions of the 

photofragments, as well as those on some of physical properties listed in Tables 5. l and 5.2. T he CSI·I method 

gives the id ent ical result to the HQD method if the nu clei moves o n the the same traj ectory [2]. Therefore, the 

agreement of these two resu lts probably a rises from the s imilari ty of the nuclear traj ectories . lt is found in the 

CS II method that non-ad iabat ic jumps occu r well after the electroni c exc itatio n , \vhcrc the potential s urfaces 

are converged nearly to the dissociation limi t. Therefore, the nuclear t rajectory is not much affected by the 

non-ad iabat ic jumps. On t.he other ha nd , the nuclear trajectory is s trongly afl"ccted by the no n-ad iabati c jumps 

in lhe photodissociation process of the larger clusters, which will be discussed in t he section 5.3. In such a case, 

Lhe CS H met hod shou ld be used in the trajectory s tudies, as demonstrated in the sect ion 5.1.3. 

The third excited state, which is correlated to J:?~j in D00 J1 symmetry, cont ribu tes mostly to the visible 

photoabsorption s pect rum of ;\ r!. Tl1cre arc two peaks in the velocity distributions o f tile fragnlcnts dissociating 
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from the th ird excited s tate (see Fig. 5.6 b a nd 5.7b). T he velocities at both of the pea ks a re nea rly eq ua l to 

the averaged velocities of t he center a nd t he outer atoms shown in Ta bles 5. 1 a nd 5.2. Therefore, t he s low 

fragments come fro m t he center atom of Arj and the fast one from t he outer a toms. The hole orbita l of the 

t2Et state is the u9 orbital tha t has no cha rge on the cent ral ,\r a tom, and th e s tate is st rongly repuls ive on 

the D ooh surface. If t he dissocia tion proceeds on t his su rface wi t hout the non-adiabatic jumps, the production 

of the slow Ar+ fragment ca nnot be expected. That is, non-adi abat ic jumps are responsible for t he prod uction 

of the slow Ar+ fragments. It must be noted that 12Ej cannot be coupled wi th the ot her states as long as t he 

symmetry is restricted to D coh· For example, the non-ad iabat ic co uplin g vectors wi t h 2:St states are a ligned 

to the anti-symmetric vibrat ional coordin ate. Accordingly, the s light asymmetry at the start ing point, whi ch 

is amp lified during t he d issociat ion process , is essential in the non-adia ba ti c t ra nsit ion from i 2:St state. T he 

simi lar two peak structu re is observed in the veloc ity di stribut ions of t he fragments from the sevent h a nd eighth 

excited states. In these cases, t he fr act ion of charge on t he center atoms is 0.28 a nd 0.38 , respecti\'ely, whereas 

it is expected to be 0.5 in t he ad iabat ic and sym met ri c dissoc iat ion. 

On the other hand, the velocity distribution of the fragrnents from t he fi rst excited state shows only one 

peak. T he center a tom acquires a compa ra ble velocity with t he outer atoms as shown in Tabl es 5. 1 a nd 5.2. 

The "bond angle" of t he prod uct given in the tables in dicates t hat the bending motion is strongly coupled 

with the dissociat ion process. As shown in Fig. 5.2b, the potent ia l surface of t he fi rst excited state is unstab le 

toward the bendi ng mode in the excitation region. T herefore, the bending mot ion is ini t iated ad iabat icall y on 

the potent ial energy su rface at the beginning of t he trajeclory, a nd a ~ons i derable a mount of kinetic energy is 

deposited on t he center a tom. Note t hat t he bending mot ion on th e ground state has littl e effec t on the \'Cioc it.y 

distr ibut ion, t hough it is necessary for the optical excitat ion to t he first excited s ta te to be allowed. The sa me 

bending-dissociat ion couplin g is also observed in t he dissociat ion from the eight h excited state, but not as la rge 

as in t he first excited stale. In this case, the potentia l surface is much steeper in the direction of the symmetric 

dissociat ion, so th at the dissociation proceeds before t he cluster sta rts to bend , and two peaks appea r in t he 

velocity distribu t ion. The bending- dissociati on coupling is not observed in the dissociation from of the third 

and seventh excited sta te, whi ch proceeds almost linearl y along the axis. 

