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Introduction

The genus Armillaria (Fr.:Fr.) Staude is distributed in the northern and southern hemispheres and

includes pathogens causing root rot in a wide variety of trees and shrubs (Hood et al 1991).

For almost 100 years following the publication of the first monograph on this disease (Hartig
1874), many forest pathologists referred to the cause of this disease as a single fungal species
“Armillaria mellea”. This recognition made literature on forest pathology extremely confusing.
The fungus was considered to have a polymorphic fruit body, a wide host range and also wide
distribution. Moreover, various pathogenic roles were described: an aggressive killer of healthy
trees, a secondary pathogen of stressed trees, and a saprotroph of dead trees (Wargo and Shaw
1985).

Other fungal taxonomists, on the other hand, had described a much larger number of different
species than the number now accepted in the genus (Volk and Burdsall 1995). Because of the
difficulty with studying the fruit body morphology using traditional characters, and the extremely
variable generic concept, the taxonomy of Armillaria became complicated and confusing (Volk

and Burdsall 1995).

This controversy has been largely resolved by the introduction of the “biological species concept”
to the taxonomy of Armillaria by Ullrich and Anderson (1978) and Korhonen (1978), and by
subsequent taxonomical re-examination in the northern hemisphere. Most of the biological

species are now also equated with morphological species (Volk and Burdsall 1995).

With the new species concept, forest pathologists have begun to describe the ecology of each of

the Armillaria species (Guillaumin et al 1993, Tsopelas 1999, Keca et al 2009). At the same time,



molecular techniques have been developed for rapid and reliable identification of fungal species
(Kim et al 2006 and references therein). This type of technological innovation that can treat many
samples at a time is of great importance for ecological studies on the genus Armillaria, because
Armillaria species are often sympatric in the same forest stand (Prospero et al 2003, Keca et al

2009), and collected frequently as mycelial mats or rhizomorphs rather than as fruit bodies.

In Japan, Armillaria root disease affects many tree species (The Phytopathological Society of
Japan 2000). In particular, the damage inflicted on plantation conifers has commercial importance.
Approximately 10 different biological species of Armillaria have been reported in Japan (Ota et
al 1998b). However, very few studies have examined the host specificity of Armillaria species on
conifers. Information of ecology, including pathogenicity and host specificity, of each species is
indispensable for control of Armillaria root disease. This study aims to evaluate three molecular
markers for species identification of Armillaria, and analyze the ecology of Japanese Armillaria
species on conifers using the most effective marker. In chapter 1, studies on the species concepts
and ecology of Armillaria is reviewed. In chapter 2, species identification methods using the
internal transcribed spacer (ITS), intergenic spacer (IGS), and the translation elongation factor-1a
(EF-1a) gene are evaluated. In chapter 3, pathogenic roles of Japanese Armillaria species are

discussed based on field observation with identification using the EF-1a gene.



1 Literature review: Species concept and ecology of Armillaria

1-1 History of Armillaria taxonomy

Morphological species

In the binomial nomenclature, taxonomic position of a species is directly affected by the generic
concept. The nomenclature and taxonomy of the genus Armillaria was long surrounded by
confusion, resulting in difficulties in describing and naming individual species. Volk and Burdsall
(1995) listed at least 274 species and varieties that have been placed in the genus Armillaria (or
in Armillariella Karst., its obligate synonym), whereas approximately 40 species are accepted in
the modern description of the genus. They also listed 44 genera in which the species that were
once placed in the genera Armillaria or Armillariella should now be accommodated. On the other
hand, some authors moved many species from Armillaria to other genera. Notably, the present-
day type species of Armillaria was moved to the genera Clitocybe and Lepiota (Volk and Burdsall
1995). One reason for this confusion was the extremely variable generic concept, which arose

from the recognition of different type species (Watling et al 1982, Volk and Burdsall 1995).

The first record of Armillaria species was probably in 18th century (Watling et al 1991). However,
several taxa now assigned to Armillaria in its strict sense could not be recognized unequivocally
until the later classical authors began to describe the larger fungi. According to Watling et al
(1982) and Volk and Burdsall (1995), Fries established the name tribus Armillaria in genus
Agaricus in 1819, and later treated it in the Systema Mycologicum in 1821, but in subsequent

publications, Fries was uncertain as to which species to include, or even whether to consider



Armillaria as a tribe' (Fries 1819, 1821). In 1825, Fries abandoned the tribe Armillaria, placing
most of the species in the tribe Lepiota of Agaricus (Fries 1825). In 1838, Fries again recognized
the tribe Armillaria of Agaricus, including 24 species (Fries 1838). However, in 1854 and 1857,
Fries again abandoned the tribe Armillaria and distributed the species in the tribes Tricholoma
and Clitocybe (Fries 1854, 1857). Nevertheless, in 1874 Fries again recognized the tribe
Armillaria, including 30 species, even after several authors had accepted Armillaria as a distinct

genus (Fries 1874, Volk and Burdsall 1995).

Several taxonomists assigned the generic rank to Armillaria independently, and nomenclatural
problems and confusion have arisen out of the variously accepted validations of Armillaria at the
generic level and the interrelated typifications of the names. Watling et al (1982) argued that
Staude was the first to raise Armillaria to the generic rank in 1857, and proposed the name
"Armillaria (Fr.: Fr.) Staude," selecting Agaricus melleus Vahl:Fr. (=Armillaria mellea (Vahl: Fr.)
P. Kumm.) as the type species (Staude 1857). This proposal is now widely accepted (Watling et al

1991, Volk and Burdsall 1995).

Karsten (1881) raised the genus Armillariella, with the type species presumably being
Armillariella mellea (Vahl:Fr.) Karsten. The genus Armillariella gained wide acceptance. Today,
this genus is considered an obligate synonym of Armillaria (Watling et al 1991, Volk and
Burdsall 1995). It should be noted here that the controversy surrounding Armillaria and
Armillariella only concerned the names of the genera, not the circumscription of the generic

concepts (Volk and Burdsall 1995).

' “Tribes (tribus)” in Fries’s “Systema mycologicum (1821-1832)” are subdivisions of genera
(McNeill et al 2006).



However, according to Watling et al (1982), Singer accepted both Armillariella and Armillaria in
1936 (Singer 1936). He recognized Armillaria as a genus of ectomycorrhizal species and selected
Agaricus luteovirens Alb. & Schw. :Fr. as the type species. This species was not originally
included in Fries' tribe and this typification should not be accepted. In 1957, Ag. luteovirens was
accommodated in the genus Floccularia by Pouzar (Pouzar 1957, Watling et al 1982, Volk and
Burdsall 1995). Watling et al (1982) listed names of six species that have ever been typified to

Armillaria or Armillariella, and they rejected all but Ag. melleus.

Another typonym of Armillaria is Polymyces Earle. On the other hand, Rhizomorpha fragilis
Roth, is apparently a rhizomorph of Armillaria (Hartig 1874), although it is not possible at this
time to correlate species of Rhizomorpha with particular Armillaria species (Volk and Burdsall

1995).

By the end of the 20th century, nomenclature and typification of Armillaria had been re-arranged,
and previously reported species that should be included in Armillaria had been confirmed
(Watling et al 1982, Volk and Burdsall 1995). Volk and Burdsall (1995) made comments on the

generic characters of Armillaria as follows:

“...the modern concept of the genus Armillaria (Fr.:Fr.) Staude includes tricholomatoid
Basidiomycotina with basidiomata usually emerging from black rhizomorphs, with adnate to
decurrent gills bearing basidia with pale, nonamyloid, non-dextrinoid basidiospores. The
nutritional status is saprophytic to parasitic (wood decay or root rot fungi) and generally not

mycorrhizal.”

Further, in relation to Clitocybe, Watling et al (1982) argued that the presence of a veil (not a



ring) on the fruit body is the defining characteristic of Armillaria. The salient characteristics of

Armillaria listed by Watling et al (1991) are presented in Table 1-1.

Provided that the modern generic concept had been confirmed, species delimitation in Armillaria
still needed rearrangement. Some authors, including Romagnesi (1970, 1973), published
comprehensive taxonomic studies on Armillaria, indicating that the genus could be divided into a
larger number of species, any of which are probably native to different geographical regions or
associated with particular vegetation types and therefore with different significance for plant
pathology (Watling et al 1982). However, because of the difficulties in studying the fruit body
using traditional characters, forest pathologists had considered the pathogen of Armillaria root
disease as a single species “Armillaria mellea,” with variable characteristics (Watling et al 1991,
Volk and Burdsall 1995). Such tradition kept the species in the genus ambiguous and

controversial.

Biological species

In the 1970s, annulate Armillaria proved to be a complex of several biological species (Korhonen
1978, Ullrich and Anderson 1978). According to Mayr’s definition, biological species are “groups
of actually or potentially interbreeding natural populations, which are reproductively isolated
from other such groups” (Mayr 1982). Mayr’s idea changed the species concept from a rank in
the taxonomic hierarchy to a reproductive unit, integrating systematics under the influence of

evolutionary biology (de Queiroz 2005).

Hintikka (1973) in Europe developed a technique for determining mating types in Armillaria.

Unlike other basidiomycete fungi, a hyphal cell of Armillaria has one diploid nucleus instead of



two haploid nuclei and lacks clamp connection (Guillaumin et al 1991). Thus, the number of
nucleus per cell or formation of clamp connections cannot be used as a criterion for mating
success. Instead, Hintikka (1973) observed changes in culture morphology. Cultures of a
single-spore (haploid) isolate have a white, fluffy appearance, whereas in pairings, the
morphology changes to dark and crustose. Because the latter morphology was identical in the
tissue (diploid) isolates, Hintikka (1973) considered the change in culture morphology in pairings
as a sign of a fully compatible reaction. He found tetra-polar mating system (= bifactorial
heterothallism) by pairing single-spore isolates derived from a single fruit body. That is, alleles
on two loci determine the mating system, and no other combinations of haploid isolates with

different alleles on each of the two loci can be fully compatible.

Hintikka’s interpretation was also confirmed by Ullrich and Anderson (1978) in North America
using pairings of auxotrophic haploid isolates. Furthermore, by pairing single-spore isolates
derived from different fruit bodies, they found intersterility among strains of annulate Armillaria.
Korhonen (1978) also reported five intersterility groups (i.e., biological species) in European
annulate Armillaria. The biological species in Europe have been confirmed to correspond to
taxonomic species: their characteristics are sufficiently different to be described as distinct
species (Guillaumin et al 1991). Once the relationships between morphological traits and the
biological species were established, the delimitation of species in Armillaria was greatly
facilitated by sexual compatibility tests (Harrington and Rizzo 1999). Biological species of
Armillaria have been reported in Europe, North America, Australasia and Asia (Guillaumin et al
1991, Sung et al 1994, Ota et al 1998b, Asef et al 2003, Qin et al 2007). These species are listed

in Table 1-2.

Nine biological species of annulate Armillaria have been reported in North America (North



American Biological Species; NABS). Eight of them have been described taxonomically, and
four of the eight were conspecific with European species (Guillaumin et al 1991, Banik and
Burdsall 1998). European and North American populations belonging to A. mellea, Armillaria
gallica Marxmiiller & Romagn. and Armillaria cepistipes Velen. were highly compatible within
the species. However, only partial compatibility was observed between European and North
American isolates of Armillaria ostoyae (Romagn.) Herink (also described as Armillaria
solidipes Peck (Burdsall and Volk (2008)). Interestingly, partial compatibility at a lower level was
also observed between different allopatric intersterility groups: A. cepistipes in Europe is partially
compatible with North American Armillaria sinapina Bérubé & Dessur. and taxonomically
undescribed NABS X (Guillaumin et al 1991, Banik and Burdsall 1998). Partial compatibility
between these biological species may be associated with recent speciation or with taxa in the

process of speciation (Boidin 1986).

In addition, two species of exannulate Armillaria have been reported in Europe, and one in North
America (Guillaumin et al 1991). They should be included in biological species of Armillaria in

each region (Korhonen 1987).

In Japan, eight biological species of annulate and exannulate Armillaria have been reported from
Hokkaido in the north to Kyushu in the south (Nagasawa 1991, Ota et al 1998b, 2009), and
independently, six biological species have been reported in Hokkaido (Cha et al 1992, 1994, Cha
and Igarashi 1995). Four of them have been identified conspecific, and in total, 10 biological
species have been reported in this region. All but one have been described as taxonomic species.
The undescribed biological species is called “Nagasawa’s E (Nag. E).” Seven of 10 have proved
to be compatible with either European or North American biological species. One biological

species that is compatible with European and North American A. mellea proved to be



non-heterothallic (Ota et al 1998a) and named “Armillaria mellea subsp. nipponica Cha &
Igarashi” (Cha and Igarashi 1995), whereas the European and the North American counterpart

species is heterothallic. No counterpart species have been found for three biological species.

In Korea, four biological species have been reported to be compatible with either European or
North American biological species (Sung et al 1994). In China, 14 biological species have been
reported, six of which have shown compatibility with either European or North American
biological species (Qin et al 2008). One biological species have been identified as heterothallic A.
mellea, and another biological species that have shown a homothallic life cycle demonstrated
partial compatibility with A. mellea in China, Europe and North America. Qin et al (2008)
discussed that this homothallic species should be a distinct species, not a subspecies of A. mellea.
In Iran, six biological species have been reported, four of which have been compatible with

European biological species (Asef et al 2003).

In the southern hemisphere, five biological species in Australia and three in New Zealand have
been reported. Five Australian biological species have been described taxonomically. Two of the
New Zealander biological species have been described taxonomically, one of which is compatible
with an Australian one and considered conspecific with it. The other biological and taxonomic
species is considered distinct from Australian and the northern hemisphere species. The third
New Zealander biological species, although tentatively identified conspecific with Australian
Armillaria hinnulea Kile & Watling by fruit body morphology, proved to be incompatible with
the Australian species. The third biological species in New Zealand has been considered as a

distinct species (Kile and Watling 1988 ).

Molecular phylogenetic analysis



Hennig (1966), who developed the methods of phylogenetic systematics which provided a
rigorous framework for testing hypotheses of evolutionary relatedness (McCravy 2008),
considered species situated at the boundary of reticulate (tokogenetic) and hierarchical
(phylogenetic) systems. Although phylogenetic species concept now represents diverse set of
species concepts, it is common that they are outgrowth of a need for an operational and
process-free definition of species, as the smallest biological entities (i.e. lineages) that are

diagnosable and/or monophyletic (Mayden 1997).

