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In a number of natural as well as social phenomena, two quantities
¥ (&) and ¢ (§) are connected in such a way that one of them, ¥ (£),
is a weighted overlapping mean of the other, ¢ (£), taken over a certain
range, say, from a to b, of the independent variable £, which may be
either time or a co-ordinate. Mathematically, the relation between two
such quatitities may generally be written

b

’1’(5)=g ¢(§+a)p(a)da, (1)
where p(a) is the weight to be assigned to ¢ (E+a) according to a.
As examples of pairs of quantities that are connected in this way, we
have the amount of water flowing in a river as 7 and the precipitation in
its basin as ¢; ground temperature and solar radiation; the reading on
a hair hygrometer and the actual humidity; supply and demand in eco-
nomical problems; and so on. In connection with these problems, it is
often required to find that law by which ¥ (¢§) is affected by ¢ (¢§), in
other words, to determine the functional.form of p(§), starting from
¥ (&) and ¢ (&) which are both known. The method hitherto resorted to
for solving such a problem has mostly been that of trial and error, which
method consists first in assuming a certain reasonable functional form
for p(&) and secondly in adjusting the numerical values of the constants
contained in it until such a good agreement is obtained between the given

¥'(¢) and the calculated j,'¢(§+a)p(a)da that the p(§) assumed may

well be regarded as a satisfactorily accurate solution. Owing to the con-
siderable time required for doing so, especially when p(£§) contains two-
or more constants to be adjusted, it naturally behooves us to devise some
other method that would enable the problem to be solved more simply.

In the method which the writer proposes in this paper, by using
Fourier series, it is possible directly to find p (), starting from the given
T(§) and ¢(§). From the standpoint of mathematical rigorousness, it
is admitted that there are some weak points in the method that are not
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very satisfactory, but there can be no objection to applying the proposed
method to actual problems.

Let ¥ (¢) and ¢(£) be two functions that satisfy Dirichlet’s condi-
tions, hence expansible into Fourier series within the interval a <& <b.
By means of transformation,

§—a
b—a’

rx=2r

the above assumption may be reduced to another, that F'(x) and f(x) are
both expansible into Fourier series within the interval 0 <x<2r, where

a

(b—
F(x)=§( o x-{—a),

and

f(x)=g!/(b2_nax+a>.

Under this assumption, F(x) and f(x) may be written

F(z)=XA,.cosmz +S'B, sinmz ' (2)
f(x)=>a,cosmx+>b, sinmx (3)
where
. 1 27
A, = S F () cosmid?
&t |
1 27
Bm=?g F(A)sinmadi
/]
. 1 27
a, = = S F () cosmldl
0
v
b= ?g f (A)sinmid?
0
and

e,=2 for m=0

e, =1 for m>1.
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‘Now if

270

F($)=S f(z+a)g(a)da (4)

0

js the fundamental equation from which ¢(x) is to be determined, this
is nothing but a Fredholm integral equation of the first kind which,
in the present case, is solvable provided ¢(x) is also expansible into
Fourier series. If now we assume this, and this is true in almost all
practical problems, then ¢(x) may be written

o(x)=>1a,cosma+ > 8, sinme (5)

with

1 a7t
an=" & ¢ () cosmadi

and

pm:%g o (%) sinmada.

0

The equation (4) reduces then to

25

F(x)=S f(x+a)e(a)de

0

=S Z{amcosm(x+a) +b,sinm (x+a.)}go(a) da
0 3

2

=Zamcosmx3 o(a)cosmada
”m
0

—Zamsinmxg ¢(a)sinmada
+2bmsmmx

59(0.) cosmada

Zb cosmxS o(a)sinmada
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= 7r{ €0, COSME — Sa,, 3, sinmae
m m
+>2¢e,b,.a,,sinma +>1b,,8,,cos mw} (6)

Comparing (6) with (2), we get
Am =T (emarna‘m + bmﬁm)

Bm =T ( -—_ a,,,f))m + embma‘m)
and consequently

1 aﬂlA n + bTPIB"l

a m = a G
e, 7 a,+b;,
(7)
ﬂ 1 bﬂlA‘ﬂl - a??lB‘nl )
" w aL+Db

In other words, the Fourier coefficients of the m-th order of the
weight function ¢(x) are simple algebraic functions of those of F(x)
and f(x) of the corresponding order, so that it is easy to determine the
form of ¢(«), provided both F(x) and f(x) are known.

