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In the fields of mathematical physics, i.e. elasticity, hydrodynamics,
electricity, ete., there have frequently appeared simultaneous linear partial
differential equations of the forms

(F—aDjp =52 (i=1,2,9), (1)

where ;72 denotes Laplace’s operator in three dimensions, D an operator
such as 0, 9%9¢%,%93/0t, 9/8x-+9/8y-+3/dz, ete., u; a component of a vector
aquntity, and @ a scalar quantity.

So far as the present stage of my work is concerned, potential
equations of (1) have ever been obtained in the forms

(r*—aD)(r*—cD)x =0 . (2)
and (r*—aD)p = 0 provided 6=0, (3)

D' being some operator. The vector components, and the tensor compo-
nents, are given by certain operations performed on y and @. It is noted
that ¢ is in general independent of xy. From the mathematical point of
view potential functions thus found may be termed ‘solutions’ of the
original simultaneous equations (1).

The .procedure of obtaining (2) will be sufficient by taking

3 3 '

U = x——F2+ & +-——)I’21 +Dy, vov-e- 4

femr+ #(Z+ 2Dy, , (4)

“D being an operator determinable according to aD in (1); #, « being

constants. The operator p? here proposed represents :
L, @ a2 #

== + + . 5
d d9ydz  9dzox  dxdy ’ (5)

* Communicated by G. NISHIMURA.
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which has frequently been used in the series of my work. The principal
part of the right-hand side of (4) has been first obtained in the case of
statieal elasticity (cf. I), by commencing with the most generalized form |
of the so-called Maxwell’s stress-functions and the Morera’s.? The g-part:
is due, for instance, to the substitution # =0, v==0, w==0; for x and
u will satisfy the same differential equation, so that the correspondence:
between them is complete; and then we may have '

U= ,

‘ 9P . Ip : A .
=0 v = w=——_ : 6
S oz Ay (6)

and the cyclical interchanges of u, v, w and 2, y, z are also solutions
of (1). Again, the sum of these three sets of solutions is a solutlon of
(1), which is the form for @ adopted in this paper.

Several examples of potentials which have been obtained hltherto will

be shown in the following :

1. STATICAL ELASTICITY RULED BY HOOKE’S LAW.

~ In this case fundamental equations when no b(\)dy forces act can be
expressed in the forms

(i, B3 Vgt (A—20)r%, v, w) = 0, (7)
v dy 9

4 being cubical dilatation, and o Poisson’s ratio. Potential equations of
(7) have been found to be

rixy =0 and [ =0. ‘ (8)

In terms of these potentials the displacements are given by

1) The potential z of the statical elasticity was obtained by putting

Y. = [(1r3+b—+061%‘: d,,a,, (ai+aaz):lx1
C(ZJ/" +”_) 152 )“’axz (et )

ooty ) (S )

G
and further by putting
AL N N LI
= [1’-- +8 o’ +ray33_r06.v: (ay + oz )]x’ ’
which is of homogeneous quadratic form, the linear form of the substitution having re-
sulted in failure: ' : . v
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&

' 3 3 8\, 3 '
== (1— (-——+——>? +<-—-~——~ o, e, (9
(e a=a Lot reixr (=)o )

v, w being given by cyclical interchange of w, y, z. x may be divided
in two parts, one being harmonic, y,, say, and the other biharmonie
proper. The former X, is at oncz seen to be ths same as the known
displacement-potential, if we write p2x = ¢. 1t can easily be verified
that x¢, yp, 2¢ and 7%, where 7%= (m wo)2+ (y—uo)2+ (z—20)%, are all
_biharmonie, provided ¢ is harmonie.

An application of the present potentials has been made to one of
Boussinesq’s problems of simple types and its solution is in general
compatible with the shearing forces as well as the normal pressure.?

II. DYNAMICAL ELASTICITY RULED BY HOOKE'S LAW.

In this case fundamental equations ‘can take the forms

9 . p 2%
L4+ (1—=20)r%u = (1-2¢ , s . 10
o ( o)rPu ( )# Pl (10)

Potential' equations of these have been found to be

(hx =0 and [hp=0, (11)

n2 “ 2
where - =rz—_"F LA =r2—£L. 12)
. Ll A2 A Cle Yz (12)

In terms of these potentials the displacements are given by

u={—78—72+(1——.a)(-%+~i)ml}x+(§’y e, e 03)

Two kinds of funetions x, and y, which satisfy the equations []x, =0
and (Jx, =0 respectively are both included in y; and it will easily be
seen that x, corresponds to the irrotational. wave, and that x, and ¢
correspond to the two kinds of equivoluminal waves.

III. DYNAMICAL VISCO-ELASTICITY RULED. BY VOIGT’'S LAW.

In this case fundamental equationé take the forms

2) The kn0wn Boussinesq’s potential method is not compatxble with the shearing

a
forces, since it gwes the expressions Y. =z a—y-a‘f and Z, = 8 6 (cf. Love's Elasticity, p.

193), both of which reduce to zero at the phne surface of a semi-infinite solid, where z = 0.
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u 9%
A+ + 2 + (4 + pP— = y e . 14
( ,w) mrR + ( ,u),a o T e = e (14)
Potential equatlons of these have been found to be .
‘ OOk =0 and - [Dip=0, (15)
. A+24 B ) ,
here =2k D pe § = + £ 2 pt, 16
whe O =0 2. ot O = PrTi (16)

In terrhs of these potentials the displacements are given by

we =B (1 2L B Ny (1—.)<i+~—)[]x} HE=Z )

(L7 A+p BT %Y
an
IV. OSEEN’S EQUATIONS FOR ViIsCOUSs FLUID.
Fundamental equations of motion take the forms
U»—a—(u, v, W) = —l 8 , —?— i)p+ W u, v, w). " (18)
o 0% 9z .

