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1. Introduction.

The problem of the initial motion of a seismograph subjected to an
arbitrary disturbance has been solved by a number of authors, mainly
by means of Fourier’s double integrals. On the other hand, Jeffreys®
used Heaviside’s operational calculus in solving the problem. We have
recently found that the operational method, based on Mellin’s inversion
theorem, is more suitable in dealing with the problem.

If, in Mellin’s theorem,

$(p) =pS e"P'f(t)dt, (1)

0

then f(f) is expressed by

f(t)=2img “eq,, (2)

c=i%

ctix
where S constitutes the Bromwich-Wagner’s integral in the complex

c—ix

z-plane. Thus, it is possible to say that ¢(p) is an operational form of
f(t), and f(t) an interpretation of ¢(p).

2. Eaxpression of seismbgraph movements resulting from an arbitrary
earthqualke motion.

Let & be the ground movement and 2 the displacement of the pen-
dulum relative to the moving ground. Then, the equation of motion of
the pendulum is expressed by

&2k +n2w=—&, - (3)

1) H. JEFFREYS, Opcrational Mecthod (Cambridge Math., Tract, 1927).
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Multiplying both sides of this equation by pe-?‘dx, and integrating,
we get '

=)

e ?ldx + n?pg

> o

e‘p‘xdt=—pg e PlE, (4)

0

pg e~ Pida’ + 2lcp3

0 [ 0

where 2/, & mean dx/dt, dé/dt. Integrating (4) by parts, it becomes

oo =]

(p3+2kp2+n2p)S e'“xdt:—zﬁg e ?&dt

0 0

' +0H (o + &) +p (o +Ei+2kx),  (5)
where x,, &,, @, & are the initial values of 2; &, o, g,

From (5) the operational form of 2 becomes

- -pﬂfe-w;-"dt P (@ot £0) + D (4 &+ 2hy)
—pt — .
wop| e"rwdt P4+ 2kp +n? + P+ 2kp+n® » (6)

0

from which the interpretation of the right-hand side of (6) becomes

2mi

c-1

1 Hm—zqﬁ(z)e”dz L moc{ 2 (204 &) + (g + &+ 2kx,) }e”dz
X=""" T ey o T o s ) 2 .
: 2Z+2kz+n'  2mi 2+ 2kz+ 7’

c—1iw

(7)
The first term on the right-hand side of (7) represents the movement
of the pendulum for zero displacements and zero velocities of the same
pendulum and of the ground at £{=0, while the second term gives the
effect of their initial displacements and the initial velocities.

If, assuming temporarily that the second term does not exist, we
caleulate the first term, we have @,+&,=0, xo+ &)+ 2kx,=0, from which
condition the second term in (7) should vanish. If the initial displace-
ment and the initial velocity of the ground, namely, &, &, were zero,
the initial displacement and the initial velocity of the pendulum, namely,
x,, @, would be zero. Although a;+ ¢, indicates zero displacement of
the pendulum in space, x;+&,+2kx, is somewhat complex. However,
if the damping of the seismograph were zero, we get the relations
2,+£&,=0, x+£,=0, indicating that the displacement and the velocity
of the pendulum relative to space are both zero.

3. The special case, £§=1 for 0’<t<h and £€=0 for t<0, {>h.

Since, in this case,
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§>1 for 0<<t<<h, £>1—e? for t>h,

we get
o0 ) —pz
rop| e’ xdt=m, (0<t<h)
Q
2 —ph
_p (1—6 p:)
= okptnt ’ (t>h) J
from which 7
c+d0 . .
-1 e*tzdz
xzz—m'g P2k tn’ (0<t<h)
—_1 c1ixn ezt(l__e_z;,)zdz
. 2m'S BT e R Gl

In the case of kxn (2,%0), the integral (10) transforms to

c+in
—1 zt
x=2—m,S i ¢zde ., (0<t<h)
’ cvile’+ (k‘—iaz)}{z'+ (k'kiaz)}
— etioo £33 —p-zh
___E_lg e*’z(l—e*")dz ’ (t=>h)
&l w{z + (k—izz)}{z+ o+ iaz)}
where @,=1/n2—k?, from which we get
_n ( _ 12)
x—Vﬁfk-z[e sin{ fat, — tan Al (0<t<h)
R (NN (PR ( _ -4§g)
r= Vm[e sin{ {a,— tan %