Th e ra tio of the s low to the fast fr agments is Cva luated wi t h th e JIQD trajectories as a fun ction of the 

excitation wavelength an d is plot ted in Fig. 5.8. The s low/ fast Lhreshold values a re 0.9, 1.0, a nd 1.7 km/s 

for the third , sevent h, a nd eighth excited s tale, respect ively. :\11 the fragmc11ts from t he first exc ited sta le 

are rega rded as the fas t fr agments. The resolu t ion of the wavelength is 30 11111. 'The ratio of the s low Ar+ 

frag ment decreases with the excitat ion wa \·elength , in agreement wi t. h experi menta l resu lts {19,23] shown in t he 

figure. T his excitat ion energy dependen ce of th e ratio sugges ts tlte important contributi on of the non-adi a ba tic 

transit ions, because t he non-adi a bat icity (or diabat icity) is enhan ced as t he veloc ities of the nucle i in crease. 

Indeed , the numb er of t he non-adiabat ic jumps is nearl y proportional to the excitation energy as shown iu the 

89 



last row of Tab le 5.2. \Ve can also expect that the ratio depends on t he tempe rature of the clusters. It increases 

with the temperature of the cluster, as the asymmetric dissociation is crucial in the production of the s low Ar+ 

fragme nt, as mentioned before. 

5.2.5 Conclusio n 

The IIQD and CSII methods are applied to the dissociation process of Ar:j. !3oth methods give almost identical 

results in the applications to the d irect photodissociation process of Arj, where t he calculated nuclear paths 

are similar to each other. The non-adiabatic t ransitions are shown to be responsible for the production of the 

slow Ar+ fragments, which have been observed in the photodissociation of Arj by a visible light. The ratio of 

the slow fragments is calcu lated as a function of the excitat ion wavelength a nd the agreement with experimental 

results is sat isfactory. It is a lso suggested that the photoabsorption spect rum and the slow to the fast rat io of 

the photofragment depend on the temperature of the cluster. 

5.3 Photodisso ciation dynamics of larger clusters 

5.3. 1 Int rod uct ion 

Several experimental and theoretical stud ies revealed that the argon cluster ion, Ar~, consists of the t rimer ion 

core, Art, and the su rroundi ng solvent atoms [7-16]. The trimer ion has a strong photoabsorption band in the 

visib le region, and it photodissociates into Ar+ ion and two Ar atoms on t he photoabsorpt ion [21,22,28]. So 

do the la rger clusters, but the fragment ion is not always Ar+, and several sma ll cluster ions a re produced as 

a result of the pholodissociat ion [I I , 15, 16). All the excited states of these smal l cl uster ions are un stab le, so 

that the fragment ions must be in the elect ronic ground stale. Therefore, t he non-adiabat ic t ransitions from 

the photo-excited state to the ground state are essential in the photodissociation process. In these experimental 

condit ions, no collisions take place during the dissociat ion processes. T herefore, t he transit. ion process to t he 

ground state is a typ ical example of the intramolecular energy relaxation process. 

In t his section, the CS II method proposed by J. C . Tu ll y [2) is app lied fo r the photodissociation process of 

Arj. The kinetic energy dist ribution, t he angul a r dist ribu t ion, a nd the s ize distr ibutio n of produced photo frag

ments are calculated and compared with t he exper imental results. 
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5.3.2 Calculation 

Sampling of the initial conditions 

The initial configurations and momenta of the nuclei are samp led from the normal molecular dynam ics (i\10) 

calculation of the cluster ion in the electroni c ground state. The initia l internal energies of the t rajector ies 

are taken moderately high enough that a few trajectories d issociate t hroug h the thermal evaporat ion of the 

Ar atoms; the typical microcanonical temperature is 190 .-..,; 200 K. After about 6 ps at high temperature, the 

cooling down process is started. The cl usters are cooled down to 40 K 1 by remov ing t he kinetic energy gradually. 

The annealing process takes about 15 ps, [ollowed by the normal trajectory calcu lat ion [or 1.2 ps. Arter that, 50 

structures are samp led with the time interval of 0.1 ps. The tota l number o f 2500 structures are obtai ned from 

50 trajectories generated independently. The deta ils of t he numerical methods of the 1\l D calculation is given 

in the section 4.2.1. The initial electronic state from which the CS H trajectory calcu la tion starts is selected 

statist ically from the adiabatic states. The probability to be se lected is made proportional to the osci ll ator 

strength of the transition from the ground state. 