The point that is most unsatisfactory from the mathematical point
of view in the theory developed above is that we have restricted the
range of « to be between 0 and 2z. This makes it hardly possible to
apply this method, should ¢(x) actually extend beyond this range. The
range of 27, in which F(x) and f(x) are to be developed in Fourier
series, should be taken sufficiently wider than the range of x, in which
¢(x) is supposed to have sensible values.

In order to see at the outset what accurate results will practically
be obtained by means of this method, the following test was made.
n(x) in Table I is a series of integers taken at random, N (x) being
constructed according to '

N (%) =n(z—4) +2n(x—3) +3n(e—2) +4n(z—1) +5n(z)
+4n(x+1) +3n(z+2) +2n(x+3) +n(z+4).

The curves for n(x) and N(x) are both shown in Fig. 1. In this
case, we know that the weight assigned to »(x) has been linear with
‘respect to «, so that the form of ¢(x) is

¢ (x)=5Fu,

the double sign before x being taken according as whether . is positive
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or negative. What we shall do here is to determine ¢(x) anew, starting

40

700

Soo

A

TU(x)
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A,
\

\

N

Y

300
0

Fig. 1.

TC
ML) oo series of random numbers
N(x).........overlapping sum

21

from the given n(x) and N (x), acting as if the value of ¢ (x) were not
known beforehand. According to the method developed in the foregoing
paragraphs, the Fourier coefficients for n(x) and N(x) were first cal-
culated by means of ordinary harmonic analysis, with the results given in

Table I.
z | n(x) ‘ N(zx) ” xz | n(x) | N(z) ; x ’ n(x) | N(x) x n(x) | N(x)
10° 14 485 100° 2 659 V 190° 27 720 280° 25 423
20 40 553 110 22 658 200 35 725 290 19 418
30 19 570 120 19 652 210 31 712 300 7 419
40 31 610 130 26 656 220 34 672 310 16 441
50 29 637 140 34 661 230 23 697 320 25 446
60 19 633 150 27 664 240 13 544 330 15 424
70 14 627 160 20 675 250 25 501 340 31 437
80 30 652 170 34 699 260 15 450 350 10 426
90 39 662 .|| 180 23 708 || 270 9 416 360 0 433

Table II. It may be pointed out here that the Fourier coefficients P,
and Q,, for N(x) do not exactly correspond to the coefficients 4, and
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Table II. Fourier Cofficients for n(x), N(x) and ¢(z).
n(x) N(2) @ (x)

m

m bm Pm Qm am l ﬁm
0 22972 —_— 574-310 — 0-695 —_
1 — 4582 3-890 —107-743 92:463 1-330 0-007
2 1-176 2:090 22-889 41-736 1-103 — 0-012
3 — 1442 1-540 — 20,083 —21-064 0-766 0-007
4 - 1871 1-605 — 15530 13-146 0-459 — 0-003
5 — 1-276 0-728 — 4794 2:539 0-205 — 0-006
6 — 5-792 0-144 — 5792 — -0-192 0-056 - 0-600
7 — 2187 1-577 — 0051 — 0-037 0-001 0-000
8 0-056 0-724 — 0010 0-215 0015 ~ 0-008
9 — 1-778 3-556 — 1778 3-611 0-056 0-000
10 — 1454 1-103 - 2187 ~ 1:605 0-083 0-001
11 — 3653 1-578 — 5-403 — 2:349 0-082 0-000
12 — 4556 1-203 — 4556 — 1251 0056 — 0-001
13 0-438 2-130 0-175 0.832 0-022 0-000
14 — 1-056 1172 — 0036 — 0-041 0-002 0-000
15 0-386 0-096 0-027 0-009 0-004 — 0-011
16 1-145 0-592 0-463 - 0-229 0-022 0-000
17 2:593 0-097 2-146 0-116 0-046 — 0-001
18 0-806 — 0-806 — 0-056 —