Recently, DNA sequencing techniques, which enabled direct access to genotypic information
from sampled individuals, have developed phylogenetic analyses to identify individuals,
populations and species. Introduction of molecular (DNA sequence-based) phylogenetic analysis,
as well as biological species concept, added an evolutionary aspect to the taxonomic studies of
fungi. Because not rigorous frameworks, but a practical view for species concepts and the
resulting grouping are concerned, the term "phylogenetic species" is used for "DNA

sequence-based phylogenetic species" in the present text.

In identification of fungal species, phylogenetic species recognition has advantages compared to
morphological and biological species recognition. The simple morphology of fungi limits the
number of potential characters available (Harrington and Rizzo 1999). Moreover, changes in gene
sequences occur and can be recognized before changes have occurred in morphology or mating
behavior (Taylor et al 2000). In addition, biological species recognition (i.e. mating test) cannot
be applied to asexual or homothallic species, and do not function appropriately in the cases of
sexually compatible isolates that represent the geographically separated lineages (Harrington and

Rizzo 1999). Thus, phylogenetic species recognition can discover cryptic species in a

10



morphological or biological species. Candida albicans (C.P. Robin) Berkhout (Sullivan et al
1995), Botryotinia fuckeliana (de Bary) Whetzel (mitosporic state: Botrytis cinerea Pers.:Fr.)
(Giraud et al 1997), and Lentinula Earle (Hibbett et al 1995, Hibbett and Donoghue 1996)
represent cases where molecular phylogeny has helped to discover cryptic phylogenetic species in

biological and morphological species.

However, different genetic markers produce each different phylogenetic tree, and some genetic

markers can even identify individuals. Consequently, phylogenetic species recognition may split
species into smaller and arbitrary groups. Some authors proposed that concordance of more than
one gene genealogy can avoid the subjectivity of determining the limits of a species (Taylor et al

2000). This method is effective when species should be delimited only by molecular phylogeny.

Fungal molecular phylogeny has historically been based on analysis of the ribosomal RNA gene
cluster (ribosomal DNA cluster: rDNA cluster; Wu et al 1983, Specht et al 1984) and
mitochondrial DNA (Specht et al 1983). The fungal rDNA cluster, in common with other
eukaryotic organisms, is a multiply repeated cluster that comprises the genes for the small
ribosomal subunit (SSU), the large ribosomal subunit (LSU), and the gene for the 5.8S subunit.
The 5.8S subunit gene is located between the SSU and LSU, and the three genes are separated by
two internally transcribed spacers (ITS). The individual gene clusters are separated by intergenic
spacers (IGS). These regions have been extensively analyzed for molecular taxonomy (Bridge et
al 2005, Bruns and Shefferson 2004). The structural ribosomal genes, the genes for SSU, LSU
and 5.8S subunit, have been very popular for higher-level systematics, whereas ITS shows
variation around the species level. Usually multiple copies of identical sequences of rDNA are
maintained by concerted evolution (Hoelzel and Dover 1991). Multi-copy arrangement and

highly conserved priming sites of ITS make it easy to amplify from virtually all fungi, even when

11



the material is marginal in quantity or quality. The accumulation of sequence data available for
ITS has enhanced its value. For these reasons it has been an important locus for phylogenetics

and especially ecology.

However, ITS has some serious deficiencies for a robust estimate of the phylogeny. Frequent
indels (insertion and (or) deletions) of spacer regions make alignment difficult, and finally
arbitrary, as divergence increases. An additional problem is that very closely related species may
not have accumulated many differences within the ITS; thus, an analysis based only on ITS may
fail to separate all species (Bruns and Shefferson 2004). These deficiencies are also the case with

IGS (Hanna et al 2007, Harrington and Wingfield 1995, McLaughlin and Hsiang 2010).

Because of these problems, protein-coding loci have begun to be used for phylogenetic studies in
fungi (Bruns and Shefferson 2004). One of the primary advantages of protein coding sequences is
that they are easy to align. This ease of alignment is due to the fact that they are constrained by
reading frames, and thus indels are much less common. However, protein coding sequences are
not as conserved at the nucleotide level as structural RNA genes. This is because it is the
translated gene product rather than the gene that is primarily under selection. This difference is
useful at lower taxonomic levels, because it means that third-base positions and sites within
introns, which are typically under little selection, often provide informative characters among
recently diverged taxa. Genes for B-tubulin (Schardl et al 1997), elongation factor-1a (EF-1a)
(O’Donnell et al 1998), ribosomal polymerase B (Liu et al 1999), and mitochondrial ATPase 6
(Kretzer and Bruns 1999) have been frequently analyzed. Some of the protein-coding genes plus
rDNA have been frequently used to phylogenetic analysis based on genealogical concordance
(examples in “Deep hypha issue” of Mycologia 98 (6), 2007, which contains 21 phylogenetic

studies). However, in identification of samples, use of a single DNA region would be labor- and

12



resource saving.

In the late 1980’s, phylogenetic studies of Armillaria using mitochondrial and nuclear DNA were
published (Anderson et al 1987, Jahnke et al 1987, Anderson et al 1989, Smith and Anderson
1989). These works aimed to reveal phylogenetic relationships among the taxonomic and
biological species of Armillaria. Because mitochondrial DNA produced extremely high
divergence, it was judged unsuitable for phylogenetic study (Anderson et al 1987, Smith and
Anderson 1989). Anderson et al (1989) divided the European and the North American Armillaria
species into six classes based on restriction fragment length polymorphisms (RFLPs) of rDNA.
Armillaria ostoyae, Armillaria gemina Bérubé & Dessur., Armillaria borealis Marxmiiller &
Korhonen and A. mellea were situated in each different class, whereas two classes included more
than one species: Armillaria calvescens Bérubé & Dessur.-A. gallica class, and A. sinapina-
Armillaria nabsnona Volk & Burdsall-NABS X class. This scheme indicates that the rDNA
sequences of the species in the same class have high similarity. In addition, the classes of A.
ostoyae, A. gemina and A. borealis composed a larger group, indicating a phylogenetically close

relationship among the species.

Ribosomal DNA, including ITS, IGS, 5.8S and LSU have been sequenced for phylogenetic
analysis (Anderson and Stasovski 1992, Chillali et al 1998a, b, Terashima et al 1998a, Kim et al
2006, Hanna et al 2007, Coetzee et al 2000, 2001, 2005a, b, Pérez-Sierra et al 2004).
Phylogenetic relationships within and among European and North American Armillaria species
based on the ITS and IGS regions of rDNA showed roughly the similar structure to the scheme
proposed by Anderson et al (1989). Phylogenetic analysis based on these rDNA could not reliably
distinguish closely related species A. calvescens, A. gallica, A. sinapina and A. cepistipes in

North America (Kim et al 2006). Techniques using polymerase chain reaction (PCR) with

13



species-specific primers and RFLPs of the ITS and IGS regions have been developed for
identification of species (Harrington and Wingfield 1995, Schulze et al 1995, Banik et al 1996,
Volk et al 1996, Chillali et al 1998a, b, Frontz et al 1998, Terashima et al 1998b, White et al 1998,
Pérez-Sierra et al 1999, Fukuda et al 2003, Sicoli et al 2003, Lochman et al 2004a, Matsushita
and Suzuki 2005, Schnabel et al 2005, Keca et al 2006, Prodorutti et al 2009, McLaughlin and
Hsiang 2010). European isolates including those of Armillaria tabescens (Scop.) Emel and
Armillaria ectypa (Fr.) Emel, which were phylogenetically distinct and distant from other
Armillaria species, could be successfully identified by these methods (Schulze et al 1995, Chillali
et al 1998a, b, Pérez-Sierra et al 1999, Lochman et al 2004a, Keca et al 2006). However, some of
the North American isolates could not be identified because of the high sequence similarity
between A. calvescens and A. gallica (Harrington and Wingfield 1995, McLaughlin and Hsiang
2010). If there is possibility that isolates from allopatric populations are included in the samples,

interpretation of the results of these techniques will be difficult (Prodorutti et al 2009).

Phylogenetic analysis of Armillaria species in Australia and New Zealand based on rDNA-ITS
sequences revealed that isolates of Australian and New Zealander species were phylogenetically
distant from those of European and North American species except for A. hinnulea. The result
indicated that most of the Australian and New Zealander species were phylogenetically distinct,
but this technique could not separate Armillaria fumosa Kile & Watling and Armillaria pallidula

Kile & Watling (Coetzee et al 2001).

In Japan, Terashima et al (1998a) analyzed sequences of IDNA-IGS of isolates belonging to A.
ostoyae, A. gallica, Armillaria jezoensis Cha & Igarashi, A. sinapina, Armillaria singula Cha &
Igarashi and A. mellea from Hokkaido, A. cepistipes from Honshu, and those of European and

North American isolates of the genus. The phylogenetic tree obtained in the study divided isolates

14



into two major clades: one was composed of A. ostoyae, A. borealis and A. gemina, and the other
was composed of the rest of the Japanese species used in the study, A. cepistipes and A. gallica
from Europe, A. sinapina, A. gallica, A. calvescens, A. nabsnona and NABS X from North
America. In each clade, isolates belonging to the same species were distributed in different
subclades. However, isolates belonging to abovementioned species from Hokkaido were
successfully identified by a technique using RFLPs of rDNA-IGS except A. jezoensis and A.

gallica (Terashima et al 1998b).

Fukuda et al (2003) applied a technique based on the RFLPs of rDNA-IGS to identification of
Armillaria isolated from the fungal symbiont genera Wynnea Berk. & M.A. Curtis and Entoloma
(Fr.) P. Kumm. They confirmed utility of this technique with known isolates collected from
Honshu belonging to A. gallica, A. nabsnona, A. ostoyae, A. cepistipes, A. mellea and Nag. E, and
successfully identified isolates in question as A. mellea, A. cepistipes and Nag. E. Matsushita and
Suzuki (2005) also developed a technique based on the RFLPs of rDNA-IGS with three
restriction enzymes to identify isolates belonging to abovementioned six species plus A.
tabescens. With the technique, 70 Japanese isolates were successfully identified. Nevertheless,
they were cautious about applying this technique to European and North American isolates,
because considerable difference in the rDNA-IGS region between the allopatric isolates of the
same species would result in different RFLP patterns. Sekizaki et al (2008) identified Armillaria
isolates from achlorophyllous plant symbiont Gastrodia R. Br. using analysis on the sequences
and RFLPs of the ITS and IGS regions of rDNA and mating tests, and concluded that the isolates

in question were A. cepistipes.

Other DNA regions than rDNA have also been utilized for more resolved phylogenetic studies.

Piercey-Normore et al (1998) combined sequence data of four anonymous DNA regions to obtain

15



a phylogenetic tree of North American Armillaria species. Maphosa et al (2006) and Antonin et al
(2009) utilized translation EF-1a gene to discuss phylogenetic relationship among Armillaria
species. Amplified fragment length polymorphisms (AFLP) and microsatellite markers have been
applied for population-level analysis (Langrell et al 2001, Kim et al 2006, Terashima et al 2006,
Baumgartner et al 2009, Prospero et al 2010). Analysis on rDNA sequences in some cases reveals
relationships among allopatric populations within a species (Coetzee et al 2000, 2001, Hanna et al

2007).

1-2 Practical techniques for species identification

In an ecological research of Armillaria, a large number of samples, such as fruit bodies,
rhizomorphs, mycelial mats, and rotted wood require species identification. Therefore, a rapid
and reliable diagnostic method that can be applied to many diploid samples at a time is preferred.
In this respect, taxonomy based on fruit body morphology and mating tests have some

disadvantages.

Identification by fruit body morphology

Because fruit bodies are seasonal and short-lived, constant sampling is not realistic. Even if they
are available, some characters of fruit bodies are transient. For example, scales and rings may
disappear from old fruit bodies. The color and shape of fruit bodies have considerable
intraspecific variation and influenced by environmental conditions. Moreover, as mentioned
above, some of the sympatric biological species of Armillaria have been reported to be difficult

to distinguish from each other by fruit body morphology (Guillaumin et al 1991).
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Identification by mating tests

The results of a mating test does not affected by the environmental conditions of the sampling
sites or intraspecific variation of fruit body morphology. However, mating tests have two critical
disadvantages: this method is labor- and time consuming and the results are sometimes

ambiguous.

Isolation, subculturing, and mating experiments usually require more than five weeks in total.

Moreover, diploid-haploid mating tests take longer (Guillaumin et al 1991).

Ambiguous changes in colony morphology frequently hamper interpretation of results. Stock
cultures can lose mating ability after long-term storage, and this senescence may lead to
ambiguous results in mating tests. Mating tests for species identification require a set of haploid
voucher strains of a known biological species, at least from within and around the sampled area.
Because of the possibility that the tester and the unknown haploid isolates are conspecific but
incompatible in that they have identical mating alleles, at least two different testers must be used
for each species. To keep them fresh, continuous collection of haploid isolates of each species is

required.

Diploid-haploid pairings may also result in ambiguity (Guillaumin et al 1991). This can be

critical, because, as mentioned above, constant collection of fruit bodies is not realistic, and

diploid samples are much easier to obtain.

Mating reaction cannot be expected for homothallic species. In such cases, somatic

incompatibility tests have been adapted (Mohammed et al 1994, Abomo-Ndongo and Guillaumin
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1997, Ota et al 2005). When two isolates belonging to different biological species are paired, a
dark demarcation line (black line) emerges between the two mycelia, whereas no pigmented line
emerges between isolates belonging to the same biological species (Mallett and Hiratsuka 1986).
However, this phenomenon tends to be ambiguous (Abomo-Ndongo and Guillaumin 1997, Ota et

al 2005).

DNA sequence-based identification

DNA sequence-based techniques are rapid and suitable for treating a large number of samples.
Moreover, direct PCR may be applicable to crude samples without isolation and culturing
(Lochman et al 2004b). Sequence data of voucher strains required for analysis is occasionally

available from public databanks although it depends on the target sequence region.

Sequence-based phylogenetic analysis is especially useful to treat diploid isolates, because a
result of a pairing test using diploid isolates tends ambiguous and difficult to interpret. It is also

the case with homothallic species (Pérez-Sierra et al 2004, Coetzee et al 2005a, Ota et al 2005).

However, as mentioned above, phylogenetic trees differ depending on genetic markers used in the
analysis. In identification of samples, the choice of genetic markers is the key to obtain the result

that meets the purpose.

