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1. As will become apparent by the following paragraph, in study-
ing the propagation of waves through a medium, the heterogeneity of
which in respect to its density and elastic constants is small, the pro-
blem eventually revolves itself into a mathematical treatment of a dif-
ferential equation of the type

o4

T2 = U?‘Vg?s—azi’, (117)

‘

in which v stands for / @ or / %, and «? is some function of deri-

vatives of p, 4, and . When the medium is homogeneous, these deri-
vatives vanish, and the equation (117) reduces to the so-called “ wave
equation” in a homogeneous medium. In Parts 1 and 2,° the writer,
dealing with a special heterogeneous medium, worked out equations of
wave motion exactly similar to (117).

It is shown in this paper that, even through a more general hetero-
geneous medium, waves of a certain character are propagated in accor-
dance with an equation of type (117), and it will be easily seen from
the example in Part 2 that, in some cases, a?=0 or v is a constant,
although the medium may be heterogeneous with respect to each of its
elastic constants and density.

In certain branches of atomic physics, equations of the type (117)
are studied, and some approximate solutions obtained. However, since
the problems met with in seismology differ from those in atomic physics,
it is not likely that those approximate solutions can be satisfactorily
used for the former. Here, solutions of equation (117) are discussed,
using the results obtained in Parts 1 and 2 of this paper.

2. After the notations in Part 1, equation (117) is written in the
form

1) R. YosiyaAMmA, Bull. Earthq. Res. Inst., 11 (1933), 1~13., 18 (1940), 41~56.
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the equation transforms to
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v Tk |
T =Y hahf (B) (121)

The expression of f(#), which is arbitrary as yet, had best be deter-
mined in such a way that ¢, in equation (120) may be solved in the
most convenient form possible to discuss the problem.

We see that 48 ; is equal to the length of a line-element, perpendlc-
2

ular to two wave rays in a plane ¢=const.,, making an angle d3 with
each other at the origin, and that, conse-
/ i

quently, 7 increases with ¢ if, as in most
2

conceivable cases, the wave-front spreads out

as the wave motions are propagated, with

the result that Z h, being equal to —i—,
2

also tends generally to increase with ¢. The

same conclusion also holds true with respect

0
Fig. 1. to % Consequently, if m is small, we

may put for sufficiently large values of ¢ and p, neglecting the varia-
tions of a2 and a’?

¢‘=eti‘/mt (122)

in whieh f(B) is required to be such that a’® is practically constant.



Part 2.]  Elastic Waves from a Point in an Isotropic Sphere. Part 3. 187

)|
.e+"1P=e2-0%¢ haoomes one of the exact particular solutions of (117). This
solution corresponds to that for a single source in a homogeneous medium,
and from this solution it is possible to find a solution for the wave
from a multiple source in a heterogeneous medium by the same method
of procedure as that in the case of a homogeneous medium. Although
the solution thus obtained must be equivalent to that obtained directly
from (117) or (118), determination of such f(f3) is obviously equivalent
to obtaining a particular solution of the original equation (117), which
is none the less difficult. However, if we can get an approximate solu-
tion of f(3), an approximate solution of (117) naturally follows. When
v* and @? are both constant, we have f(3)=sinj and a*=0, whence it
may be assumed that generally f(3)==sinf3. And if p is sufficiently
large, p?—a2—a'? being considered practically constant, we can use (122)
as a particular solution of ¢,.

In the case of a homogeneous medium, or such as that considered in
Parts 1, 2, then ¢, is expressible by a product of two functions, one of
which is a function of ¢ only, and the other a function of 3 only. Put,
for example, X for the former and Y for the latter. In all the cases
just given, f(8) =sinf and Y=P} (cosp); X=1v't H,,;(pt) in the case
sinh2v/ ab t

2v/ ab

If we can get f() for which a?+a’? is a constant, then /

1
of a homogeneous medium, and X =( )'U,L in the case con-

sidered in Parts 1, 2.

Now it is a debatable point whether or not ¢, is in all cases ex-
pressed by a product of two functions. The answer to this question
must be relevant to one of the theoretical bases of the method of proce-
dure, by means of which we may discuss the mechanism of earthquake
occurrence at the origin from observations of the amplitudes and the
directions of initial motions on the earth surface.