B,, of the function F'(x), because the values of n(x) are given only at

finite intervals of Exlo. Since
. 360

we have

2r
Am=Pm X % x 10

2r
B,=@Q, % 360 10,

1 a,A,+b,B.

am = 0] o
€T a5+ b,

1 aﬂlpwl + b1’lell 271.

€, a;,+ b3, 36

— ‘ 1 a?nP7ﬂ+ b"lQ"‘
- 185,,, a"fn -+ b‘fn
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and sim_ilar]y,

18 aL+b

The values of @, and j, calculated from (8) are also given in
Table II. .Since ¢(x) is an even function with respect to , the Fourier
coefficients 3,, of all sine terms of ¢(x) ought to have vanished, but in
Table II, we see that there are slight departures from this, which is
the result of accumulations of errors in the actual numerical computa-
tions.

The function ¢(«) is then evaluated by summing up the series

o(x)=>a,cosmx+ >3, sinme,

m

with the results given in Table III. The values of ¢(x) calculated in
this way agree well with what were first assumed, showing the feasibi-
lity of the proposed method.

Table 1II.

x () I x } @ () x o(x) x ()

0° 5-08 100° 0-00 190° — 0:04 280° 0-02
10 402 110 — 0-04 200 0-01 290 — 0-04
20 3-07 120 0-01 210 — 0-04 300 0-07
30 2:00 130 — 0-04 220 002 310 0:00
40 '1-06 140 0-02 230 . — 004 320 1-06
50 0-00 150 — 0-04 240 0-01 - 330 2:00
60 0-07 160 0-01 250 — 0-04 340 3:07
70 - 0:04 170 - 004 260 0-00 350 402
80 0:02 180 0-00 270 -- 004 360 5-08
90 — 0-04

Now in order to apply this method to a few actual problems, we
shall consider first the relation between the amount of discharge from

Table IV.

F’ | F-F/ F

F ’ _F
(Discharge) (Prfec.) f P F-F

April | 10-70”m 103.1™ 334 | 7:36 | Oct. 1229 | 585 | 487 | 7.42
May | 1080 | 1548 365 | 715 |Nov. | 11:86 | 695 | 468 | 718
June | 1157 | 2205 398 | 759 |Dec. | 1142 | 535 | 411 | 731
July | 1193 | 2098 465 | 7-28 ||Jan. 11-01 | 439 | 393 | 7-08
Aug. | 1187 | 2068 | 4-29 | 7-58 | Feb. 1076 | 78-0 | 3-44 | 7-32
Sept. | 1267 | 3605 544 | 7-23 |March | 1073 | 116:3 | 365 | 7-08
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the Beppu hot springs and the precipitations in nearby regions, as re-
ported by T. Nomitsu and others®. According to these investigators, the
mean monthly discharge 400 ' |

from the springs (per ori-

| l
fice) F and the mean 300 Precapbtatwn/(mnb)

monthly precipitation in

nearby regions f are as

given in Table IV. F(xz) 200

and f(x) are graphically )

shown in Fig. 2. /00
Both these quantities

were analysed into Fourier 0 I : |
series with the results JFMAMTITASOND

. L 1 | |
shown in Table V, in which D .
Lscharge (£/m) /\

are also given the Fourier /2

coefficients for the function /g*‘ \
(%), computed from those ‘\ /

for the discharge and the a4
precipitation, according to

(7). With these coefi- /O
cients, the Fourier series

for ¢(x) was synthesised, Fig. 2. Precipitation near Beppu and the

with the results given in discharge of the Beppu Hot Springs (per
orifice).