As previously mentioned, DNA sequence-based identification technique conventionally targets
conserved regions of TDNA, particularly the ITS and/or the IGS regions. However, species
identification using rDNA sequences has some difficulties, and fails to distinguish species in

some cases. According to Bruns and Shefferson (2004), the most important deficiency of rDNA
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region is frequent indels that make alignments less reliable. Heterogeneity of the sequences is
also the problem. The ITS and IGS regions are parts of tandemly repeated rDNA sequences
(Long and Dawid 1980). Usually multiple copies of identical sequences of rDNA are maintained
by concerted evolution (Hoelzel and Dover 1991). However divergent copies can coexist within
an rDNA repeat (Iragcabal and Labarére 1994) and the heterogeneity of the IGS region, which is
indicative of variable multicopies in an rDNA array, has been reported in Armillaria species
(Coetzee et al 2005b, Schnabel et al 2005, Hanna et al 2007). In such cases, direct sequencing of

PCR products is often difficult and cloning is required before sequencing.

Heterogeneity (dimorphism in this case) of the ITS and IGS regions of rDNA in diploid isolates
also has been described in Armillaria species, which suggests heterozygosity as well as the
existence of variable multicopies in an rDNA array (Banik et al 1996; Volk et al 1996; White et al
1998; Pérez-Sierra et al 1999; Kim et al 2000; Dunne et al 2002; Smith-White et al 2002;
Lochman et al 2004a, b; Schnabel et al 2005; Keca et al 2006). In addition, interspecific hybrid
RFLP and sequence patterns have been discovered in the IGS and ITS regions of rDNA in two
Armillaria species (Kim et al 2006, Antonin et al 2009, McLaughlin and Hsiang 2010). These

phenomena make it difficult to obtain clear results from rDNA analysis.

Furthermore, in some cases, very small difference is found between DNA sequences of isolates
belonging to different biological species (Anderson and Stasovski 1992, Harrington and
Wingfield 1995, Coetzee et al 2001, Antonin et al 2009, Prodorutti et al 2009, McLaughlin and
Hsiang 2010). In such cases, identification based on sequences of such DNA regions may fail to

distinguish species.

However, it is evident that different regions of DNA in fungi can show considerably different
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rates of evolution (Bruns et al 1991), and phylogenetic analysis using different gene region, or a
combination of different gene regions may give more resolved results (Piercey-Normore et al

1998, Kim et al 2006, Maphosa et al 2006, Antonin et al 2009).

Recently, EF-1a gene, which encodes an essential part of the protein translation machinery, was
shown to have high phylogenetic utility (Geiser 2004). Subsequently, this gene has been used
widely for taxonomic and phylogenetic analysis of fungal species, including Fusarium Link,
Aspergillus P. Micheli: Link and Mucorales species (Balajee et al 2009). Unlike rDNA, EF-1a is
usually present as a single copy gene in most fungal genomes (except the basal lineages with an

EF-1la-like gene instead of, or with, EF-1a gene (Baldauf 1999, James et al 2006)).

Maphosa et al (2006) used EF-1a for a phylogenetic study of Armillaria and established the
relationships between Armillaria species from the northern and southern hemispheres. Antonin et
al (2009) used this gene to elucidate the relationship between the two closely related species of

this genus: A. gallica and A. cepistipes.

Conlflicts among the species identified by the three methods

Taxonomic species identified by fruit body morphology, biological species identified by mating
tests and lineages inferred by phylogenetic analysis generally overlap but are different in some
cases. For example, fruit body morphology of some of the sympatric biological species of
Armillaria have been reported to be difficult to distinguish from each other (cf. A. cepistipes and
A. gallica in Europe, A. ostoyae and A. gemina in North America (Guillaumin et al 1991)).
Sequence-based analysis also in some cases failed to distinguish biological and morphological

species. As previously mentioned, very small difference found between rDNA-IGS sequences of
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isolates belonging to A. gallica and A. calvescens did not reflect in patterns of RFLPs (Anderson
and Stasovski 1992, Harrington and Wingfield 1995, McLaughlin and Hsiang 2010). Similarly, A.
fumosa and A. pallidula could not be separated based on rDNA-ITS sequences (Coetzee et al

2001).

Phylogeny contributes taxonomy by supporting morphological or biological species recognition
when the former is consistent with the latter. For instance, Pildain et al (2009, 2010) revealed four
lineages in South American Armillaria based on the sequences of the ITS and LSU of rDNA and
linked them to previously described taxa based on morphology. However, in the study of species
delimitation of Armillaria, the role of phylogeny is not confirmed when phylogenetic species
recognition conflicts with morphological or biological species recognition. Based on the analysis
on rDNA and physiological characteristics of the isolates, Otieno et al (2003) and Coetzee et al
(2005a) argued that the two distinct species are included in a single somatic incompatibility group
that corresponds to African Armillaria fuscipes Petch., whereas Pérez-Sierra et al (2004) withheld
to divide a somatic incompatibility group that correspond to African Armillaria heimii Pegler into
two species in that they found fertility and only little difference of fruit body morphology

between the two groups despite the result of the analysis on rDNA and AFLPs.

The primary interest of this study is fungal ecology, and for this purpose species concept should
be a means of communication among biologists. Species concept commonly recognized by those
who studies Armillaria, at least for now, would be morphological and biological species concept.
From this view point, in the next chapter, sequence data of the EF-1a gene from Japanese
Armillaria isolates are analyzed and the utility of this gene in identifying different species is

compared with those of DNA-IGS and ITS sequences.
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Species concept should serve as a hypothesis for testing modes of speciation and evolution
(Harrington and Rizzo 1999). Many agree that the process of speciation is a population-level
phenomenon. Isolates in well diverged, distinct clades within a species can be assumed to
represent populations, and ecological and physiological study of such populations may reveal

modes of speciation and evolution.

1-3 Ecological studies of Armillaria species in the northern hemisphere

Distribution, host species and pathogenic role of Armillaria species in the northern hemisphere
have been studied extensively in Europe and North America (Kile et al 1991). Because many of
the counterpart species® of Japanese Armillaria have been reported in northern hemisphere,

ecological studies of Armillaria species in that region are reviewed in this section.

Distribution

In Europe, Armillaria species distribute from Scandinavia to Greece and Spain, and reach North
Africa (Korhonen 1978, Guillaumin et al 1993, Tsopelas 1999, Aguin-Casal et al 2004,
Marxmiiller and Guillaumin 2005). Although the distribution of each Armillaria species largely
overlaps, it exhibits the following order from the north to the south: Armillaria borealis
Marxmiiller & Korhonen, A. cepistipes, A. ostoyae, A. gallica, A. mellea and A. tabescens
(Marxmiiller and Guillaumin 2005, Figure 1-1). Generally, vertical distribution is also in the same
order (Guillaumin et al 1993, Tsopelas 1999, Keca et al 2009). Armillaria ectypa is reported on

peat bogs in wet lands in high latitude (Ohenoja 2006).

* “Counterpart species” in this paper is used for allopatric populations or populations that have
different sexual systems in the same taxonomical species.
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This distribution pattern correlates the thermal property of the species. Guillaumin et al (1989)
reported that the optimum growth temperature of A. borealis, A. cepistipes and A. ostoyae was
22C and that of A. gallica and A. mellea was 25C. Rishbeth (1986) reported that the optimum
growth of A. mellea, A. ostoyae, A. gallica and A. tabescens in vitro was observed at 25C.
However, the growth rate of A. tabescens declined most gradually toward 28C, showing

thermophilic property of the species.

In North America, A. sinapina, A. ostoyae, A. gallica and A. mellea have wide distribution. As is
the case in Europe, these species are distributed roughly from the north to the south in this order.
A. sinapina is distributed widely in Canada and the northern part of USA (Anderson 1986,
Mallett 1990, Harrington and Rizzo 1993, Banik et al 1995, 1996, Frontz et al 1998, Klopfenstein
et al 2009). Armillaria ostoyae is widely distributed in Canada, northwestern, interior
south-western, north-central and north-eastern USA (Mallett 1990, Hanna et al 2007). It has been
also found in Mexico (Shaw 1989). Armillaria gallica is widely distributed in southern part of
Canada and USA (Morrison et al 1985, Motta and Korhonen 1986, Harrington and Rizzo 1993,
Banik 1995, 1996, Dumas 1988, Bruhn et al 2000, McLaughlin 2001, Baumgartner and Rizzo
2001). Armillaria mellea is reported from south eastern Canada to Deep South and California in
USA (Bérubé¢ and Dessureault 1988, Bruhn et al 2000, McLaughlin 2001, Schnabel et al 2005,
Baumgartner et al 2010). Other species have relatively restricted distribution. Armillaria
cepistipes has been reported in British Columbia and Washington (Morrison et al 1985, Banik et
al 1996). Armillaria gemina and A. calvescens have northeastern distribution in North America

(Harrington and Rizzo 1993, Proffer et al 1987, Ellis et al 2007).

In Japan, A. sinapina, A. jezoensis and A. singula have been reported in Hokkaido (Cha et al

23



1994). Armillaria ostoyae, A. cepistipes, A. nabsnona and Nag. E have been found from
Hokkaido and Honshu, but not from Kyushu (Cha et al 1992, Ota et al 1998b, 2009, Fukuda et al
2003, Sekizaki et al 2008). Armillaria gallica and A. mellea have been found from Hokkaido,
Honshu and Kyushu (Cha et al 1992, Cha and Igarashi 1995, Ota et al 1998b, 2009). Armillaria.
tabescens has been found in Honshu and Kyushu (Ota et al 1998b). In addition, A. ectypa,
homothallic and presumably non-wood-inhabiting fungus in wet land has been found from
Aomori and Oze in Honshu (Kudo and Nagasawa 2003, Ota et al 2005), and A. fuscipes,
identified by fruitbody morphology, has been reported in Amami, south of Kyushu (Ota et al
2011). Distribution of A. sinapina, A. ostoyae, A. cepistipes, A. gallica, A. mellea and A.
tabescens in Japan exhibit roughly the parallel order of the distribution of counterpart species.

Habitat of Japanese A. ectypa is also similar to that of the European counterpart.

Host Specificity and Pathogenicity

In Mediterranean Europe and California in North America, A. mellea is recognized as the
dominant Armillaria, and although it attacks both hardwoods and conifers, it is not widely
associated with disease in forest or plantation conifers: it has been considered as an aggressive
pathogen of hardwood species in orchards and gardens (Gregory et al 1991, Guillaumin et al

1993, Baumgartner and Rizzo 2001).

In Europe and North America, A. ostoyae is considered a pathogen of conifers and its virulence
varies among isolates (reviewed by Gregory et al 1991 and Hanna et al 2007). However, field
observations have suggested that this species is capable of attacking hardwoods, at least as a
secondary pathogen, and utilizing hardwoods as food base (Gregory et al 1991, Guillaumin et al

1993).
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Armillaria cepistipes and A. sinapina have been considered as weak pathogens on conifers
(Gregory et al 1991, Guillaumin et al 1993, Morrison 2004, Prospero et al 2004). In North
America, A. sinapina is found both on hardwoods and conifers (Mallett 1990, Dettman and van

der Kamp 2001).

In Europe and North America, A. gallica is categorized as a weak pathogen frequently found on
hardwood species and infrequently on conifers (Rishbeth 1982, Morrison et al 1985, Gregory

1989, Guillaumin et al 1993).

Armillaria nabsnona in North America is a weak pathogen on hardwood species and has limited

pathogenicity on young conifers (Gregory et al 1991, Volk et al 1996).

In Europe, A. tabescens has been reported to be surprisingly aggressive to some hosts including
introduced Eucalyptus and opportunist parasite on oaks. But in most cases it has been regarded as
a saprobe on the stumps of oak species (Guillaumin et al 1993). On the other hand, in North
America, a fungus referred to as A. tabescens is known to attack and kill wide range of hosts
including pine (Sinclair and Lyon 2005). Some authors are suspicious that the two allopatric
populations belong to different species (Kile et al 1994, Antonin et al 2006). Japanese isolates of
A. tabescens have been reported to be compatible with European isolates of the species, but not

compatible with North American ones (Ota et al 1988b).

Armillaria borealis has been regarded as a weak pathogen, although its association with butt rot

of Picea abies (L.) H. Karst. has been observed (Gregory et al 1991). Armillaria calvescens and A.

gemina have been found frequently from hardwoods, considered to be weak pathogens that
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attacks mostly stressed trees (Bérubé and Dessureault 1989, Rizzo and Harrington 1993). NABS
X has been found both on conifers and hardwoods, but pathogenic property of the species has not

been clear (Morrison et al 1985).

Very few studies in Japan have examined host specificity of Armillaria species. Terashita and
Sawaguchi (1991) and Matsushita (2002) reported a severe damage on pines caused by A.

ostoyae in Aomori Prefecture. Matsushita (2002) also revealed pathogenicity of A. ostoyae
isolates on pine seedlings by inoculation tests. As for A. tabescens, probably because the fungus

is identified easily by fruit body morphology, there are several reports. Fujii and Hatamoto (1974),
Kaneko and Ogawa (1998), Sato and Suzuki (2002), Hasegawa (2005) and Onozato et al (2008)

reported that A. tabescens attacked various kind of trees in gardens in Honshu and Kyushu.

Armillaria root disease on conifers in Japan

In Japan, Armillaria species are considered as pathogens of many orchard, garden and forest trees,
including conifers (The Phytopathological Society of Japan 2000). Coniferous plantations

provide most of the timber produced in Japan (Forestry Agency 2009a, b), where afforestation of
conifers after clear-cutting of indigenous broad-leaved forests has rapidly expanded since the
1950s. In parallel, reports of Armillaria root disease on conifers have increased through the 1950s
and 1960s (reviewed by Ono 1970). Current forest plantations, mostly conifer, cover
approximately 10 million ha, accounting for 40% of the total forest area in Japan (Forestry

Agency 2009a, b).

Important plantation species in Japan are Cryptomeria japonica (L. f.) D. Don, Chamaecyparis

obtusa (Sieb. et Zucc.) Endl., Pinus densiflora Sieb. et Zucc., Larix kaempferi (Lamb.) Carr.,
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Abies sachalinensis (Fr. Schmidt) Mast. and Picea jezoensis (Sieb. et Zucc.) Carr. (Forestry

Agency 2009b).

Armillaria root disease is damaging all of these species (reviewed by Matsushita 2002). In spite
of the economic importance of this disease, very few studies in Japan have examined host
specificity of Armillaria species in conifers (Terashita and Sawaguchi 1991, Matsushita 2002).
The difficulties with species identification within Armillaria have impeded such ecological

studies.

Chapter 3 focuses on Armillaria isolates obtained from conifers in Japan, and species are
identified using mating tests and the EF-1a sequence data. On the basis of the records collected,
including those of host species, host condition and geographical information, characteristics and

the potential pathogenicity of the Armillaria species on conifers are discussed.
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Table 1-1. The salient characteristics of Armillaria*.