—e~ke-Mgin {az(t —h) —tan“%}} (t>h)

In the case of k=mn, the integral (10) becomes of the types

x—_—l T etade x————l ot e'z(l—e*")dz
T 2mi (R T 2m . (z+k)?
so that '
r=—(1-kt)e ", (0O<t<h)

x=—(1—kt)e"“+{l—k(t—h)}e“‘“‘”l (t>h)

[Vol. XIX,

(8)

(9)

(10)

(11)

(12)

13)

(14)
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From the results in (12), (14), it will be seen that in the present type
of earth movement, there is apparently no term in the equations cor-
responding to forced vibration. The results of calculation for the two
cases (i) k/n=0, k/n=06, both for the same condition nh=1, are shown
in Figs. 1, 2. The full lines represent the seismographic displacement
7 !

N

bl

Fig. 1. &=1for 0t <h, £=0 for t <0

and t> h.

nh=1, kn=0.

\4

1
0/ 2 T
=1

Fig. 2. &=1 for 0 <t <h, £=0 for
t<0 and t>h. nh=1, k/n=0-6.

for 0<t arising from the earth’s displacement §=1 for {>0 and the
broken lines that for £>h arising from the displacement £=1 for
0<t<h and £€=0 for t>h.

It will be seen that, as in common sense reasoning, the steepness
of the damping curve for the seismographic movement increases with
increase in logarithmic decrement, but the beginning of each damping
curve corresponds to the forced vibration. The amount of initial move-
ment of the pendulum is the same as that of the earth’s displacement,
but in the sense that is opposite to it for such a sudden movement. At
all events, it is possible to say that the sense of the initial motion of
the pendulum is opposite to that of the ground movement.

4. The special case, £==¢~* for t=0 and £§=0 for t<0.

-In this case,

E:pS e""&“dt=52_)*_—a, (15)
0
so that
Plodf =
xngoe W= v a) (P 2kp e (16)
from which
ctixe 2 ctice
et e*'z°dz -1 e*'z%dz 17
T 2mi PRCED) (2% +2kz4-n®) 27 _zra)(z+a) z+p)’ (17
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where a=k—iy/n*—1I3, B=lk+iy/n2—I2

(i) If exfxa (Kxn),

oo —aZe~ ale-%t ﬁze—m
C(a—a)(@—pf) (2—a)(a—-p) (f—a)(F-a)
_e-al .ﬁe-u
a
T ok w / 2 267 m?
1=+ V(1= 1= i)
2
k }/1_% _/ _l_c_
- 8in nt/l—— n- —12— - ,
¢
Tt—z_l —1+‘
(axxfxa, t>0)
x=0. (axfxa, t<0)

(ii) If n=k, a>xmn, then ¢=4, axa, so that

[Vol. XIX,

D Nl ey erie 4 zze”{z+(a+2z)}
r=— dz— dz
2= | (at+a)?(z—q) o (ata)? (z+a)? ’
—aZe n{nt(a—n) — (2a—n)}e‘“’
= _(a_‘_' %)2 - (a_n)z y
(a’=ﬂ’ axa, t>0)
z=0. _ (¢=p, axa, 1<<0)
(ii) If a=n=k (a=a=p),
+ic0
—1 2%e*'dz nt? ot
x=2m’S +a)s = TB(any  ITEMET (t>0)
=0, (t<<0)

(18)

(19)

(20)

(21)

The respective first terms in (19), (20), (21) represent forced os-
cillation and the respective second terms the free oscillation. The results
of calculation for the two cases of k/n, a/n being unity, are shown in Figs.
3, 4. The thick lines correspond to the resultant displacements of the
pendulum. With increase in damping coefficient the vibrations of the

pendulum decays with increasing rapidity.