{Cf. Lamb’s Hydrodynamies, p. 610.) Potentla] equations of these have been
found to be

re(r— 2k~a-)x =0 and (rz - 2ki)<p —0. (19
GL7 - ox
In terms of these potentials the velocities and pressure are given by
92 2) 3 _ 2 ) _ % (3 _ 2 )
U=\{— —r e ———— V= _—-—_ -+ —_———
(ax2 A axdy \oz ox/ |
7 (20)

3%y ) 9 ( 2 9 )
w=2X%X (2 -~ Te, p = p —{r*—2k——)x.
: Ba;‘az a*v ? ! #afc r 9 x

If the uniform flow U is directed to the diagonal line whose direction
cosines are all 1//3, the fundamental equations of motion will take
the forms

s [ — 1 ap 12907
Z 4+ W= -+ N (2
1/3<’d'r’ w9 p ox e @

~ which reduce to the general formulatlon (1).3’

) 3) The derivation of (19) and (20) has been done by beginning with (21). It will be
found that the transformation between (21) and (18) is effected by the following scheme:

i
] YA 1 1 1 1

“’“l_“‘—, =Vye B=v (1+»’3) r"——z(l_r’a)

x| «laya|
] . i and in this case the operator p? transforms to

y|—« 7 o P o 1 ’ &
— - 12 — — {2 S

2 l—a| 7|8 f F©"= ayaz t ovow Towoy ~ 2 (=7 +357)-
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V. UNSTEADY OSEEN’S EQUATIONS. -

When the uniform flow, U, in z-direction varies with time t,
fundamental equations will be written

—Q—(U+u,v, w) -+ U---i-)-«(u, v, 'w) = _‘L(-B 2 )p + oP¥(u, v, W). (22)
9t ox p\'dx 9 J 9z

Potential equations of these have been found to be

1 9 (] 1 3 - .
o(p? 2k—————- =0 and (”~—2k ----- o=0. (3
P T X d w a0 B
In terms of these potentials the velocities and pressure are given by
92 (9 8 @x (8 _
‘u-—-(——;’? x—U+(~———— o, v=—2 )?’,
9a? ? 9 9201 Fr
Y z X j r (24)
A%y 3 _ 9 ) 9 ( . 3 1 9 )
W= —X 4 — = p—oypt—2k——=—
owtr Now ay/”’ T M\ T T w X

If attention is conﬁned to the two potentlals of the second degree
in y, (24) can be written

1 Y j ) 8¢ 1 2%
= —— - ?P——»m Pdx—U, = - e
*= Zk EY v Y 9y 2k dy
(25)
g 1 8!1’ ;14
W= — 4= , U—~ +p—-,
3% 2k 9z =f oz P ’c)t
where r¢ =0 and (r’2 — 2k \?ﬂ_l_?)_ v=0. (26)
92 v 98 .

By means of this system of equations, I have found an approximation
“to the resistance experienced by a sphere moving unsteadily through a
viscous fluid, the result of which is 67uaU/(1—3,U'/U?), U' being the
given acceleration of the sphere. '

Appendiz. -In the case of symmetriecal strain of a solid of revolution,
stress-equations are in general written

arr , orz ¢r590_ aUA____O" arz+ 92z Lz W _ . @7
ar - oz r ar ar 9z r oz ,

U, W being some functions of r,z and ¢. If Hooke’s law is referred to,
we can obtain, after some amount of caleulation,®

4) Cf. I;ove’s Elasticity, PP. 274-276; and further introduce the integral SSUrdrdz.
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4
(1—a)ry = —(1—?o)r2jvdz— 80U, AW
09z 9z (28)
1 8% 1 ! 2 0% } 1;20s ‘
= —-= , W= 20 — o) r*— + Udz,
2;& 913z 2;1,1 ( o-) 922 X 12
- : 2 1 9 K
where and in what follows r? denotes -— , Tt

37 r ar 92

In cases of a un1f01m gravitation (pg) in the posmve z-direction
and of ‘a centrifugal force of constant angulor velocity () rotating
about the z-axis, it is sufficient to take U= W, and U = —pgz and

= —_;_ pco2?‘2 respectively. In the case of elastic vibration, we c¢an

2. 2, .
take U _ P ®u and aW:p%g ; and then we obtain

ar at? 9z

1 @2 1 N7 32 ). :

oy =0, w=—_" 99X = 4= .Jz 1— —_H} ) 29

Ul Jex | o arez 2 | (1—a)h o2 X (29)

Further if Voigt’s law is referred to, we can obtain

[
y=—-t 1+'—+f‘1 @ )azx w [2(1—0)D' ( Atp o ) }
2 i+p 0t /orez’  2p\ At ot /82

(30)

In the case of thermo-elastic equatlons ruled by Duhamel’s Iaw
similar calculation will afford :

r74X = —&VZXTCZZ’
1—0¢
2 1 2 ' ' (1)
1 (3% { 3 j .
= L% p= Llsa—ore— P o1+ a)e|Tds,
T T: A 7 LN Sl R

T being a distribution of temperature, £ Young’s modulus, ahid ¢ the
linear coefficient of thermal expansion of the solid.
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