Habit — clitocyboid with slightly sinuate, adnexed, subdecurrent or decurrent gills;
bivelangiocarpic or metavelangiocarpic development in annulate species, apparently
monovelangiocarpic development in exannulate species; solitary, gregarious, or caespitose.
Pileus — fleshy, thinning towards margin, expallant, hygrophanous or not; color variable
yellow-brown, yellow-olivaceous, ochraceous, rusty-tawny, umber, cigar brown, less commonly
buff or clay pink, sometimes ivory, pallid, or even mouse gray; surface glabrous, scurfy,
squamulose, squamules darker than ground color, sometimes restricted to disc; glabrescent as
scales are lost; dry or becoming viscid to distinctly viscid, in some species almost glutinous.
Stipe — central, fibrous-fleshy, not characteristically cartilaginous; often becoming hollow and
the outermost layers splitting and curling back to expose flesh; more or less annulate with
floccose-membranous to arachnoid veil; often arising from sheets of white mycelia or from
well-differentiated black rhizomorphs, and/ or, associated with plaques of thin, black, tough
tissue.

Lamellae — close to sub distant; moderately thick; nearly white, ivory, or cream-color at first
but frequently becoming spotted with cinnamon-buff, rusty-tawny, or sometimes, particularly
with age, with a tinge of purple or distinctly pink; sinuate; adnexed to deeply decurrent.

Flesh — of pileus pale and of stipe white at first, becoming as dark as umber or Vandyke brown
downwards and sometimes tinted red or bluish at base where colonized by pigment-producing
bacteria or nectriaceous fungi.

Spore-print — white to cream-color darkening slightly on drying, and in herbarium material.
Basidia — 4-spored, sometimes 2-spored; thin-walled; with or without a basal
clamp-connection; hyaline; smooth-walled in aqueous alkali solutions or if thick-walled [=
crassobasidia (Chandra and Watling 1983)] then appearing silvery or glassy, and/ or, becoming
ochraceous or fulvous.

Basidiospores — ellipsoid; inamyloid; hyaline, yellowish cream-color or ochraceous in aqueous
alkali solutions; weakly cyanophilic; thin to moderately thick-walled; smooth or slightly
verruculose or rugulose with broad, blunt usually prominent apiculus; lacking germ-pore or
apical differentiation (thinning or thickening).

Cheilocystidia — present or absent, often inconspicuous; variable in shape sometimes
catenulate-septate; thin-walled or becoming slightly thick-walled with age sometimes with apical
prolongation and with or without basal clamp-connection; smooth; hyaline to honey-colored in

aqueous alkali solutions.
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Table 1-1. Continued.

Pleurocystidia — absent or, if present, thin-walled; poorly differentiated and rarely visible above
the level of the basidia.

Pileipellis — an irregular, disrupted trichodermium consisting of (i) an irregular, easily destroyed
suprapellis composed of groups of fulvous or cinnamon, subparallel, ascendant, loosely to
strongly adhering hyphae intermixed with broad, frequently encrusted hyphae (which form the
scales), often with clamp-connections; ascendant hyphae becoming repent to form a rather
amorphous adnate layer; (ii) mediopellis - of parallel to subparallel hyphae forming a cutis that
may or may not gelatinize but sooner or later becomes the outermost layer; and (iii) subpellis - a
compact hyphal layer.

Stipitipellis — parallel hyphae overlain by more or less strongly developed, irregular,
filamentous velar remnants; in parts of stipe free from velar material showing development of
cylindric to elongate clavate or lageniform caulocystidia.

Pileus and stipe trama - monomitic; hyphae inamyloid, generally lacking clamp connections.
Hymenophoral trama - bilateral at first and remaining so or becoming regular with age
although always demonstrating some divergent arrangement; constitutive hyphae generally
lacking clamp-connections; inamyloid.

Vegetative growth - variable on agar media but typically reddish-brown crustose surface
mycelium; usually slow growing; with or without tufts of cinnamon aerial mycelium; with or
without reddish-brown rhizomorphs or with white to cream-color rthizomorphs embedded in the
medium with emergent reddish-brown tips; rhizomorphs branch monopodially, dichotomously, or
irregularly; vegetative mycelium often bioluminescent; cells uni- or multinucleate; nuclei
apparently diploid.

Rhizomorphs — mycelial aggregations with a melanized outer layer and pale, apical growing
tip; produced in culture and from infected lignicolous material.

Single basidiospore isolates — from heterothallic species typically slow growing; producing
white, fluffy to cottony mycelium, sometimes with areas of brown or reddish; with or without
sparse rhizomorph development; nuclei haploid.

Compatibility system - bifactorial; heterothallic with multiple alleles at the incompatibility loci;

some species possibly homothallic.

*Collectively, these characters define the genus, and variations among them define species

(Watling et al 1991).
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Figure 1-1. Distribution of Armillaria species in Europe. a) Northern limit; b) Southern limit
(Marxmuller and Guillaumin 2005).
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2 Sequence-based identification of Japanese Armillaria species using the

translation elongation factor-1a gene

2-1 Objectives

The objectives of this study are (i) to analyze the sequences of the EF-1a gene of Japanese
Armillaria isolates and (ii) to compare the usefulness for identification of species between these

sequences and the IGS and ITS sequences of rDNA.

2-2 Materials and methods

Isolates

The species studied included A. mellea, A. ostoyae, A. nabsnona, A. cepistipes, A. gallica, A.
sinapina, A. tabescens and Nag. E. A total of 49 Armillaria isolates collected in Japan were used
in this study (Table 2-1). At least three isolates of each species were chosen. Most of the isolates
were obtained from single spores. They have been deposited at the National Institute of
Agrobiological Sciences (NIAS) Genebank, Forestry and Forest Products Research Institute
(FFPRI) culture bank and/or the culture bank of the Microbial Ecology Lab, FFPRI. Voucher

specimens were deposited at the Mycological Herbarium of FFPRI (TFM).

The biological species of each isolate was identified by haploid-haploid or haploid-diploid
pairing tests (Guillaumin et al 1991). The isolates of A. singula and A. jezoensis were not
included in the present study because they were not available as field samples or in culture

collections.
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DNA extraction

Isolates were cultured on cellophane membranes placed on potato dextrose agar (PDA; Eiken
Chemical, Tokyo, Japan) plates at 25 C for 1-2 wk. Mycelia were harvested from each plate by
scratching the surface of the membranes with a sterilized micro spatula and placed in 1.5 mL
tubes. The mycelia were frozen at -80 C for more than 30 min and lyophilized. Freeze-dried

mycelia then were ground to a fine powder with a sterile pipette tip.

DNA extraction was performed as described by Kikuchi et al (2009) with some modifications.
FG1, FG2 and FG3 solutions from the fungal DNA extraction kit (Omega, Norcross, Georgia)
were used respectively for lysis, neutralization and binding. Genomic DNA was bound to a
96-well glass-fiber filter (Pall, East Hills, New York). After washing twice with 80% ethanol,
DNA was eluted with 50 mL TE buffer (10 mM Tris-HCI, 1 mM EDTA; pH 8.0) preheated at 65

C.

PCR amplification

The IGS-1 and ITS regions of rDNA were amplified respectively with PCR primer pairs
LR12R/O-1 (Harrington and Wingfield 1995) and ITS1-F/ITS4-B (a location map and
oligonucleotide sequences of these primers can be found at
http://www.biology.duke.edu/fungi/mycolab/primers.htm).

Primers EF595F and EF1160R (Maphosa et al 2006) were used for the amplification of the EF-1a
gene. PCR amplifications were carried out in 30 mL reaction mixtures containing 15 mL GoTaq

Green Master Mix (Promega, Madison, Wisconsin), 0.5 mM of each primer and 1 mL of each
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DNA extract. Cycling conditions were 94 C for 1 min, then 30 cycles at 94 C for 30 s, 53 C for
30s, and 72 C for 1 min. The PCR products were electrophoresed on 1% agarose gels, and the

bands were visualized by ethidium bromide and UV illumination.

DNA sequencing

PCR products were purified before sequencing with a MinElute 96 UF PCR purification plate
(QIAGEN, Hilden, Germany). DNA sequencing was performed with the BigDye Terminator 3.1
kit and ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City, California). To
obtain entire sequences of the amplified IGS regions two internal primers (ArmIGSinlf:
GCACTCSCRACAGCATGT and ArmIGSinlr: ACATGCTGTYGSGAGTGC) were designed
and used as sequencing primers. The sequences have been deposited in the DNA Data Bank of

Japan (DDBJ; accession numbers are AB510759—AB510900).

Phylogenetic analysis and computer-simulated RFLP

Phylogenetic analyses were performed on the Phylogeny.fr platform (Dereeper et al 2008, 2010)
and comprised the following steps. DNA sequences obtained from the isolates (Table 2-1) and the
additional sequences available in GenBank (accession numbers in Figures 2-5, 2-6, 2-7, 2-8, 2-11
and 2-12) were aligned with the Muscle 3. 7 program (Edgar 2004) in the default mode.
Neighbor-joining (NJ) phylogenetic trees were constructed with the NEIGHBOR program with
1000 bootstrap replicates (Gascuel 1997). The distances were calculated with FastDist (Elias and
Lagergren 2007). The Kimura 2- parameter (K2P) substitution model was selected for the
analysis (Kimura 1980). Maximum-likelihood (ML) trees were constructed with the PhyML 3.0

program (Guindon and Gascuel 2003). The general time-reversible model (GTR model) was used
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as the substitution model with an estimated proportion of invariant sites (0.542, 0.573 and 0.460
for the ITS and IGS regions and EF-1a gene in Japanese isolates, respectively) and four gamma
distributed rate categories to account for rate heterogeneity across sites. The gamma shape
parameter was estimated directly from the data (1.388, 98.561 and 0.751 for the ITS and IGS
regions and EF-1a gene in Japanese isolates, respectively). The reliability value of each internal
branch was assessed with the aLRT test (SH-Like) (Anisimova and Gascuel 2006). This test is
based on an approximation of the standard likelihood ratio test and is much faster to compute
than the usual bootstrap procedure. Both methods output the same trees, and branch supports
generally are highly correlated (Dereeper et al 2008). The graphical representation and editing of
the phylogenetic tree were achieved with TreeDyn (Chevenet et al 2006). Sequence alignments
were deposited at TreeBase under accession Nos. M5105-M5108 and at the following site:

http://cse.ffpri.affrc.go.jp/haseg/thesis/alignments.html

Computer-simulated RFLP were generated with the IGS region of rDNA, amplified with the
primers described above with DistinctiEnz software (http://www.bioinformatics.org/). The entire
sequences including PCR primer-sites were used in this analysis to reflect fragments that would
occur in a real RFLP. Digestion with the restriction enzymes Alul, Hae III, Hinf I and Mspl
(Terashima et al 1998b, Fukuda et al 2003, Matsushita and Suzuki 2005, Sekizaki et al 2008) was
simulated. Fragments smaller than100 bp were not considered when grouping the RFLP patterns
because these fragments were difficult to identify on real gel plates (Terashima et al 1998b,
Matsushita and Suzuki 2005). Fragments between which there was a difference of less than 10 bp

were considered identical for the same reason.

2-3 RESULTS
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PCR amplification and sequencing

For most species PCR amplification of the ITS region yielded a single strong band of about 1 kbp.
PCR products of A. mellea and A. tabescens gave slightly smaller bands on the agarose gel. Most
of amplicons of the IGS-1 region were around 1 kbp, but those from A. mellea and A. tabescens
were slightly smaller (about 0.9 kbp). The amplification of the EF-1a region yielded a strong

band of expected size (about 0.6 kbp) (Maphosa et al 2006) for all species.

PCR products were purified and directly used for sequencing. Sequence analysis revealed that the
IGS regions of five isolates (NA17, NB3, 96-8-1, ND11, 96-19-1) were heterogeneous, making it
difficult to accurately determine their DNA sequences; hence these sequences were not used for
further analysis. The amplicons of EF-1a from four A. mellea isolates (A-10, A-12, 89-07, 97-6)
also showed heterogeneity. This heterogeneity was likely to have originated from two fragments
with slightly different lengths. Apparently this difference arose because of a single small gap, and
so the sequences could be determined with manual adjustments and the longer sequence was used
for the following analysis. In total 49 ITS sequences, 44 IGS-1 sequences and 49 EF-1a gene

sequences were obtained and used.

Computer-simulated RFLP

Full-length DNA sequences of the amplified products of the IGS region were subjected to the
computer-simulated RFLP analysis (Table 2-2). Each restriction enzyme yielded at least nine
fragment patterns. A single restriction enzyme yielded one to three RFLP patterns for a species.
The isolates of three species had the same RFLP patterns by digestion with two restriction

enzymes respectively. The species to which most isolates belonged could be identified with the
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RFLP patterns generated by a combination of restriction enzymes. However five isolates of A.
cepistipes and two isolates of A. sinapina had identical RFLP patterns for all restriction enzymes

and these isolates could not be distinguished.

Phylogenetic analyses

The sequences of three DNA regions, the ITS and IGS regions and the EF-1a gene were analyzed.
The total number of characters included in the data matrix for ITS, IGS and EF-1a were
respectively 870, 922 and 463 after alignment by inserting gaps. The parameters in ML analysis

on each DNA region were indicated in Figures 2-1, 2-3, 2-5. 2-7, 2-9 and 2-11.

A similar structure was observed between the ML and NIJ trees of the ITS region of Japanese
isolates (Figures 2-1, 2-2). Each tree contained three major clades: the most distant clade was
formed by isolates of A. mellea, the second clade consisted of isolates of A. tabescens, and all the
remaining isolates that were analyzed were included in the third clade. In the ML tree, isolates of
A. ostoyae appeared at the base of the third clade, whereas they composed a distinct subclade in
the NJ tree. In both trees, isolates of A. nabsnona and Nag. E formed a distinct subclade, and the
former were situated basal to the latter. The isolates of A. gallica, together with those of A.
sinapina and A. cepistipes, were placed in a sister clade of A. nabsnona-Nag. E clade, except for
one A. sinapina isolate (05-46-1). The isolates of these three species could not be differentiated
from each other. Reliability values (aLRT values) in the ML tree and bootstrap values in the NJ

tree strongly supported A. mellea clade, A. tabescens clade and Nag. E clade (99-100%).

The ML and NJ trees of the IGS-1 region had the following points in common.(Figures 2-3,

2-4) The most distant clade consisted of isolates of A. mellea, and the second clade was formed
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by isolates of A. tabescens. Isolates of A. ostoyae, A. nabsnona and Nag. E appeared in distinct
clades of each species. Reliability values in the ML tree and bootstrap values in the NJ tree
strongly supported these clades (87-100%). In addition, isolates of A. gallica, A. cepistipes and A.
sinapina were situated together (except for an isolate of A. sinapina (05-46-1) in both trees and

that of A. gallica (NA4) in the ML tree) and could not be differentiated from each other.