Trajectory calculations 

The photodissociation t rajectory is calculated by using the CSII method, rollowed by the normal ~I D calculat ion. 

At first, each t rajectory is evolved with the CS H method [or - 0.5 ps. At t he end or the CS H calculation, it 

is examined whether the electronic state d rops down to the ground state, and whether the ground state is well 

isolated from a ll other excited states in energy. If both o f the conditions a re satisfied , t he rest. of the trajectory 

is calcu la ted by using the normal 1 D calcu lation, which is much faster than the CS !-1 calcul ation. Otherwise, 

Lhe CS I-1 calcu lat ion is restarted. The details of the numerical method used in the CS II calculation is g iven in 

the section 5.2.3. 

5.3.3 Results 

One of the photodissociation trajectories of Ar t is shown in Fi g. 5.9. The actual potent ia l energy surface on 

which the nuclei are mov ing is plotted in a soli d line, while t he ot her adiabatic potent ia l energ ies arc plotted 

in dashed lines. There are 2 1 adiabatic states in Art, but o nly the lowes t. seve n states arc shown in th e fi gure 

for clari ty. The trajectory starts from the sixth excited electron ic state at l = 0. After seven non-adiabatic 

trans itions indicated by vert ical arrows at the lop of the figure 1 it finally sett les down to the g rou nd elect ronic 

state, to produce a dimer ion a nd five neutral atoms. The potential energy starts to oscill ate regularly at I ps, 

which refl ects the vibration o f the dirner ion. 

Several snapshots of the trajectory arc shown in f'ig. 5.10. The atoms labeled as " 111
, "2'', and ··3·' fo rm a 

linear Arj ion core before the phot.oexcitation . .Just a fte r the excitatio n , " I n is ejected a long the collin ear axis 
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of the io n core (t = 0.3 ps), and it fli es away. On the other side of the ion core, "3" also tries to escape, but it 

is blocked by "411 located on the collinea r axis, and instead, t'4" is slowly ejected along the axis. From 0.3 to 

0.9 ps, the rest of the five atoms undergoes several non-ad iabat ic transitions and cha rge re-distributions , and 

finally, the charge is localized on the atoms labeled by "3" and "7" to for m the dimer ion. 

The photoabsorption cross section of Ari is ca lculated at the s tarting po ints o f 2500 photodissocialion 

trajectories and plotted in Fig. 5.11. The resolution of t he spectrum is 20 nm. To make a meaningful comparison 

with the experimenta l results [l6L we concentrate on those trajectories such that their excitation energ ies fall 

within the range between 2.25 ,..... 2. 75 eV (450 ,..... 550 nm). The region, indi cated as a shaded area in t he 

figure, contains 1575 trajecto ries. Among those traj ectories, 13% of them are not completely terminated: 11 % 

still remain in the excited state at 2.7 ps afte r t he photoexcitation, while 2% do dro p to the g rou nd state but 

the intern al energy is large enough fo r furth er dissociation. The remaining 87% trajectories are terminateJ 

normall;': 54% produce an Ar+ fr agment ion, while 33% end up with a n Arj frag ment ion. 

The kinetic energy dist ribution o f the monomer fra gment io n , Ar+ , and that of the neutral fragments a re 

calculated from those te rm inated trajectories, and arc plotted in F'ig. 5.12. The kinetic energy o f the neutra l 

fragments shows a bimodal distribution as is seen in Fig. 5. 12(b) . \ Ve refer to the compo nents peaked at 0.4 eV 

as the fast fragments hereafter. The threshold energy is arbitra rily set to 0.2 eV. As shown in Fig. 5.12(a), the 

fast fragments dominate the dis tribu t ion of the monon1cr frag ment io n. 

The translational energy (a) and the in tern al energy (b) distributions o f the dimer fragment ion are shown 

in Fig. 5.13. Unlike the monomer ion and the neutral fragments, the dimer fragments carry littl e translational 

energy, and its distribution decreases monotonously. A large amount of energy is stored in the vibrational 

mode, as is ev ident in Fig. 5. 13(b). As the binding energy of the dim r ion is 1.31 e V, the produ ced dimcr ion 

is considered to be highly vibralionally excited, and besides, its energy distribution is far from the thermal o ne. 

Note that the plotted energy is that of the dimer , so that the average energy per atom becomes as large as the 

kinet ic energy of the monomer fragment ion (,..... 0.4 eV) . 