Table VI and shown gra- .
phically in Fig. 3. It is clear from Fig. 8 that the weight function
¢(x) is almost exactly linear with respect to time, that is to say, the
discharge of the hot-spring water in a certain month is most strongly

Table V.
F (Discharge) f (Prec.) ¢ (Weight)
m
cos sin cos sin cos sin
0 11-475 _ 1396 S } 0-00685 _
1 — 0563 .| — 0-380 —~ 596 785 | 64 | —0-00115
2 © 04095 0-052 31-2 — 220 t a | - 43
3 L~ 0-008 — 0-068 - 927-3 11 3] - 43
4 0-112 0-128 481 — 135 25 .| — 51
5 — 0-120 — 0-023 - 353 60 53 | — 20 .
6 0-077 —_— 195 —_ 66 | o ——

1) T. Nomirsu and others, Tikyubuturi, 2 (1938), 97; Mem. Coll. Sc., A, 23
(1940), 41. .
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affected by the precipitation during that same month, and less and less
by those in the preceding months.

Table VI
x @(x) x q€7] H Lo ()
0° 0-00917 150° 0-00579 270° 0-00715
30 435 180 677 300 857
60 707 210 637 '330 817
90 531 240 761 360 917
120 581

One point in this problem needs some amplifying remarks. It is
generally believed that a considerable portion, say, J, out of the total
discharge F of the hot-spring water comes from a deep origin, and
that this portion is scarcely affected by precipitation and other meteoro-
logical elements. It might therefore have been better to assume that
it is the difference (F-J), not F itself, that is to be correlated with the
precipitation, and to write the starting equation in the form

F(x)—J=Sf(x+a)¢(a)da.

Since J is taken as a constant, although unknown, the constant term in
the Fourier expansion of (F-J) differs from that in the expansion of
F by that constant amount. The term @, in the series for ¢(x) is
therefore indeterminate by another unknown constant amount. Now if
¢ (x) is put zero at x=2r, that is, if it is assumed that after a year
precipitation ceases to have any effect on the discharge of the hot-water,
then the weight function ¢’(x) ought to be

o' (x) = o () —0°00435.

Using these ¢/(z), the monthly discharges F”, which were also given in
Table IV, are calculated according to '
) = S 2 ) o 27 )
F(_x)—n=2—12f v+ lzn ¢ 12n ' (9)
Between the observed monthly discharges and those calculated accord-
ing to (9), we find almost constant differences of about 71l/m, which
may be identified with what we believed came from a deep origin.
It is interesting to compare the foregoing results with those of
Nomitsu and others that were obtained in a quite different way.
* They assumed from the outset that the effect of precipitation on
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the discharge of hot-water diminishes exponentially with respect to time,

-and finally obtained

o () = 000390 exp (—0-11 x §16%x>

(10)

.as the weight function. For comparison, the values of ¢(x) according
to (10) were also plotted in Fig. 3. According to Nomitsu’s expression,

-precipitation affects sensi-
bly even after the lapse
-of a few years, but accord-
ing to the results obtained
7in the present paper, it is
not necessary to assume
‘that the effect of pre-
-cipitation lasts so long.

As to the value of J, .

Nomitsu and others found
<63 l/m, while our value is
‘T3 1Um.

The second example
relates to the dependence
-0of the daily height of the
hot-water table in a cer-
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Fig. 3. Effect of precipitation on the discharge

of the Ceppu Hot Spring.