Trees with ITS and IGS data of Japanese and some overseas Armillaria isolates were also
generated. In the resulting trees the overseas isolates were situated in the same or adjacent clades

of their counterpart species (Figures 2-5, 2-6, 2-7 and 2-8).

These ITS and IGS trees indicated that among the Armillaria isolates used in this study, those of
A. mellea, A. tabescens, and Nag. E formed distinct clades of each species. In some cases isolates
of A. ostoyae and A. nabsnona did not form each distinct clade and were situated basal to the
parent clades of other species’ clades, but they did not share their positions with isolates of other
species. Isolates of the remaining three species, A. gallica, A. cepistipes and A. sinapina appeared

in the same or adjacent clade and did not form distinct clades of each species.

The ML and NJ trees based on the EF-1a gene of Japanese Armillaria isolates were shown in
Figures 2-9, 2-10. In both trees, the most distant clade comprised isolates of A. tabescens. In the
MLtree, the second and the third distant clades were formed by isolates of Nag. E and A.
nabsnona, respectively. The forth clade contained two subclades. The isolates of A. gallica and A.
mellea were situated in the first subclade, and the isolates of A. mellea further formed a distinct
clade. The second subclade was separated further into three sub-subclades, the A. ostoyae clade,
A. sinapina clade and A. cepistipes clade. The latter two formed sister clades. Armillaria

tabescens, Nag. E, A. nabsnona, A. mellea, A. ostoyae, A. sinapina and A. cepistipes formed the
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clades that were strongly supported by reliability values (88—100%). In the NJ tree, the second
major clade was divided into two subclades. The first subclade was composed of A. ostoyae clade,
A. sinapina clade and A. cepistipes clade. The second subclade included A. mellea clade, A.
gallica clade, A. nabsnona clade and Nag. E clade. Each species formed a distinct clade that was

supported by high reliability values (96-100%) except for A. gallica (63%).

The ML and NIJ trees were constructed with the EF-1a gene of Japanese and foreign isolates
(Figures 2-11, 2-12). A similar topographic trend was observed in other trees (Figures 2-5, 2-6,

2-7 and 2-8.)

2-4 DISCUSSION

The sequences of the IGS and ITS regions of rDNA and the EF-1a gene in Japanese Armillaria
species were determined. This is the first comprehensive study on the phylogeny of the genus in

Japan.

In this study 49 isolates of seven described and one undescribed Armillaria species were analyzed.
Armillaria jezoensis and A. singula, which have been described from Hokkaido (Cha et al 1994),
could not be included in the analysis because no isolate or specimen was available. Extensive
collections by Ota et al (1998b, 2009) identified a number of isolates of the eight species but
could not identify the other two in Hokkaido or other areas of Japan. Thus, the eight species in
this study may be common wood inhabiting Armillaria species and potential pathogens of trees

and shrubs in Japan, and that A. jezoensis and A. singula may be rare.

The biological species Nag. E has not been described yet, but is considered to be new one on the
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basis of morphological observations (Nagasawa 1991) and mating tests with European, North
American and Japanese species except A. jezoensis and A. singula (Ota et al 1998b). In all
phylogenetic trees generated in this study, isolates of Nag. E formed an independent clade. This
strongly supports the hypothesis that Nag. E is a distinct species. Another possibility that Nag. E
is synonymous with A. jezoensis or A. singula can be eliminated by both morphological and
ecological characteristics of these species: Nag. E can be clearly differentiated morphologically
from A. jezoensis and A. singula by its pileus covered with fine scales and its stipe that has the
same or finer scales at least when young (Nagasawa 1991, Ota et al 2009). In ecological aspects
Nag. E occurs twice a year in Hokkaido (Ota et al 2009) while A. jezoensis and A. singula occur
once a year (Cha et al 1994). Furthermore, although basidiocarps of Nag. E grow most commonly
in large groups (Ota et al 2009), those of A. jezoensis and A. singula are caespitose (in groups) to

solitary and solitary, respectively(Cha et al 1994).

Our sequence analyses suggested that the EF-1a gene is more useful for species identification
than rDNA, which is commonly used for molecular identification and phylogenetic study of the
genus Armillaria in Japan. The topology of the phylogenetic trees constructed with sequence data
of the ITS and IGS regions of rDNA and the EF-1a gene was roughly similar each other. That is,
A. tabescens and A. mellea were located in the most divergent positions in genus Armillaria and

A. nabsnona, Nag. E, and A. ostoyae each formed a species-specific clade in all trees.

However, some topological differences were found among trees on a finer scale. In the trees
generated from the data of the IGS and ITS regions of rDNA, the Japanese isolates of the three
species, A. gallica, A. sinapina and A. cepistipes, were not separated. This result is consistent
with the prior work on Armillaria isolates from the northern hemisphere (Harrington and

Wingfield 1995; Chillali et al 1998a, b; Terashima et al 1998a; White et al 1998; Kim et al 2000,
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2006; Sicoli et al 2003, McLaughlin and Hsiang 2010), indicating that the resolution of the
methods for identifying species of Armillaria was insufficient. In contrast, in the trees
constructed with the EF-1a data, all species, including the above three, each formed a distinct
clade. In particular, it is important that A. cepistipes and A. sinapina were clearly separated.
Armillaria cepistipes has been reported in Europe (Korhonen 1978, Romagnesi and Marxmiiller
1983) and North America where it is called North American biological species XI (Morrison et al
1985, Banik and Burdsall 1998), and A. sinapina has been described in North America (Bérubé
and Dessureault 1988). These two species are considered to be closely related because of their
partial interfertility (Anderson et al 1980, Banik and Burdsall 1998). In the present study EF-1a
data showed that the Japanese isolates of A. cepistipes and A. sinapina belong to different groups,

demonstrating the high resolution of this method for identifying species of Japanese Armillaria.

Most of the Japanese isolates formed species-specific clades with high branch support values in
the ML and NJ tree with EF-1a data. Isolates of A. gallica was the only exception in that the
branch support of their clade in the NJ tree was less than 70% (63%). On the other hand, in the
ML tree, isolates of A. gallica did not solely form a distinct clade but were situated basal in the
parent clade of A. mellea. Thus, the two analysis can be considered to work almost equivalently

in the identification of Japanese Armillaria species using EF-1a sequences.

The IGS region of five haploid isolates could not be sequenced by a direct sequencing technique
probably because of the intragenomic variation of this region. This phenomenon may be caused

by variable multicopies in an rDNA array (Coetzee et al 2005b, Schnabel et al 2005, Hanna et al
2007). In such cases, direct sequencing of PCR products is often difficult and cloning is required

before sequencing.
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However, heterogeneity was observed in the EF-1a gene of some isolates of A. mellea. Japanese
isolates of this species are non-heterothallic (Ota et al 1998a). Therefore all isolates of this taxon
in this study are diploid and some of them could be heterozygotes. This could explain the
heterogeneity found in this study, and this observation might provide a clue to the genetics of this
non-heterothallic taxon; its life cycle has the transient haploid stage limited to the postmeiosis in

basidia (Ota et al 1998a).

By contrast one of the obvious benefits to the use of the ITS and IGS region is that these regions
are relatively easy to amplify due to large copy numbers and in many cases it is possible to
amplify these regions directly from decayed wood, mycelial fans, rhizomorph tissues and fungal
cultures without DNA extraction. Although EF-1a genes could be amplified as readily as the ITS
and IGS regions in this study, it might be a challenge to amplify the gene from samples under
aggravated conditions, such as aging herbarium specimens or crude homogenized solutions

without DNA extraction.

PCR-RFLP analysis of the IGS region has been used to identify Armillaria species (Harrington
and Wingfield 1995, Banik et al 1996, Volk et al 1996, Chillali et al 1998a, Terashima et al 1998b,
White et al 1998, Pérez-Sierra et al 1999, Kim et al 2000, Fukuda et al 2003, Coetzee et al 2005a,
b, Matsushita and Suzuki 2005, Keca et al 2006, Sekizaki et al 2008, Keca et al 2009,

McLaughlin and Hsiang 2010). In this study the RFLP patterns of the sequence data of the IGS
region could be used to distinguish most taxa of the Japanese Armillaria isolates that were
analyzed. However A. cepistipes and A. sinapina could not be distinguished from each other.
Furthermore, up to three banding patterns were obtained with each restriction enzyme for isolates
of the same species, implying that more latent patterns exist. These results suggest that the

IGS-RFLP method has a limitation on the use for the identification of the Armillaria species in
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Japan.

Phylogenetic trees constructed only with the sequence data of the EF-1a gene in Japanese
Armillaria isolates and with those of the Eurasian and North American counterparts together with
Japanese ones showed largely similar topologies each other (Figures 2-9, 2-10, 2-11 and 2-12). In
these trees, isolates of the same species were placed in the same or in adjacent clades. However,
some points remain unclear. Although European A. cepistipes (EU251392, EU251393 and
EU251396) formed a sister clade with the Japanese counterparts, North American A. cepistipes
(DQ435630) was distant from Japanese A. cepistipes and close to Japanese A. nabsnona. In
addition North American A. nabsnona (DQ435631) appeared closer to Japanese A. gallica than to
Japanese A. nabsnona in the ML tree. These inconsistencies might be caused by a simple human
error, such as incorrect species names being applied to some cultures in the database.
Nevertheless, explanation of the genetic relationships among these lineages require further

taxonomic and phylogenetic studies with a larger number of samples.

In the present study, sequence analyses were performed on the IGS and ITS regions of rDNA and
the EF-1a gene in the common wood-inhabiting Japanese Armillaria species. Analysis of the
EF-1a gene sequences successfully distinguished among all the species that were analyzed,
including the closely related species A. cepistipes and A. sinapina. Species identification in the
genus Armillaria based on the EF-1a gene is an innovative method that gives clear results by
direct sequencing, and it will be a great help in the ecological and epidemiological studies of

Armillaria, which require the identification of a number of field samples.
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Figure 2-1. The maximum-likelihood tree generated with the ITS sequences in Japanese Armillaria species.
Nodes supported by reliability values (aLRT values) greater than 70% are indicated by numeric values
above the tree branches. Branch lengths and the bar below the tree correspond to the distances measured in
terms of the proportion of nucleotide substitutions between sequences. Parameters of the analysis are shown
in the left box.
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Figure 2-2. The neighbor-joining tree generated with the ITS sequences in Japanese Armillaria species.
Nodes supported by bootstrap values greater than 70% are indicated by numeric values above the tree
branches. Branch lengths and the bar below the tree correspond to the distances measured in terms of
the proportion of nucleotide substitutions between sequences.
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Figure 2-3. The maximum-likelihood tree generated with the IGS-1 sequences in Japanese Armillaria
species. Nodes supported by reliability values (aLRT values) greater than 70% are indicated by numeric
values above the tree branches. Branch lengths and the bar below the tree correspond to the distances
measured in terms of the proportion of nucleotide substitutions between sequences. Parameters of the
analysis are shown in the right box.
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Figure 2-4. The neighbor-joining tree generated with the IGS-1 sequences in Japanese Armillaria species.
Nodes supported by bootstrap values greater than 70% are indicated by numeric values above the tree
branches. Branch lengths and the bar below the tree correspond to the distances measured in terms of the

proportion of nucleotide substitutions between sequences.
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Figure 2-5. The maximum-likelihood tree generated with the ITS sequences of Armillaria isolates from

Japan and other locations in the northern hemisphere. GenBank accession numbers of overseas isolates are
indicated in red letters. Nodes supported by reliability values (aLRT values) greater than 70% are indicated

by numeric values above the tree branches. Branch lengths and the bar below the tree correspond to the
distances measured in terms of the proportion of nucleotide substitutions between sequences. Parameters
of the analysis are shown in the right box.
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Figure 2-6. The neighbor-joining tree generated with the ITS sequences of Armillaria isolates from Japan
and other locations in the northern hemisphere. GenBank accession numbers of overseas isolates are
indicated in red letters. Nodes supported by bootstrap values greater than 70% are indicated by numeric
values above the tree branches. Branch lengths and the bar below the tree correspond to the distances
measured in terms of the proportion of nucleotide substitutions between sequences.
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Figure 2-7. The maximum-likelihood tree generated with the IGS-1 sequences of Armillaria isolates from
Japan and other locations in the northern hemisphere. GenBank accession numbers of overseas isolates are
indicated in red letters. Nodes supported by reliability values (aLRT values) greater than 70% are indicated
by numeric values above the tree branches. Branch lengths and the bar below the tree correspond to the
distances measured in terms of the proportion of nucleotide substitutions between sequences. Parameters
of the analysis are shown in the right box.
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Figure 2-8. The neighbor-joining tree generated with the IGS-1 sequences of Armillaria isolates from Japan
and other locations in the northern hemisphere. GenBank accession numbers of overseas isolates are indicated
in red letters. Nodes supported by bootstrap values greater than 70% are indicated by numeric values above
the tree branches. Branch lengths and the bar below the tree correspond to the distances measured in terms of

the proportion of nucleotide substitutions between sequences.
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Figure 2-9. The maximum-likelihood tree generated with the EF-1a sequences in Japanese Armillaria
species. Nodes supported by reliability values (aLRT values) greater than 70% are indicated by numeric
values above the tree branches. Branch lengths and the bar below the tree correspond to the distances
measured in terms of the proportion of nucleotide substitutions between sequences. Parameters of the
analysis are shown in the left box.
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Figure 2-10. The neighbor-joining tree generated with the EF-1a sequences in Japanese Armillaria species.
Nodes supported by bootstrap values greater than 70% are indicated by numeric values above the tree
branches. Branch lengths and the bar below the tree correspond to the distances measured in terms of the
proportion of nucleotide substitutions between sequences.
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Figure 2-11. The maximum-likelihood tree generated with the EF-1a sequences of Armillaria isolates from
Japan and other locations in the northern hemisphere. GenBank accession numbers of overseas isolates are
indicated in red letters. The Schizophyllum commune sequence was used as an outgroup sequence. Nodes
supported by reliability values (aLRT values) greater than 70% are indicated by numeric values above the
tree branches. Branch lengths and the bar below the tree correspond to the distances measured in terms of
the proportion of nucleotide substitutions between sequences. Parameters of the analysis are shown in the
left box.
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Figure 2-12. The neighbor-joining tree generated with the EF-1a sequences of Armillaria isolates from
Japan and other locations in the northern hemisphere. GenBank accession numbers of overseas isolates are
indicated in red letters. The Schizophyllum commune sequence was used as an outgroup sequence. Nodes
supported by bootstrap values greater than 70% are indicated by numeric values above the tree branches.