Although a mathematical treatment of this problem without assum-
ing the functional forms of v? and a? seems very difficult, there is no
doubt, at any rate, that Y =P.(cos3) holds true for only a few special
cases. Even when v=a—0r? a? being a function of r, the assumption
¢, =X-Y is clearly inadmissible, even if Y is not restricted to P; (cosj3).

At all events, unsatisfactory conditions caused by putting

¢1=-Gti‘/m’"2_t P;:,,(cosﬂ) : (123)

) o

] 2
decrease as -5 , and —-
ki R

decreases compared with p2 This means that,
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when the wave front duly spreads out, waves of sufficiently short
period are propagated independently along each path, as determined by
Fermat’s principle, the wave form observed on each path not being
affected by the phase difference between waves along contiguous paths.

The foregoing remarks refer to a stationary wave. Solitary waves,
for example, the P wave and the S wave observed in seismograms, may .
be considered, from a knowledge of Fourier’s series, as superpositions
of stationary waves of various periods. Consequently it will be accepted
that, at the beginning of the P phase, the S phase and other solitary
phases, whose time of incidence are clearly identified in seismograms,
waves of fairly short period predominate, with the result that, (123)
being accepted, the effect of heterogeneity on the beginning of such
phases, especially on the direction, push and pull, of the incidence, will
generally be negligible. Moreover, by applying the results of the cal-
culations in Part 2, the velocity of propagation of incidence of distur-
bances will be equal to v. The effect of heterogeneity of the medium
becomes very marked in later observations, the most marked being a
certain reduction in the maximum amplitude of the disturbance, besides
the appearance of damped oscillation of a characteristic frequency, which
we shall call the “tail.” These conclusions above stated can be deduced
from the results obtained in Par{ 2. Obviously, the oscillation just
mentioned has a physical significance only when a2+ a’2>0, as will be
seen from (92) in Part 2. When a2+ a’2<<0, the effect increases ex-
ponentially with time, in which case we must take into consideration
that, in building up the wave equation (117), we have neglected, as

0
stated in Part 2, the terms of the product of any two of ¢, a—f , and

so on, and also that the stress-strain- relation in the medium, in which
there must be a very close connection between every molecule, will
naturally be altered when the deformation increases. - Therefore, when
a2+ a’2<<0, the effect above stated loses its fitness for being interpreted
physically, particularly in the case of an ordinary elastic medium.
However, in a fluid medium, whose molecules are to a certain extent
free and not closely bound to one another, such a state as a?2+a/2<0
may be regarded as being unstable.

At any rate, referring here again to the results from (91) to (93),
described in Part 2, we find that the terms expressing these effects are

¢ 2o
proportional to certain integral forms, such as j 0<,’11(w) dw or j ¢ (0)dow.
0 t=-7

This clearly means that these effects, namely, the reduction of maximum
amplitude or the amplitude of the “tail,” decrease, so to speak, as the
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apparent period of the disturbance decreases.

Although the solution of (117) will be expressed in various forms,
we have attempted to find a solution that contains explicitly a factor
of a harmonic function with regard to ¢, because if the results of ob-
servations are considered, such a solution would find wide application in
the study of seismology.

From the foregoing discussions, we may use the expression

—
}/ Vﬁbﬁsinﬂ' as the attenuation factor due to the distance of the sta-
1

tion from the origin in obtaining from the observations a more theore-
tically suitable magnitude of ¢ -
at the origin, while the area of
the wave front, enclosed by wave
rays, and spreading out from the
origin in a certain solid angle,
dpde
hohs’
last expression we may build up
another formula for the attenua-
tion factor.