-tain hot-spring, at Rendaizi, on the daily precipitations in nearby regions.
"The daily readings of both these quantities from Sept. 6 to Oct. 11,

Table VIIL
Date gg‘;%r Prec. ‘ Date ggzzr Prec. - _Dété vxvﬁiff Prec.
-Sept. 6 97 cm 0-2mm||Sept. 18 72cm |  15-7mm [Sept.so 140 —mm

7 o8 0-1 19 67 0-1 Oct. 1| 136 —
8 98 - 20 64 — 2! 132 37-7
9| o7 — 1) 63 . | 158 3| 130 83
0 96 115 22| 66 | 388 4| 128 26-8
1 93 116 23 70 427 5| 12 —
12 84 — 24 75 2-8 6] 125 —
13 83 - 25 84 105-2 7] 195 0-4 -
14 82 1-2 2| 116 10-2 8| 118 —
15 78" 85 27| 1298 — 9 95 —
16 74 0-1 28| 135 — 10] 113 -
17 73 — 29| 137 — 11| 112 61
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| ?recl ipii’dl“'éon/( mn"u)
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/;; I|.|I||.l 1R
Water Head (cmy) /] f\xm\ |
] / \1
- /1
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Se/;t‘. ] 5e/;t23 OctS

Fig. 4. Precipitation near Rendaizi and the head of the hot water
table. .
1935, as reported by T. Fukutomi®, are given in Table VII, and shown
graphically in Fig. 4.

The Fourier coefficients for the height of the water head and the
preéipitation are given in Table VIII, together with those for the weight
functions that were calculated from them. Since the water head was
measured from an arbitrary origin, no attention was paid to the constant.
term of the Fourier series for ¢ (x). The values of ¢ (x) computed from
these coefficients are given in Table IX, and graphically shown in Fig.
5. In this case, the summation of the series for ¢(x) was carried out.
to various orders of harmonics. The rather large fluctuations of ¢(x)
that result when the summation is made to highter orders, are due to
slow convergence on the part of the Fourier coefficients for the preci-

2) T. FukuTtoMmI, Zisin, 12 (1940), 195.
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pitation. At any rate, it is clear from Fig. 5. that the water head on
a certain day is most strongly affected, not by the precipitation on that
identical day, but by the precipitation 4 or 5 days prior to it.

Table VIIL

Water Head Precipitation Weight function
" cos sin cos ‘ sin cos sin
0 _— — 9-558 _— e e
1 12192 —28-607 --10-384 — 3-333 —0-0146 —0:1577
2 -10-412 8-424 5:567 2-025 —0-0648 —0-1077
3 5-135 — 1-512 — 9124 — 0-362 — 308 —0-0104
4 ~ 4-516 — 0-464 6:741 5613 — 238 — 161
5 1:046 1-628 0-008 — 7-259 — 124 - 80
6 0-640 — 0-831 ~ 0-557 0710 — 646 - 6
7 1-350 1-233 1-978 0-142 402 - 317
8 2:558 — 0-984 - 1701 1-108 - 812 156
9 0:723 0-833 4:048 3-555 113 - 16
10 2:042 — 1-318 — 5769 — 5-290 - 43 -~ 167
11 0530 - 1-861 4-932 5-438 - 77 124
12 1-474 — 1023 — 0427 — 6350 81 - 134
13 0-348 — 1-632 ~ 1-116 3+479 — 252 - 25
14 0-284 — 0574 1-735 — 4-079 80 - 4
15 — 0355 — 1-320 — 2:964 8-288 - 86 - 49
16 — 0-788 ~— 0-304 7°779 — 4-781 - 31 41
17 0-244 - 0-713 — 5584 — 1-043 - 11 - 73
18 — 0557 _— 1-496 —_— - 207 —_—
Table IX.
® Up to 3rd Up to 6th Up to 12th Up to 18th
Harmonies. Harmonies. Harmonies. Harmonies.
0° —0-1102 —0211 | —0-2448 —0-2954
10 — 1714 — 2470 — 2804 — 2427
20 — 2109 -~ 2049 — 1623 — 1780
30 — 2276 - 1131 - 959 - 972
40 — 2234 — 1593 - 2009 — 1983
50 — 2034 — 1955 — 1985 — 1877
60 — 1742 — 2119 - 1664 — 1939
70 — 1409 — 1729 - 1599 — 1262
80 — 1003 — 1002 — 1434 - — 1673
90 — 82 — 498 — 1009 - 962

(to be continued.)
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Table IX. (Continued.)