Branch lengths and the bar below the tree correspond to the distances measured in terms of the proportion
of nucleotide substitutions between sequences.
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3 Ecology of Armillaria species on conifers in Japan

3-1 Objectives

The objective of this study is to describe ecology of each Armillaria species in Japan using EF-1a
for species identification. On the basis of the records on collection, including host species, host
condition and geographical information, the ecological characteristics of each Armillaria species

and its potential pathogenicity to conifers are discussed.

3-2 Materials and methods

Fungal collection

Armillaria isolates were collected using information on the occurrence of Armillaria root disease
provided by local researchers and by surveys in apparently healthy forests. Collections were
carried out over a 30-year period from 1976 to 2007. Isolates studied included stock cultures in
the Laboratory of Forest Plants and Forest Health in the Department of Forest Science, the
University of Tokyo, the Forest Pathology Laboratory and Microbial Ecology Laboratory in
FFPRI. Fifty-nine collection sites were distributed from Hokkaido in the north to Kyushu in the

south and covered a variety of artificial and natural conifer stands in Japan.

Host records and isolate pathogenicity

Isolate pathogenicities were categorized into classes developed by Gregory (1989), Guillaumin et

al (1993) and Keca et al (2009), with some modifications:
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(a) Isolates from mycelium or a fruit body in/on a living tree showing no obvious predisposing
factor for infection.

(a’) Isolates from mycelium or a fruit body in/on a tree that had been killed in the previous year.
(b) Isolates from mycelium or a fruit body in/on a living tree stressed by some factor other than
Armillaria.

(c) Isolates from mycelium or a fruit body in/on decayed heart wood of a living tree showing no
symptoms.

(d) Isolates from mycelium, rhizomorph or a fruit body on a tree or a stump that had been killed
more than 1 year ago, on a wind-thrown tree or on wood debris.

Case (a) corresponds to Class 1a in Guillaumin et al (1993), and case (a’) is regarded as a disease
progression of (a). In these cases, the isolates were classified as primary parasites. Case (b)
corresponds to Guillaumin’s Class 1b, and isolates were classified as opportunists. Case (c)

corresponds to Guillaumin’s Class 1c. Isolates in cases (c¢) and (d) were classified as saprotrophs.

Fungal isolation

Cultures were obtained from mycelial mats, decayed wood, rhizomorphs and fruit bodies.
Half-strength potato dextrose agar medium [half-strength PDA: half concentration of PDA (Eiken,
Tokyo, Japan) plus 0.75% agar (Wako, Osaka, Japan); final concentrations of potato extract,
dextrose and agar were 0.2, 1.0 and 1.5%, respectively] containing 0.03% streptomycin sulphate
(Meiji Seika, Tokyo, Japan) was used for tissue isolations. Rhizomorphs were cleaned of

adhering soil with tap water and immersed first in 70% ethanol and then in 1% NaOCl for ca. 1
min and finally rinsed in sterilized water before plating on medium. Approximately 1-cm-long
fragments of a fruit body, decayed wood or mycelial mat in infected phloem were excised from

the freshly cut surface and placed on the medium.
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Spores were allowed to germinate on 1.5% water agar medium containing 0.03% of streptomycin
sulphate, and single spores were transferred to a half-strength PDA plate without antibiotics under

a microscope.

Cultures were incubated at room temperature for 2 weeks, and emerging hyphae were transferred
to glass tubes containing half-strength PDA without antibiotics and stored at 10 C. The isolates
examined were deposited in the Microbial Ecology Laboratory, FFPRI, NIAS Genebank and the

FFPRI culture bank.

Identification of Armillaria species

The biological species of each isolate was determined using haploid—haploid or haploid—diploid
mating tests (Guillaumin et al 1991) with tester strains of the eight Japanese Armillaria species.
The EF-1a gene of each isolate was sequenced, and phylogenetic analysis was performed as
described in chapter 2. The sequences were deposited in the DNA Data Bank of Japan (DDBJ; for
accession numbers, see Table 3-1). Isolates previously characterized by both mating tests and
phylogenetic analysis based on EF-1a were also used as reference isolates for the eight Japanese

Armillaria species (identified by accession numbers in Figure 3-1, 3-2).

Construction of collection site map

Collection sites of Armillaria isolates were plotted on the Kira’s s warmth index (WI) map

to show the thermal preference for each Armillaria species in Japan. W1 is defined as the annual

sum of positive differences between monthly mean temperature and +5 C (Kira 1949, 1977,
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1991). WI was calculated using 30-year monthly mean temperatures for the period 1971-2000 for
each 1 km x 1 km grid of land surface on the Japanese islands (Japan Meteorological Agency

2002) and plotted on a map.

Warmth index is based on the idea that the sequence of forest formations follows a thermal
gradient under sufficiently moist climates (Kira 1991). WI represents the total amount of heat
available for the growth of plants. Following correlations between WI and forest types have been
reported: 180-240 for subtropical evergreen forest, 85-180 for warm-temperate evergreen forest,
45-85 for cool-temperate deciduous forest and 15—45 for subarctic/subalpine coniferous forest
(Kira 1991). WI has been used with success for studies of temperate and subtropical vegetation in
East Asia (Kira 1977, 1991, Itow 1988), Mediterranean-type vegetation in Europe and Australia
(Federici and Pignatti 1991) and boreal vegetation in the Russian Far East (Grishin 1995). It has
also been adapted to modeling effects of climatic change on vegetation (Matsui et al 2004,

Casalegno et al 2010).

3-3 Results and discussion

Identification of the Armillaria isolates

In total, 65 Armillaria isolates were collected from the following 19 conifers in Japan:
Cryptomeria. japonica (C. japonica), Chamaecyparis. obtusa (Ch. obtusa), Pinus densiflora (P.
densiflora), Larix kaempferi (L. kaempferi), Abies sachalinensis (Ab. sachalinensis), Picea
jezoensis (Pi. jezoensis), Pinus palstlis Mill., Pinus thunbergii Parl., Abies firma Sieb. et Zucc.,
Abies homolepis Sieb. et Zucc., Picea abies (L.) Karst., Picea glehnii (Fr. Schmidt) Mast., Tsuga

diversifolia (Maxim.) Mast. (T. diversifolia), Picea koyamae Shiras., Abies mariesii Mast., Pinus
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sylvestris L., Picea polita (Sieb. et Zucc.) Carr., Abies veitchii Lindl. and Cedrus deodara (Roxb.)
G. Don ex Loudon (Ce. deodara)(Table 3-1). Isolates were identified to species level using
mating tests and DNA sequence data (Table 3-1). Most of the isolates were identified with the
mating tests, although some were difficult to identify because of ambiguous results. Ambiguity in
mating tests was more common in haploid—diploid pairings, making interpretations unreliable.
Sequence analysis of the EF-1a gene generated a phylogenetic tree with eight clades that were
supported by high reliability values in the ML tree (Figure 3-1) and bootstrap values in the NJ
tree (Figure 3-2). Each reference isolate of the eight Japanese Armillaria species was allocated to
one of the eight clades. Thus, the eight clades corresponded to eight Japanese Armillaria species.

Every isolate, including the reference isolates, fell into one of the eight clades.

Analysis of the EF-1a region is a powerful tool for identification of Japanese Armillaria species.

In this study, this technique successfully identified all of the isolates, indicating its high utility.

Distribution and host range

Seven Armillaria species were isolated from conifers (Table 3-1); their collection sites are shown
in Figure 3-3. Armillaria ostoyae was collected most frequently (22 isolates), followed by A.
cepistipes and A. mellea (14 isolates each), and A. sinapina (11 isolates) (Figure 3-4). These four

species are likely the major Armillaria species occurring on conifers in Japan.

Isolates of A. mellea were collected from Hokkaido in the north to Kyushu in the south (Figure
3-3), and the WI values of the collection sites ranged from 55-145 (Figure 3-5), showing that this
species has more southern distribution and is relatively thermophilic among Japanese Armillaria

species in this study. Armillaria mellea is recognized as the dominant Armillaria in
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Mediterranean region in Europe and California in North America. These are the southernmost
areas in each regions and this species is regarded as more thermophilic species (Guillaumin et al

1993, Baumgartner and Rizzo 2001, Marxmiiller and Guillaumin 2005,).

The WI values of A. cepistipes and A. ostoyae collection sites were between 25 and 115 and
between 10 and 100, respectively (Figures 3-3, 3-5). Hence, these species have similar thermal
preferences and are less thermophilic than A. mellea. In Europe, A. ostoyae and A. cepistipes tend
to occur at higher latitude or altitude than A. mellea (Tsopelas 1999, Marxmiiller and Guillaumin
2005, Keca et al 2009), indicating a very similar order of thermal preferences in these three

species between Europe and Japan.

Collection sites of A. sinapina were in high latitude (Hokkaido) or altitude (Honshu) (Figure 3-3).
This is the first report of A. sinapina from areas south of Hokkaido in Japan. Collection sites of A.
sinapina were in cool regions (WI: 10-70, Figure 3-5). Similarly, in North America, A. sinapina
has been reported frequently from the northern part of the distribution area of Armillaria,
including boreal and subalpine forests in Canada (Morrison et al 1985, Dumas 1988, Shaw and
Loopstra 1988, Mallett 1990, Blodgett and Worrall 1992, Harrington and Rizzo 1993, Banik et al
1995, 1996, McLaughlin 2001). Also in China, A. sinapina was reported from the northern part of
the collection sites of the genus (Qin et al 2007). This information suggests that A. sinapina is

less thermophilic in the genus.

The hosts of Armillaria species in this study are shown in Table 3-1and Figure 3-6. Armillaria
mellea was frequently collected from Ch. obtusa, which was an almost exclusive substrate for
this species in the present result (Figure 3-6). Collection sites of A. mellea indicated a species

preference for relatively high temperatures (WI: 55-145, Figures 3-2, 3-5). This preference may
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provide opportunities for A. mellea to encounter Ch. obtusa, which is relatively thermophilic in
relation to other conifers listed in Table 3-1: WI of Ch. obtusa distribution ranges from 80 to 140
(Kira 1949, Figure 3-7). However, another relatively thermophilic tree and the most popular
plantation conifer, C. japonica, was not identified as a host for A. mellea: WI of C. japonica
distribution ranges from 75 to 140 (Kira 1949, Figure 3-7). Thus, additional factors likely
determine the host preference of A. mellea. In contrast, A. mellea is frequently isolated from C.
japonica in the Azores Islands of Portugal, where three Armillaria species, A. mellea, A. gallica
and A. tabescens were detected and A. mellea was the exclusive host of C. japonica (Braganca et
al 2004). In other regions of Europe, various species in the Pinaceae can serve as hosts, although
members of the Cupressaceae are more frequently attacked by A. mellea than members of the
Pinaceae (Guillaumin et al 1993). Further study is needed to determine the mechanisms of the

host preference of Japanese A. mellea.

Armillaria cepistipes and A. ostoyae were collected from many conifer species, indicating that
these two species can utilize a variety of coniferous substrates (Table 3-1, Figure 3-6). Armillaria
ostoyae was frequently collected from members of the Pinaceae. This is also the case in Europe
(Guillaumin et al 1993, Tsopelas 1999, Zétciak 2007, Keca et al 2009), North America (Anderson
and Ullrich 1979, Dumas 1988, Blodgett and Worrall 1992, Banik et al 1995, 1996) and Korea
(Sung et al 1991). Armillaria cepistipes was collected frequently from C. japonica. In Europe, A.
cepistipes has been found in association with members of the Pinaceae (Korhonen 1978, Gregory
1989, Tsopelas 1999, Prospero et al 2003, Bendel et al 2006, Keca et al 2009) and also with a
juniper (Keca et al 2009). Substrate preference of Japanese A. cepistipes indicates its adaptation

to Japanese vegetation.

Armillaria sinapina was collected primarily from Ab. veitchii and Ab. mariesii and also from L.
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kaempferi and Ab. sachalinensis (Table 3-1, Figure 3-6). The forests of these four host trees were
located in the cool-temperate zone: WI of each distribution ranges from 15 to 45 for Ab. veitchii
and Ab. mariesii, from 15 to 75 for L. kaempferi and from 15 to 60 for Ab. sachalinensis (Kira
1949, Figure 3-7), and Ab. veitchii and Ab. mariesii are subalpine forest species in Honshu.
Armillaria sinapina is considered to prefer subalpine Abies species as coniferous substrate. In
North America, the counterpart of this species has been found on boreal and coastal forest species
of Abies, Picea, Pinus and Tsuga (Mallett 1990, Banik et al 1996). It indicates that the species in
North America can utilize various genera as its substrate, and host preference of Japanese species

needs further study, for it may utilize other genera in boreal and highland forests.

Only two isolates of Nag. E, one of A. nabsnona and one of A. tabescens were collected from
conifers. This is the first collection of A. nabsnona from a conifer in Japan. No isolates of A.
gallica were collected in this study. The main substrate of these four species is hardwood (Ota et
al 1998b, 2009), which explains the infrequency of collections from conifers in this study. The
counterpart species of A. habsnona in North America and of A. tabescens in Europe are also
reported to be hardwood-inhabiting species (Guillaumin et al 1993, Volk et al 1996, Antonin

et al 2006).

Pathogenicity

Classes of pathogenicity associated with Armillaria species are shown in Table 3-2. Armillaria
mellea was frequently recorded as a primary parasite, and 10 of 14 records in this pathogenicity
category were from plantation-grown Ch. obtusa (Tables 3-1, 3-2). These findings are consistent
with inoculation tests showing high virulence of A. mellea on Ch. obtusa (Hasegawa 1998). In

Mediterranean Europe and California in North America, A. mellea is recognized as the dominant
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Armillaria, and although it attacks both hardwoods and conifers, it is not widely associated with
disease on conifers in forest and plantation (Guillaumin et al 1993, Baumgartner and Rizzo 2001).
One reason for the high incidence of A. mellea-associated disease in Japan may be that

plantations of the susceptible species Ch. obtusa are distributed consistently with the fungus. As
in Europe and North America, A. mellea is also regarded as an important pathogen of hardwood

species, especially orchard trees in Japan (Kishi 1998).