The results of calculation for different ratios of a/n and the various

-
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values of k/n are given in Figs. 5~7. These figures show that although
the damping of the pendulum vibration increases with increasing steep-

11% _T

1 ] | I { ]
3 8 10
Fig. 3. &é=e * for t>0, £=0 for Fig. 4. &=e  for t>0, £=0 for.
t<0. a/n=1, k'n=. t<0. a/n=1, kin=1. v
—»nt
1 1 J
8 10
Fig. 5. &=e¢  for t>0, £=0 for Fig. 6. &=e~« for t>0, £=0 for
t<0. an=05, kin=0, 0-6, 1. t<0. a/n=1, k/n=0, 0-6, 1.
ness of the damping curve of the
forced vibration, the amplitude of
the first motion of the same pen-
dulum is the same as that of the
initial motion of the ground, but in —é”“. .
10

the sense opposite to it—a feature
closely resembling the case of the
preceding section. This feature re- -l

sults from the condition that the Fig. 7. §=e¢ « for £>0, §=0 for
initial motion of the ground is quite <0 afn=2, kin=0, 06, 1.
instantaneous.

5. The special case, £ =sinbt for t=0, £=0 for t << 0.”

In this case,

2) This case was solved by S.T. NAKAMURA and also by C. TsuBol by simple
elementary methods. Proc. Imp. Acad. 3 (1927), 32; Bull. Earthq. Res. Inst., 12 (1934),
426.
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s pb
pt =, t O
EDPSOQ édt= 2 pe ( = ) (22)

=0, (t<0)
so that

N pb —p?
‘ -t =
.’LDPS e Piadt PR1b PRt 2kp Lt

—p%b (23)
~ (p+ib) (p—ib) (p+a) (p+h) ’
=0’ : (t<0)

where p2+2kp +n2=(p+a) (p+p5). Thus,

(t>0)

‘_:_lg o 22e*idz
Y= %) (z+d) (z—ib) (z+a) G +B)

(i) If axpf, from (24)

(24)

2k
sin|bt—tan™'—;
n ‘
5 Y
XrT=
/rme - \e Ak?
()%
T2 2 25
A LAV (25)
-kt 2 -1 n rnz -1 n 'n2
——e *sin{nty 1——-—tan e + tan B be
. i 1+7FJ
- k2 l ,nz 2 k?
'/(1‘ e N (77 —1) 457 (t>0)
x=0. (t<0)
(i) If a=3 (n=k), then
—b [ ””“’zz{—Zkz—l- (Icz—b’l)}eudz )
| x=(k2+b2)22nz‘[ T (e+ib) (e—ib)

orieo 227 12Kz + (3K + b?) lde
+ : J
(z+k)?

¢ -ice

-
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n (26)
1 2% n 2
= sinfbf—tan7'— |+ 2] — = —ntlem
L. L (1) '
(G B (%
(n=k, t=0)
z=0. (n=k, t<0)
(iii) If k=0, n=>, then
_—=b mwz2e=‘(iz—2b)dz _ cW’zzez‘('iz +2b)dz
T 2mi| | 4bd(z+1b)? 4b3(2—1ib)>2
c—ice (27)
= —1(sindt + dtcosbt), (k=0, n=0, t>0)
r=0. (=0, n=b, t<0)
The respective first terms in (25), (26) represent forced oscil-

0 - g E— - ]
07 )04 06\ 08
\ 't N
A} ’ W
\\\ /','\Farced \\\
A (4 N
— S N—”
Fig. 8. &=sinbt for t>0, £=0 for
t<0. n/b=0-1, k'n=06.

lation and the respective second
terms free oscillation. The results
of calculation for the three cases
of n/b, namely n/b=0'1, 1, 10 for
k/n=06, are shown in Figs. 8, 9,
10. The full lines give the resul-
tant vibrations for ¢>0 arising
from £=sindf for ¢£>0 and £€=0
for <0, and the thick broken
lines those for ¢ >x/2b arising from
§=sinbt for 0<<t<<7/2b and £=0
for ¢>>7/2b. The condition n/b <1
corresponds to the state of the dis-

,’_5
4 | /

N

Forced

_]_
Fig. 9.
t <0.

&=sinbt for t> 6, §=0 for
n/b=1, k n=0-6.

I~

—nt
0 L | 1 ] )
20 40 60 80
MIFC
J q"ﬁFarced \

/ ‘Y/Free ’ —>nt
ol ! NWAT ! ! ! ]
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I
g |
|
o} 1 H l

005+ 005+
Fig. 10. &£=sinbt for t>0, £=0 for
t<0. m/b=10, k/n=0-6.
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placement seismometer, and that of n/b>1 to that of the accelerometer.
Comparing the results in Figs. 8~10, it will be seen that, for sinusoidal
motion of the ground occurring at t=0, although the displacement seis-
mometer can record the movement of the ground rather accurately, at
least for the initial motion, it is not possible to do so with the acceleration
seismometer, not at any rate, for the same initial motion.” In the case
of the acceleration seismometer, the duration of the initial motion of the
pendulum is fairly small.