It will be seen that, in some

is equal to from which

1 .

cases, o decreases as t increases,
2

or vanishes at a certain value of ¢ for a certain range of value of 3,

1 . . ers .
and that — changes its sign, from positive to negative, for a smaller

,hz
or a larger value than that of ¢, in which case, in the neighbourhood
of that region where % vanishes, e*®"'?* ©-¢*¢ig not admissible as an
2

approximate solution even though ¢ be large. Considering the significance

of dpdy. above stated, i=O means intersection of the wave rays.
hohg hy

From (13) in Part 1 =0 gives

1
? hz

=0
3= 124
{92(7‘)—“} : (124)
which is equivalent to the equation of the envelope of the wave rays.
Although the solution in such a case may be applicable in explaining, say,

the mirage, in optics, other mathematical technique will be necessary

4 g2 ( ;r) d?'
r
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in order to find a solution suitable for use in the neighbourhood of that

region where ——=0. This the writer hopes to treat on a future occasion.

g
In the following paragraph, we shall treat the problem more con-
cretely and make clear the physical significances of ¢ and a2 in connection
with the elastic constants of the medium.
3. From the 0- and the ¢-components of equation of motion (2),
we get the following equation with respect to the r-component of rot D,
wr)

92 _— — — 1 dpu -
PagaV 1IT.=1V 1 1‘%_(1//1 Vi p +7d_;~>1//n'wr- (125)

By performing divergence operations on both members of the equation
(2), we get :

dp o2, 324
o st +rage=v{0een ) -5 )
Ed_/ 2 d (1 dp
to VT +2r dr(r dr) ) (126)

The r-component of equation (2) is modified to

2%, /4

d/z ou,
Port =

i +—(d)+7,ui<ri>. (127)

Since no one of the three equations, (125), (126), (127), is derived from
the remaining two by mere mathematical operation, we can use these
three equations instead of equation (2), consequently we can use the
three quantities w,, 4, and u, instead of the three components of dis-
placement, with the magnitudes of which three it is possible to discuss
the deformation in the elastic medium. We find that =, appears only
in equation (125), and also that equation (125) contains =, only. Conse-
quently, the problem can be treated by considering that, in such a
medium, the deformed state, generally, is a superposition of two kinds
of waves, the one satisfying equation (125) and #,=4=0, and the other
equations (126), (127), and =»,=0.

We know that two kinds of waves are propagated through a homo-
geneous medium. Although, in a heterogeneous medium, the propriety
of assuming that it is possible to classify the waves is questionable,
such assumption is clearly very convenient in -solving the equations.
And since, as a matter of fact, there are two distinct phases, such as
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the P phase and the S phase, as observed in seismograms, solutions of
problems on such assumption will also be of some use in seismological
investigations.

Prof. K. Sezawa, for convenience in dealing with earthquake mecha-
nism, classified the waves through a homogeneous medium into three
kinds, namely, the irrotational dilatational wave and equivoluminal rota-
tional waves of the first kind and of the second kind. In this paper,
it is shown that it is convenient, in the case of a heterogeneous medium,
to assort the waves according to their characteristic mode of propaga-
tion. Since waves of magnitude of w,, such that u,=4=0, are prop-
agated as a wave independent of other disturbance as already stated,
we shall call it the “ {ransverse wave of type B.” It will be easily
understood that, generally speaking, if the elastic constants and density
of the medium are some functions of one of the coordinates of a certain
orthogonal curvilinear coordinate system, that component of rot D is
propagated as a “transverse wave of type B” independently of other
waves. In the case of a homogeneous medium, there are two other
types of waves, one of which is the “longitudinal wave,” and the
other the transverse wave, such that =.=4=0.

Neglecting the gradient terms of p, 4, and ¢ in (126) and (127), we
get the following, as approximate equations in a heterogeneous medium,

024 \
—v2 )
D =Y 1()~+2/1)JJ: . (128)
o, _ 1, Py 2,0 (4 )
P = VTt o A4y + 713 5 <¢2)’ (129)

from which it will be seen that the magnitude of div D is propagated
as a wave of velocity / %—'F)ﬁ‘, which we shall call the “longitudinal
f

wave.” The solution of u, consists of two parts, one of which is a
particular solution corresponding to the magnitude of 4, and the other
a general solution obtained by putting 4=0. The former is nothing
but the magnitude of u, due to the longitudinal wave, and is necessarily

propagated with velocity ]/ l-+0—2” . The latter, however, represents ano-
i
ther wave that is propagated with velocity / % , and in which 4=0.