Armillaria ostoyae was frequently recorded as a primary parasite on conifers, including Ch.
obtusa and P. densiflora (Tables 3-1, 3-2, Figure 3-6). Terashita and Sawaguchi (1991) reported
that A. ostoyae was a causal pathogen in severely damaged plantations of P. densiflora. By
contrast, six A. ostoyae isolates were recorded as saprotrophs in the present study. Collection of
saprotrophic phase does not always mean that the fungus is less pathogenic, but the ratio of
saprotrophic collection in relation to the parasitic collection suggests its pathogenicity. In
previous inoculation tests, A. ostoyae exhibited moderate to high virulence on Ch. obtusa
(Hasegawa 1998) and P. densiflora (Inagawa et al 2002, Matsushita 2002), which is consistent
with the findings in the present study. In Europe and North America, A. ostoyae is also considered
a pathogen of conifers, although its virulence varies among isolates (reviewed by Gregory et al

1991 and Hanna et al 2007).

Two isolates of A. cepistipes were recorded as primary parasites, indicating that this fungus is
somewhat pathogenic to conifers (Table 3-2). However, it was also collected once as an
opportunist and nine times as a saprotroph. Five of nine isolates were collected as saprotrophs
from thinning stumps in plantations. Hence, Japanese A. cepistipes is saprotrophic on conifers in
many situations, but it can be occasionally pathogenic. Field observations (Gregory et al 1991,

Guillaumin et al 1993) and inoculation tests (Morrison 2004, Prospero et al 2004) showed that
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the counterpart of this species in Europe and North America is a weak pathogen as a whole.

Armillaria sinapina was not recorded as a primary parasite or an opportunist, indicating that this
fungus is non-pathogenic on conifers (Table 3-2). Armillaria sinapina is considered adapted to
subalpine natural forests in Japan, within which it causes few visible destructive effects. In North
America, A. sinapina is regarded as a weak pathogen from field observations and inoculation
tests suggested that it has low virulence towards some conifers, but it was more virulent than A.
ostoyae in one exceptional case (Gregory et al 1991). In the present study, one isolate was found
as a saprotroph on a living tree (without symptoms) suggesting that A. sinapina is able to enter

living tissue. Pathogenicity towards Japanese conifers has yet to be determined.

One isolate of A. tabescens was collected as a primary parasite from a Ce. deodara planted in a
garden (Tables 3-1, 3-2). This fact indicates that the fungus can make damage on coniferous
species. Since A. tabescens was reported as a pathogen of peach orchards in 1974 by Fujii and
Hatamoto, reports of disease caused by this fungus have been increasing in managed conditions,
including gardens and boulevards in Japan (Kaneko and Ogawa 1998, Sato and Suzuki 2002,
Hasegawa 2005, Onozato et al 2008). The conifers Podocarpus macrophyllus var. maki Sieb.
(Sato and Suzuki 2002) and Cunninghamia lanceolata (Lamb.) Hook. (Kaneko and Ogawa 1998)
have been killed by A. tabescens. Fruit bodies of A. tabescens were previously observed on the
living trunk of C. japonica (Sugiyama 1992). Inoculation tests with A. tabescens caused infection
on a P. densiflora seedling and mortality of a flowering cherry tree (Inagawa and Suzuki 2000,
Onozato et al 2009). These reports indicate that this fungus is a pathogen of both hardwoods and
conifers. In Europe, A. tabescens has been reported to be surprisingly aggressive to some hosts
including introduced Eucalyptus, but in most cases it has been regarded as a saprobe on the

stumps of oak species (Guillaumin et al 1993). In North America, a fungus referred to as A.
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tabescens is known to attack and kill wide range of hosts including pine (Sinclair and Lyon 2005).
Some authors are suspicious that the two allopatric populations belong to different species (Kile

et al 1994, Antonin et al 2006). Although Japanese isolates of A. tabescens have been reported to
be compatible with European isolates of the species, but not compatible with North American
ones (Ota et al 1988b), pathogenic property of Japanese A. tabescens is more close to that of
North American population. Further study is needed to clarify the relationships among these
populations, with taxonomic analysis and inoculation tests to clarify pathogenicity on different

hosts.

Nagasawa’s E and A. nabsnona were collected from old stumps and are considered to be
saprotrophs, although this designation is based on a few isolates (Table 3-2). Armillaria nabsnona
in North America is a weak pathogen on hardwood species and has limited pathogenicity on

young conifers (Gregory et al 1991), and it is consistent with the result in the present study.

Armillaria gallica was not collected from conifers in this study. However, A. gallica was
previously reported on P. densiflora and Ab. sachalinensis in Japan (Ota et al 1998b). These
records do not include information on the host status; pathogenicity of A. gallica on conifers in
Japan remains unclear. In Europe and North America, this species is categorized as a weak
pathogen frequently found on hardwood species and infrequently on conifers (Rishbeth 1982,

Morrison et al 1985, Gregory 1989, Guillaumin et al 1993).
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Table 3-1. Isolates of Armillaria collected from conifers in Japan.

. Speci'es Mating L L Class Type . Gentnk

Isolate no. determined Test® Derivation Host species of . of ) Location  accession
by EF-1a host® forest number

AS-1 A. mellea + NR Ch. obtusa a p Oita AB539508
AS-2 A. mellea + NR Ch. obtusa a p Nagasaki  AB539506
A-10* A. mellea + m P. palstlis NR p Tokyo AB510800
A-12%* A. mellea + w Ch. obtusa a' p Wakayama AB510801
89-07* A. mellea + m Ch. obtusa a' p Miyazaki  AB510796
92-41 A. mellea + m Ch. obtusa a p Yamanashi AB539510
93-43 A. mellea + f Ch. obtusa d p Tokyo AB539511
94-7* A. mellea NT f Ch. obtusa a' p Tokyo AB510799
94-10-1* A. mellea NT s P. thunbergii d p Kanagawa AB510798
94-65 A. mellea f Ch. obtusa a' p Iwate ABS539513
94-68* A. mellea m Ch. obtusa a' p Iwate AB510803
97-29 A. mellea NT f Ch. obtusa a' p Fukushima ABS539512
2003-73 A. mellea - m Ch. obtusa a' p Toyama AB539507
05-100-2 A. mellea NT ] conifer NR p Hokkaido  AB539509
A-14 A. cepistipes - m Pi. koyamae NR p Tokyo AB539499
90-10-12*  A. cepistipes + ] Pi. abies d p Niigata AB510790
92-19 A. cepistipes + f Ch. obtusa d p Gunma AB539498
94-31 A. cepistipes + f C. japonica d p Yamagata AB539497
94-33-01*  A. cepistipes + s C. japonica d p Yamagata AB510789
94-39-04*  A. cepistipes + s C. japonica d p Yamagata AB510786
01-1 A. cepistipes - f Ab. mariesii NR n Ishikawa  ABS539500
01-11 A. cepistipes + f C. japonica d p Ishikawa  AB539505
2000-49 A. cepistipes - m Ab. firma d n Shizuoka  AB539504
2000-51 A. cepistipes - r P. sylvestris a' p Hokkaido  AB539502
2002-01 A. cepistipes r Pi. polita d n Yamanashi ABS539503
2002-02 A. cepistipes r Pi. polita a' n Yamanashi AB539501
2002-04 A. cepistipes - r C. japonica p Toyama AB539496
2003-01 A. cepistipes - w C. japonica d p Toyama AB539495
88-01-19*  A. ostoyae + s P. densiflora NR p Aomori AB510784
89-03B-09* A. ostoyae + ] Ab. sachalinensis d p Hokkaido  AB510780
90-03 A. ostoyae + m Ch. obtusa a' p Saitama AB539471
91-01-10*  A. ostoyae + s Ab. sachalinensis d p Hokkaido AB510785
92-37 A. ostoyae + m Ch. obtusa d p Yamanashi AB539467
93-33 A. ostoyae + m P. densiflora a' p Aomori AB539466
94-8-2* A. ostoyae + s P. densiflora NR p Aomori AB510783
94-72 A. ostoyae + f Ch. obtusa ' p Iwate AB539469
94-75-07*  A. ostoyae + s P. densiflora d p Iwate AB510779
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Table 3-1. Continued.

. Speci'es Mating L L Class Type . Gentnk

Isolate no. determined Test® Derivation Host species of . of ) Location  accession
by EF-1a host® forest number

96-25 A. ostoyae f Ab. sachalinensis NR p Hokkaido  AB539464
96-28a-1 A. ostoyae s Ab. sachalinensis NR NR  Hokkaido AB539468
96-40 A. ostoyae f Ab. firma NR n Kanagawa AB539478
97-9 A. ostoyae - f Pi. jezoensis NR NR  Hokkaido AB539465
00-10 A. ostoyae + f A. homolepis d n Mie AB539463
02-9 A. ostoyae + f L. kaempferi NR Nagano AB539474
02-12 A. ostoyae + f L. kaempferi NR Ishikawa ~ AB539477
2002-50-01  A. ostoyae - s Pi. abies a Niigata AB539473
04-7 A. ostoyae f conifer NR NR  Hokkaido AB539472
05-18 A. ostoyae f Ab. sachalinensis NR n Hokkaido  AB539476
05-82 A. ostoyae NT f Ab. sachalinensis NR p Hokkaido  AB539479
05-101 A. ostoyae + s Pi. glehnii NR p Hokkaido  AB539475
2007-11 A. ostoyae NT f T. diversifolia c n Gunma AB539470
89-09 A. sinapina + r Ab. veitchii d n Nagano AB539486
89-10 A. sinapina + r Ab. veitchii d n Nagano AB539487
90-02 A. sinapina + r L. kaempferi d p Saitama AB539488
90-07 A. sinapina + f Ab. veitchii d n Nagano AB539492
92-02 A. sinapina + r Ab. veitchii d n Yamanashi AB539484
93-48 A. sinapina + r L. kaempferi d p Tochigi AB539489
96-05-08 A. sinapina NT s Ab. veitchii d n Gunma AB539490
96-21 A. sinapina + f Ab. mariesii c n Iwate AB539491
2002-18 A. sinapina NT f Ab. veitchii n Gunma AB539485
2002-65 A. sinapina r Ab. veitchii Yamanashi AB539493
05-21 A. sinapina f Pi. jezoensis NR n Hokkaido = AB539494
94-20 A. nabsnona f C. japonica d p Iwate AB539482
95-28 Nag. E NT f L. kaempferi d p Iwate AB539481
2002-49 Nag. E NT f Pi. abies d p Niigata AB539480
02-26 A. tabescens + m Ce. deodara a' p Ibaraki AB539514

* Isolates with asterisks were analyzed by HASEGAWA et al. (2010) and function here as reference isolates

in the phylogenic tree of the translation elongation factor-1a (EF-1a) (Figure 3-1).

b +, matches EF-1a result; -, ambiguous; NT, not tested

¢ f, fruit-body; m, mycelial mat; r, thizomorph; s, single spore; w, decayed wood; NR, no record.

4 Host species: Ab. firma = Abies firma; Ab. homolepis = Abies homolepis; Ab. mariesii = Abies

mariesii; Ab. sachalinensis = Abies sachalinensis; Ab. veitchii = Abies veitchii; Ce. deodara = Cedrus

deodara; Ch. obtusa = Chamaecyparis obtusa; C. japonica = Cryptomeria japonica; L. kaempferi =

Larix kaempferi; Pi. abies = Picea abies; Pi. glehnii = Picea glehnii; Pi. jezoensis = Picea jezoensis; Pi.
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Table 3-1. Continued.
koyamae = Picea koyamae; Pi. polita = Picea polita; P. densiflora = Pinus densiflora; P. palstlis = Pinus
palstlis; P. sylvestris = Pinus sylvestris; P. thunbergii = Pinus thunbergii; T. diversifolia = Tsuga
diversifolia.
¢ Explanation for each class is given in Material and Methods; NR, no record.
', natural; p, planted; NR, no record.
Pinus thunbergii is extensively planted along seashores as a windbreaker, whereas P. densiflora in
mountains for timber production.
Abies firma and Ab. homolepis are components of natural coniferous forests in areas warmer than the
distribution ranges of Ab. veitchii, Ab. mariesii and T. diversifolia.
Abies sachalinensis, Pi. jezoensis and Pi. glehnii are components of natural coniferous forests in
Hokkaido, and Ab. sachalinensis is also planted regularly for silviculture.
Picea koyamae and Pi. polita are rare species occurring in limited areas on Shikoku and Honshu.
Pinus palstlis, P. sylvestris, Ce. deodara and Pi. abies are exotic species rarely used for silvicultural
purpose. Ce. deodara is frequently planted in gardens.
(Descriptions of distributions of conifers based on the study by HAYASHI (1960).)
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Table 3-2. Records of Armillaria classed according to condition of host

. Category

Species a a’ b c d NR total
A. mellea 3 7 0 0 2 2 14
A. cepistipes 0 2 1 0 9 2 14
A. ostoyae 1 3 0 1 5 12 22
A. sinapina 0 0 0 1 9 1 11
A. nabsnona 0 0 0 0 1 0 1
Nagasawa’s E 0 0 0 0 2 0 2
A. tabescens 0 1 0 0 0 0 1

(a) Isolates from mycelium or a fruit-body in/on a living tree showing no obvious predisposing factor for
infection.

(@) Isolates from mycelium or a fruit-body in/on a tree that had been killed in the previous year.

(b) Isolates from mycelium or a fruit-body in/on a living tree stressed by some factor other than
Armillaria.

(c) Isolates from mycelium or a fruit-body in/on decayed heart wood of a living tree showing no
symptoms.

(d) Isolates from mycelium, rhizomorph, or a fruit-body on a tree or a stump that had been killed more
than one year ago, on a wind-thrown tree or on wood debris.

NR: no record.
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Figure 3-1. The maximum-likelihood tree generated with the EF-1a sequences of Armillaria isolates from
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the letters ‘AB’. Nodes supported by reliability values (aLRT values) greater than 70% are indicated by
numeric values above the tree branches. Branch lengths and the bar below the tree correspond to the
distances measured in terms of the proportion of nucleotide substitutions between sequences.
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Figure 3-2. The neighbor-joining tree generated with the EF-1a sequences of Armillaria isolates from
conifers in Japan. GenBank accession numbers of reference isolates are indicated by numbers following
the letters ‘AB’. Nodes supported by bootstrap values greater than 70% are indicated by numeric values
above the tree branches. Branch lengths and the bar below the tree correspond to the distances measured
in terms of the proportion of nucleotide substitutions between sequences.
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Figure 3-3. Sites from which Armillaria isolates were collected from conifers in Japan. WI: Kira’s warmth
index. WI = X(z - 5), where ¢ is the mean monthly temperature exceeding 5°C. Upper map: collection sites
of A. mellea, A. ostoyae and A. tabescens. Lower map: collection sites of A. cepistipes, A. sinapina,

A. nabsnona and Nag. E. The maps of Japan were generated by a software in Japan Meteorological Agency
(2002).




Figure 3-4. Fruit bodies of Armillaria species collected from conifers.
a: Armillaria ostoyae (94-75-07); b: A. sinapina (96-21); c: A. cepistipes (94-33-01); d: A. mellea (94-65).
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Figure 3-5. Kira’s warmth index (WI) of the collection sites of Armillaria species from conifers
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4 Concluding Remarks

For effective control of Armillaria root disease, elucidation of ecological and pathological
characteristics of each Armillaria species is required. When stands damaged by Armillaria root
disease should be investigated in ecological and pathological viewpoints, a rapid and reliable
technique to identify species, would be fundamentally important, of many fungal samples such as
basidiocarps, rhizomorphs and mycelial mats. The present thesis aimed to find an excellent
technique for rapid, reliable and easy identification of Japanese Armillaria species, and thereafter,

to characterize interspecific differences in ecology and pathology among each species.