For ascertaining the effect of damping of the seismometer, we cal-
culated two cases with respect to k/n for n/b=1, with results as shown
in Figs. 11~12, Since the condi-
tion n/b=1 represents resonance, the
vibration amplitude of the pendu-
lum without damping increases
without limit with time increase,
whereas the vibration of the pendu-

2!

Fig. 11. &=sinbt for t>0, £=0 for Fig. 12. &=sinbt for t>0, £=0 for
t<Lo0. n/b=1, k/n=1. t<0. n/b=1, k/n=0.

lum with critical damping fairly resembles the motion of the ground.

It may be remarked here that in the present problem, since x,=0,
£,=0, it is possible from (7) for the initial conditions x,= —§&; to exist.
At all events, the initial motion of the pendulum is always in the sense
opposite to that of the ground motion.

6. The special case, §=e¢ “sinbt for t=0, §=0 for t<O0.

Here * b
. Sop ep‘cdt=(p+a)2‘+—bz, (t>0‘)

0 (28)

=0, (t<<0)

from which
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3 . 3
x:pg e Pladt= p’b , (t>0)
0 {(p+a)2+b2} (P2 +2kp +n?) _ (29)

=0. (t<0)

— bSc o z2e*dz
C_M{z+ (a—z’b)} {z+ (a+ib)} {z+ (Ic—z'az)} {z+ (k+z'a2)} ’
(t>0)
x=0,  (t<0)
where a,=v/n2—Fk?2. '
() If axck bica,,

(30)

— 2

%2_1 (9._%)2@3_@1

Gt
ok o/, Be_k
ZZ "“sm‘nt}/l———ta '/ tan™ 2 ’16 2n2§; kzb\) }
. 27?1 (53) ~prpt
iE TEe R e
(t=0)

x=0, (t<0) (81)
(ii) If a=Fk, b=a,,

c+ix
- bg v zze"dz

2a (_a__lc
b

az\ -l 3 -1
——(1+b2/e sm{bt tan

2mi

c—icc[z+ (k—ia,z)I l4+ (lc+zaz)}

\
’ = '“‘/PZ Q? s1nnt(/1_—- —tan™! Q) (32)
y (> 0)

=

=0, (t<0)
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[Vol. XIX,

where P=kt(7—8:;) (GE 5), Q= /1——{nt<3 -8 )+6’“}

(i) If n=Fk,

—__S‘c +do0 zze“dz

2 c—ioo{z+ (a~ib)}{z + (a—H‘b)} {z+ lc}2

_ —(a*+b?) - -,,Egb, B o 2b(a—Fk)

= w(a—k)z 0P sin{ bt —tan T + tan m(a—k)Z— 35
bke "

-—-ﬁ—-—v;[{ (a—Fk)%+ b2} (kt—2) + 2]€(k'—a):|,

{(a—-k)2+b2

x=0.

(t>0)
- (t<0)

The respective first terms in (81), (83) represent forced oscillation

and the respective second terms free oscillation.
]._

Fig. 13. &=e¢-¥sinbt for t>0, £=0
for ¢<0. a/b=01, n/b=0-1, k/n
=(-6. .

£

Fig. 15. &=e-«sinbt for >0, £=0 for
t<0. a/b=1, n/b=10, k/n=06.

The results of calcula-

I
x -\/Fwé
T \ —>nt
l/z\b\ 4 - L | !

- |
2 4 ¢ s .
4
. ’ v\Formt
4
_I }\//

Fig. 14. &=e-sinbt for t>>0, £=0
for t<0. a’b=1, n'b=1, k/n=0-6.

tion for the three cases of #/b (for
a/b=01 or 1) for k/n=06 are
shown in Figs. 13~15. Although,
in these cases, the damping is
relatively high, if n/b were not
small, that is to say, if the condi-
tion were in that of the accelero-
meter, the movement of the seis-
mograph would not necessarily
agree with that of the ground
motion. In such a condition, the
duration of the initial motion of
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the pendulum is unduly small and the amplitude of the same motion
fairly large. It is however possible to say that the initial motion of
the pendulum is in the sense opposite to that of the ground. Owing
to the fact that ,=0, £§,=0, it is also possible for condition x,=—¢&;
to exist.