The angu lar dist ributio ns of the fast component of the mo nomer fr agment ion and the neutral fragm ents are 

plotted in Fig. 5.14, as well as that of the dimer fragment ion. The angle is measured between the t ransition 

dipole mo ment o f the phoioexcitation and the velocity vector o f the photofragment. The dist ri but io n o f the 

fast monome r ions and that of the fast neutral fragments are anisot ro pi c: they arc mainly ejected along the 

trans ition dipole moment. The distribu tion for t he dimcr ions is isot ro pi c. 
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5.3.4 Discussion 

Excitation en e r gy d e pe ndence 

In this study, the multi-dimensional and multi-state non-adiabatic dy nami cs a re directly treated. The no n

adi abatic transitions a re expected to occur more freq uently as the nu clea r \' elocity beco mes large. In the present 

case of the photodissociation of Ar! 1 the nuclear kinetic energy originates fro m the initial excitation energy, 

D. E. To examine the dependence o f the dynamics on D,.E, the 2238 no rmally termi nated traj ectories amo ng 2.)QQ 

samples are grouped into three parts: tJ.E > 2.75 eV (the left blank area in Fig. 5.11), 2.25 .,=; tJ.E .,=; 2.75 eV 

(the shaded a rea), and tJ.E < 2.25 eV (the right blank area). The excitatio n energy tJ. E and freq uency of the 

non-ad iabatic jumps a re averaged sepa rately in each part, and sumrnar ized in Table 5.3 wi t h the other statistica l 

values. The numb er of non-adiabat ic jurnps does become la rge with t. he excita tion energy, but. it is because 

more jumps are required t.o go dowh to the ground state, if the t rajectory starts from higher excited states. The 

number of jumps pe1· unit time is almost ind ependent from f:j.£_ IL is probably because the fast fragments are 

ejected in the early stage of the photodissociation as typicall y seen in atom' l' of Fig . 5.10. The fast fragments 

carry away the excess energy, leav in g a rnu ch-t.he-same amount of the interna l energy in the residuals. i\"ote 

that the no n-adi abaticity is determined by the relat ive velocities among atoms located within the in teracti ng 

part of Lhe cluster. 

Origin of the fast fragn1 e nts 

The visible photoabsorp t ion band of Arj is mainly at.t ribu t.ed to the 2 ~: - 12 E j t ra ns ition [8, 10,2 1 ,22,24,25, 

28,29]. The transition dipole mo ment is parallel to the colli near symmetric axis of Arj, and when it is excited , 

both of the side atoms attached to the cen ter atom of Arj are ejected alo ng the collinear axis. Because the 

charge is located on both of the side atoms in the photoexcited stale 2 ~j, a fast Ar+ fragment [15,17, 19,23], a 

fast neutral Ar fragment [16], and a s low Ar fragment a re produced o n the photoexcitation. These dissociation 

processes were elu cidated in the section 5.2. Note that a few slow Ar+ fragments are produ ced t hrough non

ad iabati c transitions during the photodissoc iation. 

As discussed in the chapter 3, t he photoexcited state of the larger clusters remembe rs the 2 ~t character of 

Arj. Naturally, the fa<>t Ar+ fragm ent is expected to be prod uced through the pho tocxcitatio n of Arf and to be 

ejected along the transition dipole moment. The fast Ar+ fragment is, however, no longer a major ionic product 

of the piJo todissociatio n. Th e no n-adiabatic tra11 5itio ns now play a more important role in the p! Jotodissociatioll 

process o f Arj. ~ l ost of t he charge ca rried by t he fa<>t escap ing atoms as atom 'l l " in Fig. 5. 10 is draw n back to 

the res idual part of the c luster. Fas t neutral atoms arc thus prod uced , and the majority of the neutral fragn1ents 

that constitute the slow component in t he velocity d is tributio n a rc produced from successive evaporation fro lll 

the res idu a ls. Note that not all the fas t neutral fr agments originate from either o f the two s id e ato ms that 
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ini t ia ll y form an ion core with the center atom. The number o f fast neutral fragm ents, the number of those 

originating fro m an ion core, and their kinetic energies are averaged and s ummarized in Table 5.4, as well as the 

number of fast Ar+ fragm ents. Fo r excitat ion energies between 2.25 to 2. 75 eV, a bout 20% of t he fast neut ral 

frag ments o rigin ate from the solvent atoms. These atoms are likely to be genera ted from a rea r-end collis io n 

between the solvent atoms a nd the atom ejected from an ion core, as atom "4" in Fig. 5.10. 