To sum up, the wave that is propagated with velocity / % consjsts

of two types of waves, one of which we have called the “{ransverse
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wave of type B” and the other which we shall call the *{ransverse
wave of type A.” If we can construct an equation that contains 4 only,
and no u,, such as (128), div D will always vanish in the case of a
transverse wave. However, the same is not the case in a heterogeneous
medium, as may be seen from (126) and, according to the heterogeneity
of the medium, there are some changes of volume necessarily associated
with the “transverse wave of type A.”

4. Transverse wave of type B. For the transverse wave of type B,

U, =d4=0, (130)
whence we may put

1 oF ' or

" sing Bg 0 T a0 (15D

where u, and u, are the - and ¢-components of disp]acement D. Substitu-
ting (131) into the original equation (2) we get, as would have been
naturally expected, an equation of the same type as (125), namely,

92 . . — 1 d —
,0@1//1 F=py?y/ n F—<1/,u v/ ¢ +o- Tf)“ nF. (132)

Solving (132) or (125) in ¢, j3, ¢-coordinates, it is now possible to discuss
the wave of type B having its source at any point.. Putting) zF=¢,
%:vz, and 71) (1//7 vy ¢+ 31,— %’;—)=a2, (182) transforms to an equation
of exactly the same type as (117), so that the results of the discussion
of ¢ apply equally well to-that of +/p F, and naturally, also, to that
of v prw,. Dispersion of the wave increases with a2, and also with its
wave length. ’

From the 6-, ¢-components of displacement given above, the ¢-, -
and ¢-components of displacement can be calculated geometrically as

follows,

U, =u,8int, Uy =1u,C08%,

where g(r)sini=g(h)sinf=«x, and g(r)=—2—. The magnitude of the

transverse wave of the first kind and of the second kind, according to
Sezawa’s definition, were also calculated by similar formulae, and we have,
as the relation between w,, w, and =, in the transverse wave of type B,

om0 (o), 1B
= T psing | 80 (sm 20 sin@ 23¢2 [’
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1 0 oF ’

_1 2] °F . . (133
2my=", ar{" 20 } ‘ )
yo_ 1 2] OF

" yrsing or 78(,0 )

By putting
L~ (a—br2)e,

’)

1/ — — 1 dp A
S 2 T Y2
P(l/ G dr)—-a (const),
the wave will be discussed more concretely as done in Part 2.

If, for example, ,u=(c +7(i—>2 then

1 /" 2v/ab o sinme
- Z__U» 2 —abt) P (co £l
S 1/a—b1'2V sinh2v ab t (/P VB (e Sﬁ)cosmgae

F

(134)

5. A special case of the wave problem mentioned above is the Love
wave that is propagated over a spherical surface, which has already
been discussed by the writer.?

6. Transverse wave of type A and the longitudinal wave. From
the results obtained in Part 2, which, however, concerned a special me-
dium, there is no doubt that so long as either its density or its rigidity
is not constant, there are no longitudinal waves propagated through a
heterogeneous medium in accordance with the usual conception, that is
rot D=0, which is established when the medium is homogeneous. A
similar conclusion may be drawn for the transverse wave of type A,
because div D does not vanish. We should conclude, as already suggested,
that, through a heterogeneous medium, there is a wave such that u,=0
and div D=0, whose characteristics will be studied by equation (131)
and (132), and which has been classified above as the transverse wave
of type B, and that there is another type of waves, the law. of pro-
pagation of which is given by equations (126), (127) and =w,=0. When
the medium is not very heterogeneous, the latter will be observed as a
wave composed of two waves, one of which is that called the longi-
tudinal wave, and the other that called in this paper the transverse wave
of type A. .

The two equation (126) and (127) suggest a coupled motion of two

2) R. YosiyaAma, Disin, 10 (1938), 272~276.
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systems in dynamics. The derivatives of p, 4, and ; may correspond
to the coupling factor. When the two systems are tightly coupled, the
characteristic mode of motion of each system will not be clearly ob-
served. A similar argument could be used in the present problem, and
we should expect theoretically that when the medium is heterogeneous
to a certain degree, the phase of a longitudinal wave and that of a trans-
verse wave of type A can be distinguished only with difficulty. Accord-
ingly the observed fact that onsets of these waves, or time of incidence
of these waves, in seismograms, are easily identified should be inter-
preted as suggesting that the inner part of the earth is only slightly
heterogeneous.