7. The special case of E=e~“ (2sinbt—sin2bt) for t=0, §=0 for t<<0.

In the examples shown in the foregoing sections, it was assumed
that the ground motion begins suddenly with initial velocity. In such
cases, the duration of the initial motion of the pendulum is unduly
small and the amplitude of the same motion fairly large. If, on the
other hand, the ground motion begins without initial velocity, the feature
in the seismographic movements, particularly, that in the amplitude of
the initial motion, is modified to a certain extent.

For the present purpose, we write
E=e~ (2sinbt—sin2bt), (t>=0) ]
(34)
§=0, (t<<0) I

by means of which expressions it is possible for the initial displacement
and velocity of the ground to be made zero.

01

— 10| \\JForcad e

- ~000)
-5
Fig. 16. &=e-* (2sinbt—sin2bt) for Fig, 17. &=e-«* (2sinbt-sin2bt) for
t>0, £=0 for t<0. a/b=1, n'b=1, t>0, £=0 for t <0. a/b=2, n/b=20,
k/b=06. k/n=0-6.

The results of calculation for two cases of n/b are shown in Figs.
16~17. It will be seen that although the duration of the initial motion
of the pendulum becomes small for quick motion of the ground, the
amplitude of the same initial motion is not abnormally large.



174 i . K. SEzAWA and K. KANAL o [Vl XIx;

8. Concluding remarks.

Using the operational calculus, we calculated the type of movement
- of a seismograph subjected to arbitrary earthquake motion. Generally
speaking, the motion of the pendulum consists of two parts, one of
which corresponds to forced oscillation and the other to free oscillation.
In any case, the initial motion of the pendulum is in the sense opposite
to that of the ground motion. In the case of a displacement seismo-
meter, the motion of the pendulum fairly agrees with that of the ground,
whereas in the acceleration seismometer it does not. When the dis-
turbance occurs suddenly, the amount of initial displacement of the
seismometer is the same as that of the ground motion, but in opposite
sense. If the ground motion of quick type begins with zero displacement
and zero velocity, then, although the duration of the initial movement
of the pendulum becomes very small, the amplitude of the same motion
is not abnormally large.

In conclusion, we wish to express our thanks to Mr. Watanabe, who
assisted us greatly in our calculations. We also wish to express our
sincere thanks to the officials of the Division of Scientific Research, in
the Ministry of Education, for financial aid (Funds for Scientific Re-
search) granted us for a series of investigations, of which this study
is a part.

Added notes—For getting, operationally, the earth’s displacement
from a seismographic record (without magnification), we write

&+ 2kd +n2p = —&, (1)
Using the sympol p of the operator for d/dt, (1) transforms to

) A
x_(zkpw:n ) e a2

E=— x+§1- (2)

Let ¢(p) be the operational form of x. Then

_ (2kp +n2)

f1= P?

$(p), 3)

from which -

v
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=@d @)

.
Pre
i

cticm
. 1l 2kz+n2 :
1= =5 e

¢ ~i%

If the pendulum movement were of the form f(t), then, from Mellin’s
theorem, it would follow that

$(2) =’z§ e uf (t)dty. . (5)

0

Substituting (5) in (4), and changing the orders of the Vin’cegrat»i'ons,

0 c+i0
-1 L, Ohz4nt. ’
51:5&‘5 f(tl)dtlg o U dz. (6)
0 -

c—icc

Considering the nature of the contour of the integration,

t ¢ +ice ¢
— o 2
c=2—.118 f(tl)dtlg e w=E g —S fayat| 2enee—ty | )
0 0

Integrating by parts,
! ¢ ty
§= —Zkg f(tl)dt1—nzg dtzx 7(ty)dt,. (3)
0 0 [}
Putting this in (2), we naturally get
’ ¢

§=—u+&=—f(t) —2768 f(t,)dt,— nzs dtz& f(t)dt,. 9)

0 0 0

Although this formula can be obtained directly from (1), the foregoing
calculation is specially to show the method of applying operational cal-
culus to the present case. The case of Galitzin’s pendulum can also be
discussed in the same way.
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