\Vhen Ar t is excited higher than 2.75 eV, 96% of the t rajec to ries prod uce Ar+ fragment ions. Nevertheless, 

only 29% of the t rajec tories produ ce fast Ar+ fragments. It is because when excited hig her, ejected atoms from 

the ion core acquire rnuch kinetic energy, which makes the non-adiabatic transitions (or the charge draw-back 

process) easier. Ind eed , only 16% of the fast Ar+ fragment o riginates from th e ion core. On the other hand, 

when excitation energies are between 2.25 and 2.75 eV, 57% of the trajectories p roduce fast Ar+ fragmems, 

and 90% of them originate from the ion core. Since 62% of t he traj ectories end up with Ar+ fragments, more 

tha n 80% of the Ar+ fra gment io ns come from the ion core. \Vhen the excitation energy is lower than 2.25 eV, 

almos t no Ar+ frag ment is produced. S in ce th e bindi ng energy of Art with respect to Ar+ + 6Ar is -1.79 eV 

at 0 1\: [10], it is energetica ll y im probab le to produce Ar +. Instead, the cluster utili zes the binding energy of 

Art to evaporate solvent atoms. 

Con1parisou with ex p e rime nt s 

Nagata and h:o ndow observed the kinetic energy distribution of the neutral fragments from their lime-of-flight 

mass spect ra [16]. They found a bimodal distr ibu tion in t he photodissociatio n of Art at 532 nm (2.33 eV), wi t h 

an average kineti c energy o f the fa'5t com po nents as ...... 0.35 eV. They a lso est imated the anisot ropy parameter f3 

of the fast neut ral atoms to be 1.5-- 2, and the number of the fast neutrals ejected per single photodissociation 

event to be two. The present calculation reproduces the exper imenta l results very \'-'·ell. The average kinetic 

energy of fast neutra l fragments calculated from Fig . 5. 12 is 0.38 eV, the a ngul a r distribu t io n shown in Fig. 5.l t1 

indicates the positive anisot ropy parameter, and the ca lculated number o f fast neutral fragments per trajectory 

is 1.7. 

T here is, however, a disc repa ncy between the present calcu lation and t he experimen ta l result in t he branching 

ratio between mono mer ion productions and dimer ion produc tio ns, ;\r+/Art. The o bserved bra nchin g ra t io 

is almost 0, t hat is, no Ar+ fragment ion is observed exper imenta lly, while the ca lcu lated one is L.6 for 2.25 :5 

6.E:::; 2.75 . 13ecau sc t he branching ratio ca lcu lated for 6.£ < 2.25 is 0.01 and t he one for 6.£ > 2.75 is 21.6, 

it is a s teep functio n o f Lhc excitatio n energy. So that if the energy range were taken narrower around 2.:33 e \ ' 

(532 nm ) in the calculati ons, Lhe branc hing ratio might be redu ced . 



5.3.5 Conclusion 

The photodissociation process of the argon cluster ion is studied by using the CSH method. The agreements 

with the experimenta l observation for the kinetic energy distribution and the angular distribution fo r the 

photofragments of Ari are satisfactory. For the branching ratio between ..-\r+ and r\rj fragment ion, howe\·er
1 

the calcu lation overestimates the production of A r+. The poor resolution of the excitation energy seems to be 

reSponsible for the discrepancy, but the dependency of the ratio on the ini tial conditions of the trajectories, 