In this paper, we are solving the equations approximately, assuming
first the existence of waves of equivoluminal rotation and that of ir-
rotational dilatation as in the case of a homogeneous medium, attempt-
ing to work out the magnitude of dllatatlon or that of rotation attached
to each wave as a small correction.

7. Transverse wave of type A, and change in volume. As a first
approximation, the transverse wave of type A is discussed with the aid
of the following equation, obtained from (127 ). Putting 4=0 we get

02 dp au,

2,
PRl = 1T, +2r—— ar (135)

ith Jew — ; g e l(z 2 drN_ e
with d=»,=0. Putting ru,.=¢, P_'v and P v+ " dr )—a , the

equation transforms to (117), the results thus obtained being applicable
to our case. The beginning of this wave is propagated with velocity

,/ £ . This wave, together with the transverse wave of type B, may

form the S waves that are observed in seismograms. The amplitudes
of these two waves which must be projected from the origin at the
same time, are determined by the particular mechanism of earthquake
occurrence. It is of some interest to know that the quantities which
stand for a? may very likely differ in each case, so that a phase difference
should be expected between these two waves, although the effect due
to such phase difference, such for example, as the possibility of two
peaks appearing in the S phase, or of a prolongation of the apparent
period of the S phase, will be too feeble to be observed in practice
because of the fact that the earth is only slightly heterogeneous.

We shall now try to find the change in volume in the S wave. As-

suming that the period of the wave is %}i , the time factor consequently
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being €7 in common, and neglecting the second term in the right hand
members in order to solve to a first approximation, we get from (126),

do 2 2f 2 ap , d (1 dp
— gy Pt —pp?d=y l(/1~1—2/1)J}+ VTl +2rd,’_ - ar ) o
(136)
and from (135),
—pp¥ru, = pyiru,. (137)
Putting
(A4 2p) d=eru, + Brim,. , (138)

or

in which ¢ and ¢ are necessarily some functions of ». However, tﬁese,
being assumed small, are treated as constant in the following caleculation.
Substituting (138) in (136), and using formula

2 29
— 2w 2 — 2p I
oy V=TV (139)
we get
_gp 2 v | 3 0. ,Up L
~ar ——pU, Z+2ﬂlerur+o1 81‘7%'} T U, + ~ or -2 veru,
d,u PP* d (1 dp
2 U+ 2r dr(r dr) (140)

Substituting (137) in the second term of the right hand members of
2
the above equation, we get an equation which contains u, and a—rm

»

only. Since each of the factors should then vanish, we hyave

2 2 .2
Ao o pP® PP . d e odp ppP 5 d (1 dﬂ)
dr A+2p 2 dr n dr p dr\r dr
pp® s PPt 2 d }__dﬁ)
2+2/10_ ’" o a\r o)
from which ¢ and J are otained as follows:
“_3 (A+2pmp " d (1 dﬂ)
°= r (A+p) pp? dr(r dr (141)
Atp pp?  _of1 dp 2 dp)  2(34+5p) L(L dﬂ)
A2 p —{plp dr g drf ~ A+p  dr\r dr
2+2/z A d 1,‘&@i>~d_,& )
" Atp p odr (7' dr/dr g (142)
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Substituting ¢ and ¢ thus obtained in (138), we get the expression
for div D, and substituting it into equation (127), we get the following
equation for u, to a second approximation,

. 0 0 2
— PP} U, = (P, — Qs — ba—rm'u,‘ —Ca My

where a, b, and ¢ are some functions of p? ¢, 0, and the derivatives of
py A4 g It will be seen from (141) that, when p tends to infinity, o
vanishes, and consequently ¢ vanishes. Therefore, notwithstanding the

2
or?
tion, it will be seen that the velocity of propagation of a wave of unli-
mited short period, or, in consequence, the beginning of a disturbance
(the S phase in seismograms), is not affected by the heterogeneity of

presence of the term pru, on the right hand side of the above equa-

the medium, being equal to '/ % Since ¢ does not vanish even when

p—» oo, there is a change in volume at the beginning of the S phase.