- Up to 3rd Up to 6th Up to 12th Up to 18th

Harmonies. Harmonies. Harmonies. Harmonies.
100° - 615 — 529 - 173 - 76
110 — 460 — 841 132 53
120 — 346 — 879 — 1082 — 1131
130 - 21 — 444 —~ 1582 — 19251
140 - 200 306 200 - 239
150 — 159 579 1579 1921
160 - 143 202 816 722
170 ~ " 157 —~ 534 — 684 ~ 806
180 - 193 — 953 — 1362 - 1171
190 — 9239 - 712 — 706 - 705
200 — 26 - 92 1544 1223
210 - 236 323 1099 1701
220 ~ 11 242 — 1383 - 2062
230 140 - 16 — 1025 - 49
240 523 129 1249 983
250 1018 915 1923 1986
260 1575 1960 1610 1583
270 2121 2608 1742 1887
280 2568 2567 2236 1939
290 2836 2182 - 2801 3154
300 2857 2060 2721 - 9442
310 2607 2415 2685 2266
320 2094 2781 2143 2086
330 1374 2877 2806 2926
340 0534 1079 1619 1323
350 — 3% = 741 — 497 0039
360 — 1102 — 92111 — 2448 — 2952

Finally, the foregoing method may, with some miodifications, be
readily applied to many other problems that can be reduced to solving
an equation of the form '

+s

F(z)=\ f(z+a)da,

-3

where F'(x) is given and f(«x) is to be sought. Such a problem is encoun-
tered, for instance, as Mr. Z. Koana has noticed, when it is required
to estimate the intensities of individual spectral lines that were taken
on a photographic plate from the microphotometric curve of the plate
" obtained by a microphotometer, equipped with a slit of finite width. If
the deflection of the photometer, when the photographic plate is run
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o‘f U,P Hb 3rd |Harmonics
o 6th » "
X '; /2 thl " AT

gl b [8th L\ . ‘:‘
5 15 g ﬁ /

! . g %4 1! "[' ‘ b
-02 | :

Days
-04 g
-36 -24 -12 0
Fig. 5. Effect of precipitation on the head of the hot water table
at Rendaizi.

et

x<

X

under it, is F'(x), and the intensity distribution along the plate is f (x),
then the relation between F(x) and f(x) is exactly

F () =S f(z+a)da, | a1
where s is half the width of the slit of thé photometer. 1f, as beforq,

we put
F(x)= ZA,,,cosmx+Z}B sinma

m

, (12)
f(x)= Ea cosma + Stb.. sinmz,

m

(11) reduces to

+s

F(x):S' f(x+a)da

-3

=S {2a,,cosm(x+a)+§]b smm(x+a)}da B

-3
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+s
. =S {Za,,,cosmxcosma—Zamsinmx sinma
m n

-8

+>1b,,sinmzcosma +>] b,,,cosmxsinma}da

m m

a, . A s
= I:Z—icos masinma + ZWsm macosma

m

+s
b, . . b
+ > ——sinmzxsinma —>——cosma cosma
m m m m

-8

= Z%cosmx sinms + Z—z—f—zﬁsin ma sinms. (13)

m

Comparing (13) with (12), we get

__mA,
®n="gsinms
and . (14)
b — mB,,
" 2sinms

From these relations, the intensity distribution on a photographic
plate can be evaluated from the microphotometric curve taken with a
slit that may even be wider than the individual spectral lines to be
measured.