such as the rotational stale or the temperature of the cluster, must be exam in ed. 
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Figure 5. 1: Two models to verify the appropriateness o f Lhc stale-selecti ng proced ure in the CSII method. (a) 
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F'igure 5.8: The ratio o f the s ]o\v to the fas t fr agments as a fun ction of tl \e excita t ion wavel engt h . The HQ D 
trajecto ries a re used in t he calculat io n . All t he trajecto ri es sl~ rti ng fro m the first, t hird , seventh , and e ight h 
excited slates a re used in the calcu la t ion . Diamo nds connected wi t h solid lines s how t he ra tio o f the io ni c :\ r+ 
fr agments, whil e crosses connec ted with bro ken lines arc th a t o f t he neutral Ar frag ments. Th e fill ed boxes and 
X's a re the expe rimenta l results for t he :\ r+ fragments observed by Nagata [23] and Dowers [l9], respectively. 
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Figure 5.9: The potentia l energy curve along the photodissociation trajectory o f Ari is plotted in a solid line 
as a function of time. The adiabat ic potential energies of the lowest seven states arc also ploUecl in dashed 
lines. The trajectory starts from the s ixth excited state at l = 0, commits seven non-adiabatic transitions (as 
indi cated by arrows at the top of the figure) , and finally settles down in the ground stale. 
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Figure 5.12: Kinetic energy dist ribu tions o f mono111er ions (a) and neutral fragments (b) produced from the 
photoexcitation of Arj between 2.25 ........ 2.75 eV. The distribution of neutral fragmenls is bimoda l, while the 
distribution o f ionic fragments ha<> only the fast component. 
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Pigurc 5. 13: T he translational (a) and Lhc interna l (b) energy dist ribt ttion of the dimcr fragment ion. T he 
rotational energy is included in the internal eucrgy. ' 
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Table 5.1: The averaged final velocities , charges, and bond angles over the 1-! QD trajectories (the standa rd 
deviations in parentheses). 

initial stale 1st 
velocity I km 

3rd ith 8th 

center atom 0.76(0.1 ,1) 0.23(0.11) 0 19(0.0i) 0.6'1(0 26) 
outer atom 0 78(0.19) 1.40(0. 13) 1.8i(0.13) 2.65(0.16) 

charge I e 
center atom 0.38(0.07) 0 22(0.09) 0.29(0 05) 0.41(0.02) 
outer atom 0.31 (0.07) 0.39(0. 18) 0.35(0.08) 0 29(0.09) 

bond angle I deg 93.3(18.1) 159.6(11.3) 166.2( 6. 1) 148.4(16.5) 



Table 5.2: The averaged final velocities, charges, and bond angles over the CS I-1 trajectories (the standard 
deviations in parentheses). The averaged numbers of the non-adiabatic jumps are also shown in the bottom 
row. 

initial state lsL 3rd 7Lh 8th 
velociLy I km 

center atom 0.77(0.14) 024±0.11 0.19(0.10) 0.64 ± 0.26 
outer atom 0.78(0.19) 1.40 ± 0.13 1.87(0.13) 2.65±0 16 

charge I e 
center atom 0.39(0.22) 0.22(0.23) 0 28(0.38) 0.38(0.49) 
outer atom 0 30(0.23) 039(0.31) 0 36(0.42) 0.31(0.46) 

bond angle I deg 92.3(17.1) 159.4(1 1.3) 166.2( 75) 148 4{16.5) 
number of jumps 2 17(1.22) 3. I 7( 1.51) 4.16(1.64) 5.83(3.55) 
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Table 5.3: C haracteristics of the t rajectories for the three regions of the excita tion energy, !:J.E. 

Excitation energy /eV > 2.75 2.25- 2.75 < 2.25 

No. of t rajectories a 90 1365 783 

Averaged .::,.£' /eV 3.58 2.44 2.04 

No. of non-adiabatic 
J2.<J 8.2 4.4 jumps 

Freq. of non-adiabatic 
jumps /ps- 1 7.6 7. 7 7.0 

No. of fast fragments' 2.25 2.27 2.06 

1\inetic energy of fast 
0. 75 0.38 0.43 fra gmcnls3 /eV 

0 

N umbe r o f the trajectories, which start after th e excitation with t:J. E and tenninate 
normall y. 

b Ave raged excitat ion energy t:J.E over the trajecto ries. 

c A fast fmgment is defined as the one whi ch have mo re than 0.2 eV of kineti c energy. 
C harges on the fragments arc not co nside red here. 



Table 5.4: Characteristics of the neutral fragments for the three regions of the excitation energy. 

Excitation energy I e\· > 2.75 2.25- 2. 75 < 2.2.5 

No. of fast neutralsa 196 170 2.05 
No. of fac;t neutrals come 

152 1.35 1.15 from the ion co reb 

Kinetic energy of fast 
0.75 0.39 0.43 neutrals I e \' 

No. of fast A r+ 
fragmentsc 0.29 0.57 < 0.0 1 

0 
Tot.al number of fasL neutral fragments per one photodissociation event. 

b Number of the fast neutral fragments originating from the s ide atoms of the io n core. 
c Number of fast Ar+ fragments per one photodissociation C\'Cn t . 
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