After Mayer (1942) proposed the biological species concept, dozens of alternative species
concepts have been proposed (de Queiroz 2005). In fungal biology, species concepts have
evolved from strictly morphological descriptions of the fruit body and the spore, through the
embrace of the biological species concept, to a call for phylogeny-based species concepts
(Harrington and Rizzo 1999). There are practical difficulties in the former two: morphological
identification needs fruit bodies, whereas fruit bodies of most fungal species are obtained in only
restricted season in the year or never; mating tests are time-consuming and not practical to
identify biological species of homothallic or asexual fungi. Among these three, the last one may

be the most practical in fungal ecology.

Species based on these three concepts are not necessarily consistent with each other. For instance,
A. mellea in the northern hemisphere are morphologically conspecific but the allopatric
counterparts are not fully compatible in mating tests. Another example is the case of the IGS
sequence, which is successfully applied to identification of European Armillaria species, but

cannot discriminate some isolates of North American A. gallica from A. calvescens. Consequently,
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it is indispensable to develop a phylogeny-based technique (or techniques) whose result agrees

with the results of other two methods as well as possible.

As phylogeny-based techniques for Armillaria species identification, regions in rDNA such as the
ITS, IGS and 16S rRNA gene have usually been used. Recently, Maphosa et al (2006) applied
EF-1a gene for molecular phylogenetic analysis of Armillaria species in the northern and
southern hemisphere. Their result was largely consistent with the previous results obtained from
the sequence analyses of the ITS and IGS of rDNA. Antonin et al (2009) utilized this technique
for phylogenetic analysis of two closely related European species, A. gallica and A. cepistipes.
The Czech A. cepistipes clade and A. gallica clade was clearly distinct and the method proved to
be more appropriate to distinguish the two species than the method based on the sequences and

RFLPs of rDNA.

In the present study, isolates of Japanese Armillaria species were examined by mating tests and
phylogenetic analyses with three DNA regions, ITS, IGS and EF-1a. There was no critical
conflict among these techniques in species identification. However, the results of EF-1a analysis
showed higher resolution, and were more correlated with biological species than analyses with
the ITS and IGS regions of rDNA. In conclusion, this thesis demonstrated that the identification
technique based on EF-1a is a powerful tool for identification of Japanese Armillaria species.
The present study also focused on the ecological and pathological descriptions written in
sampling records of the Japanese Armillaria isolates. The results revealed that the Japanese
Armillaria species showed obvious differences in their distribution in Japan, host preference and
potential pathogenicity to conifers. Such kind of information on interspecific differences in

ecology and pathology may be useful to predict and control Armillaria root disease in nature.
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Comparing between Armillaria species in Japan and other countries, there seems to be ecological
and pathological intraspecific differences between them. Seven of the eight Japanese
wood-inhabiting Armillaria species have their counterpart species in the northern hemisphere
outside Japan. Although the Japanese and the allopatric counterpart species are conspecific in
terms of taxonomy and mating behavior, virtually they do not necessarily share the same
ecological and pathological characteristics. Such kind of intraspecific differences in ecology and
pathology should be taken into consideration for deeper understanding of Armillaria root disease

in future.

Harrington and Rizzo (1999), seeking for practical species concept in fungal ecology, defined
species simply as “ ... the smallest aggregation of populations with a common lineage that share
unique, diagnosable phenotypic characters.” They emphasized the importance of population-
based approach for characterizing the diversity apparent at the population level, because the
process of speciation is a population-level phenomenon (Harrington and Rizzo 1999). They also
emphasized importance of ecological and physiological characters because ecological adaptations
are key to the process of speciation, and members of a population that share such ecological

adaptation should have certain phenotypic characters in common.

Their species concept by a population-based approach may lead to more detailed intraspecific
criteria of ecological and pathological differentiation in Armillaria species. Development of
genetic markers will enable population-level identification of field isolates, and genetic markers
linked to ecological and pathological characteristics will be a great help to study fungal

population dynamics, speciation and evolution related to forest epidemiology and ecology.
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F 7 2 7 BEITRAIC M L, BEROIRRERE TH D 72672109 ORIE TH
Do AARTIHZINETITNI0FEDT T Z FEEAHE SN TWD, AwLTIEL, 747
IR DFADREL ZFE L, ZhE CORMDMRIFIEIDONT, FEH Lo B S RET 2N
RIce ZOMBIZH L5, AAET T Z 7 J&E O DNA BFIZ L D50 &2 idA, HARDE
RN ET DT X T REOEREE, BET — 2L LT,

F7 & T BOPEFIRNAE DS IR R o -7 2 & &, FEIRDTBRRIZHE DWW
T FEOFANLE S REED S, 1970 FREYE T, T 7 X T BORED S8 & FA I RRGLIRE
2oz, BIE, 7727 BICIT 40 FERH D & STV DD, 10 TEL OBYRFHIT,
ROTTHROBR TH D, FEEBIZDOIZDOSH LT 7 & r@ofEsz [T 527 —fe LT
Tco D0, 17720 | ITAMRENI ML, FFEEROZREBOERIZE 7, 5RVREH &
ENTZY, HDOVTEERE L SN0 T 572 SIERGVAERE - ARRRHEE 2R L, $HER - I
TR 2 BT AR OE B A FF OIS B & Sz, — 0, ST, BonE %
RET DX A TREOIRE\AEL DTN B - 72723, JROFFH A KIS ORI
DEVIREND T, ZORILEZEYBZTOBICY, TEIKROIIEDFLHE O KA HER
L LT~ T,

1970 AL NS, BHOT-IARB RO BT 2B E R O REGRBROFE R, T 7 % 7RO
FEERIZDOFIOH Db ODOTNIIEHED HEWFIRE) NEEnd 2 PRI, T4
YRt DOZFNEIUTEA ORI Z i 2 TWD 2 ERALNIRY, FEKICOIE
D& 5T 727 BEITEYFTHIEORXEIDIZE &SN TREIND LD IZ72 o7, ZHUTft:
Wy, FEEEOAER - EREDFIERSND L9, T T X TRk SN SERRMEEITSED
REIOFRER TH -T2 Z ERH LN DO D, 1980 FFRICIE, A FHIFIEIC X
DREOFHR], B L OFEO RGO BEANATOND L 22Tz, TORER, Rl
BRIZ K 2 AW AR ORR AT, 0 FHEWTFIT K D Rt &L TRREORTR D 4 CTHiA
FLET DB RGNS L DI oT,

SR, TIZ2TROMBOEBNEL, FEEROE, T AF—wike ORE, o F4EYT
PFEDO 3B NH D, ZHODHEO ST LI FERITBRLR 8T 5205, M Cirdsd
Lb—E L, Bl IXR72 WP T IENZE VLRI UIREEE R LY, K<E
DFANZ AN B D RO DNA ELF123, $72 2 AW 00RE O [ THD TEW AV e < i
HAITERWEINRS L7 ETHY, FFEITOZ LICEBE L THERTIRERH L, £T
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EOFM EORET, FIHEDOTZRRIZIIFRIKOFAT DHMBIRON D Z & 23, AR
(ZIET A 2 — RO & B[R] & 97 5 BT, R SRR o Bl BRI AR OO R Dt R 703 A B IR
RGEND L T ENET OND, o AR FITED, TR THBMED G < AR RS
bNLFETHD, SIS, o FAYFRTIETRIE 7o BEEk - MR BEREROR 72 < B
PR TR FIRE R Z L6, AR - A Fr 72 7> b ORRR BRI 2 BREE L THEH]
T5Z L DZVEEAROMIZE T, EHT_XEFEEBIOND,

—07, IR DR RLIE, T 2 7 JESTEDOARE « AR OV T ORI RIS E
I o005, ARLILETIFEDLVWWOKTIE, 2 < OO AT « FF R4} « IS
23, BpAMBLES L EAEAEBR O M2 DA SN TR Y, HEAAHRME CREIRATIZ /0T D >
HWZAE R AT oFE, LTI UITEEER ORI TH D) ABEM ORIE Th 211, I
JBERTH LR ERMBEN TS, AARTIE, FEEHBFEO T X TITR b7 TR sk
SNTWVDITE D 6T, FORBIIE B L7272 b2 T WFEnIERF I 7, 2 DJRK
D—2IZ, FOBHIDKENZET GNDHIEAH D, Kaw LTI, o FEMTFHI~—T—%Z
T D OB AR TR Dkl 225l 7r,  BFALTEITERI D L SV EHRICE D7 IEZ M L,
M R EE TR L ORI AT D AAET T 2 r R OO 2 B LTz,

AAPET T 2 7 J&EH OFEOFR O IEMEM: 2 L3 5 72, 2ZRakER TRlkhll S iz 7 % -
J& 8 ## (Armillaria mellea, A.ostoyae, A.gallica, A.cepistipes, A.nabsnona, A.sinapina, A.
tabescens, ¥ FHFE Nagasawa’s E) (ZJ& T2 49 kA Y, R U 7T REEHERREER 1
lo (EF-1a) BiaT, UARY—ALRNAZ32— KR35 DNA YT AKX (tDNA V7 A%) O
internal transcribed spacer (ITS) fEJE, intergenic spacer (IGS) fEIRDIEIERLS % /38T L7z, ITS
& IGS DOFEMTTIE 5 RSB TE 7228, 7V O 3 fETHh 5 A. gallica, A. cepistipes, A. sinapina
DAL TE 727> 72, 1GS-1 IO HIREEE W 7 2R TIIT & A L O Z #H T & 7223,
4 SOHIREEEZ VT, A cepistipes & A. sinapina DO—EBOERR DRI T 22020 7=,
EF-1o iB1nF DT OfE FITRZBEREROFE R & L < —F L, L7 8 flaikh] TE 7z,
ime LT, ABEAWEFED S D, EF-loi#{af0 DNA BSIDK ST 7 Z 7 @ OO
(238 LTV D Z DA BT A o To, —HRDBERRO rDNA B3 HFET & 720> 7273, tDNA
XEEBEETTHY, 7 ANNTaRlbofclod B2 bivlz, 2O X 57— AT DNA
Fos 2 Hmed HI2iE, v — 7 VAR m—= T %47 H 2 L BSEETH 5, B EF-la
BIoFLEE R —BL T L Shd,

WAL DF 7 2 7 JBE OBER O EF-10 815 T OFRA A CREBEER LIz E 25, B
CeRFFEIXR 7 L— FERIREE L7 b— &R LT, L, —EOEKILFEFED F
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& F D D OEENALEICE ST T2 D, WNERA I A T2, L0 &< OBikT —#
WIS L B % STz, Nagasawa’s E (W T IO R CHMISL L= L— R %
R L, ZERLDOH72 6T 1R CHOIERE TH D Z L AVRI T,
AAROEIERNIPET 5T T Z TR OERRZ RIS 5720, SRERFORRICESE, 77
& BATRO LA « FFIRAT - BAERIZRIRRME 2 AT LT, 73 - BEoRIBE - ARIRTR SR
W JEAM - BT 2B E U, BARO T RENBTE 6 fiz &t 19 FEOSEER D
65 HRIREE ST, AU D DERE & 7 A Z — ik & DOZZELFS KOV EF-1a &5 DNA B
FNZEY, TROTZ 27 EENER S, MRk BERER & 7 2 2 —EK & OAZRGERER T
IARBABRZR RS RN - 7278, EF-la i81s 12 MM L7 5E TR TO R AR HER] S 7
7o THUHLOEED 5 B A mellea, A. ostoyae, A.cepistipes, A.sinapina 73 &\V VBEE T
S, AROFIERAT HNENT T 2 TREH L5 2 bz, BEMOE BOEN S O
Bob, FEFEOEE~OIERMEEZFH- L 25, A sinapina [ZZE5HIZ, A mellea [XIEE
Wz B9 DM 2 A7, A sinapina 1346 CALHEE LIRS Crodk S 4, B - o i
DT TR A A TS L BESUTz, A ostoyae 35 KOV A. cepistipes (32 < OftfE &
AL TWZAS, A mellea [THFFICE / F OB HEES D Z ENMHALNITR-T2, A
nabsnona, A.tabescens, Nag. E OELEITH TH Y, BEI N o7- A gallica 258, =
O AFRITEITAER 2 E & UTHIET % &8 2 bive, S HE ORI 2255 R % 51
T 5120, EHRBNOEESNEEOREZR, 77 7 FBENEAIEICEFE L TOD AR,
7 Z T BEPEREIZ A LTV D R5E% 1 FLLNORESER, 7 % 7 B TERVE I %
A LTV DHEFER 1 SR LLEDREFER, 7 2 7 BEN OMIER 2 2 L TV DR RnE
SR, I ETBEPIEFEZEZ LTHWDER - JMRED 5 DI27 T A5T LIz E 25,
A. mellea, A.ostoyae, A. cepistipes, A. tabescens [ZAEN AR DTEEE 1254 S LTV D IREE,
B ROMSER 1 AELINORFER D DIZRE I T AE SN T DIRBEBO T LS ST
Too ZAVD DOFETANAITEGE L TES - #ESELNH D, & LITED RN S
<, AAROBFEBOPFEE~FRVHE & & 2 b7,

SHEB D O OSSN THED O B 6 i, 3 —1 v 3t LUTAET A U DIZ[RFENFEL
T2, ZNHEDOHAARDIREE, ERHICAEFTT2RFE, 2753 L bR AR « Y
WM Z2 552 L 1TR & 720, AT ORI EREER] DR S OMIFEIE, 72O D &LV &
WERIZ DTN D, EREE 2009 D85~ — A —, 3 X OVERERY - WA S |2 B
T LB~ — A —DRRIL, WOREMEERE, ERICRESEHIRT S B2 607,
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