In view of the fact that sinms comes into the denominators, it is
necessary to choose s so that sinms for any m shall not vanish. In
other words, s should be so chosen that it will not be an integral mea-
sure of 7. For the case m=0,

= % (mA,,,)/% (? sinms)
A,

~2s°

In order to demonstrate the usefulness of this procedure, it was
applied to the following example. In Fig.6, f(x) represents two “spec-

tral lines” that are two probability curves separated by %XSO from

peak to peak, while F(x) in the same figure is the:“ microphotometric
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curve” taken with a slit of half the width, namely, 3267:)><35. The

values of F'(x) and f(x) are given in Table X. What is required here
is to find f(x) anew, knowing the form of F'(x), and that it was taken

with a slit, half the width of which is %—%X35. Using the Fourier

coefficients for F'(x), those for f(x) were calculated according to (14),
the results being given in Table XI. The values of f(x), which were
obtained by synthesising the series

mB,,
f(x)= ZZS nmscosmx+2 e Sinma,

and which are also given in Table X, agree well with the given f(z).

 NFo/ N

cdt@ / | \/ | \
HymL
BVANAN

N/ ’ 3
0 % T 7% 21
Fig. 6. F(2)ererrene ¢ Spectral Lines ”’ )
F(x).eeunnns ¢ Photometric Curve " taken with a slit of
finite width.
Table X.

x | f(assumed) F f (cale.) , x | f(assumed) |- F ‘ f (cale.)
0° 00 0-0 01 | 60° 0-0 00 | — 09
0 | 0-0 00 | — 02 | 70 0-0 17-0 08
20 00 00 | — 07 || 80 00 2630 | — 11
30 00 00 09 || 90 00 1928-0 03
40 00 0-0 0:3 || 100 1:0 7205-0 15
50 0-0 0:0 - 0-3 110 250 14934-0 26-3

(to.be continued.)
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Table X. (Continued.)

x | f(assumed)| F f (cale.) T . | f (assumed)' r f (cale.)
120° 194-0 20215-0 192-7 | 250° 25-0 14934-0 263
130 664-0 218760 6651 | 260 1-0 7905-0 15
140 1000-0 22105-0 1000-0 | 270 0-0 1998-0 03
150 664-0 218870 6654 | 280 0-0 2630 | — 11
160 194-0 20473-0 192-1 | 290 00 17-0 08
170 250 16857+0 26-3 | 300 0-0 00 | — 09
180 1-0 144040 23 | 310 0-0 00 | — 03
190 25+0 168570 263 | 320 00 0-0 03
200 194-0 20473-0 1921 | 330 0-0 00 0-9
210 644-0 21887-0 6654 | 340 0-0 00 | — 07
220 1000-0 221050 10000 | 350 00 00 | — 02
230 664+0 218760 6651 | 360 00 00 01
240 194-0 20215-0 1927 |

Table XI.

m A, an=mAn/2sinms ' m Am an=mAn/2sinms
0 8609 15+4 10 — 59 3-7
1 —15156 —231 11 - 1 - 06
2 2133 5-0 12 - 70 - 16
3 3841 13-0 13 88 13
4 — 3163 —21'5 14 - 38 - 08
5 290 18-2 15 4 0-2
6 602 - 79 16 - 1 01
7 255 - 21 17 4 - 01
8 — 811 7.9 18 0 0
9 493 — 69

It may be added, in conclusion, that the object of the present paper
is merely to propose a method that will be useful in solving a certain
class of problems related to weighted overlapping means.

The writer intends to use this method in a forthcoming paper dis-
cussing the mechanism of regional isostasy.




Part 3.] A Problem of Weight Mean.

2. EEEHCHT » - &

wREEF ¥ OJp

f() AR, Ut o) BHERSLH L TRSTIFY

7o) = et arp@yia
TYENONRULAEE, @) ZEUMIERD 5 HEPE~T, WMBHL
f(@)=amcosmr+2bmsinmz
F(r) =2 Amcosmz+ 2 Bnsinmz
ThHharioll ‘

1 amAm+ bmBm, 05 M- 2l bmAm—anBm
€T ami+ me 7f @+ bnl

sinmr

9(z)=3]

THA~NLNE . ZZOREIHC TROBEARYR LT,

475