Although we have put %(VZ/H—% %/;— =a? by way of estimating

the order of magnitude of dispersion, it is clear from the results above

0
obtained that E%(M) and 7”2/1—51”—(}42—) are of .the same order of magni-

4 . 0
tude as (ﬁu-k% gﬁ)u,. Now, e l—(g—:tﬁ

o (7, is not greater than

— 0
‘/ ;—ip, so that, for a large value of p, Ma—r (ru,) is negligible compared

. . ey ep AT2p (1 dp 2 dp)
with eru,, and putting (A+2p)d=eru,, er= 2ty " o dr g ar) we
get from (127),

02 2 dpo 0
)

Papal e =1V 2ru, + ’ - ru,—a*ry,,

dr or

_2dp_,d 2 4 e

12— = T g8
= e " A42p Ty r2(A+2p) ’

which is easily transformed to the type,
0z — _
PagsV P TU= N p i —aty p U, (143)

& 9 /-
/FV 'l/ P

a?=a'2+
}
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8. Longitudinal waves. It is easier to discuss the longitudinal wave
by the following method of mathematical treatment than to trouble with
equations (126) and (127).

In the longitudinal wave, rot D=0 to a first approximation, and
strictly (rot D),=0, so that we may put

oP 1 9P 1 oP
R TR N A U A

when @ is treated as a small correction. The equation with respect to
P and Q@ are

azp de 9 P
= (2 2 T
P oz (2+2p) 2P+ 2r ar a1
1 9 2
+ (2+2/I)T—2 ?T")"ZQ—/ —Q‘+%Q, (145)

dp ¢ P % Q_ ,Q (dp 4 dp\Q
Tdr 81?2 r TPz =MV ’)”—(d’)"z 7 dr)

T ar\V Tor darz or r
Putting Q=0 in (145), and by a slight modification, we get the follow-
ing equation, from which an approximate solution for the longitudinal
wave can be obtained, namely,

e

2
= (A 2¢ =
T2 JP ( 1 2/‘)V JP (,r d,r

2g)gP, (147)

1 dg 1 d/1
in which yd—o—l+2y ar
in this case the wave path, determined with the aid of Fermat’s prin-
ciple, being common with that of transverse waves, the same ¢, 3, ¢-
coordinates are available.

To get @ as a small correction, we approximate —pp?P = (A+24) 2P,
" the time factor being assumed to be ¢ as in the case of the trans-
verse wave. Neglecting the second term on the right hand side of (146),

and substituting the above approximate relation, we get

1
If 2=ny, n being constant, g=y2+, and

dp P Q Q 2 dp pp? ds1 (l,u)a P
(7‘ dr

2___ 2__ 2% P 2 SR
A T T ey
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Putting,

Q .. 0P |
=P, | (149)

2
into equation (148), we get an equation containing only P and —ag , from

which, putting each factor zero, we have

2 A+2u 1 d /1 dp
[ e NS S S
0= ppE: Ay ¥ d’r’( dr )’ (150)
1 dp 2 dpy 2(—p) d dy
2e/ g — I_,___ ___"_1 ! - / )
z+2 ET=ep’ \p dr Ax2p drf” d+p dr\rv dar
2(A+2p)p i(l d/1>
Grmp | dr\7 dr)ar x+2,1' (151)

When p tends to infinity, 4 vanishes, so that the velocity of propaga-
tion of the beginning of the longitudinal wave, or the P phase of seis-

mology, is, as would have been expected, }/ “’2/1.

We obtain the following equation for the longitudinal wave to a
second approximation after a method of procedure similar to that used
in getting (143),

LI — —
’)?ﬁj/ » P= ()~+2/1)V2]/ P P—az"/ P P, (152)

/
2 dn_y, e A€ 42 d

at=
r dr dr dar 72

. (E7%) + ;z/v v -

We get the ¢-, 0- and the ¢-component of rot D, associated with the

longitudinal wave, and consequently propagated with velocity / +2p , as
follows,
2w, =0
w1 QL 3 (5 aP}
rsind 8¢  sind d¢ | or (153)
__108@ 0 (,p, 5P
2= a0 = e T w )
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and we may also put, approximately,

rp? O (154)

=V A+2

These seem to be the essential points of the longitudinal wave through
a heterogeneous medium.
If we put =0,

equation (152) then becomes

22 - — 1 —
- —=2y? —(2y/p v
Pz vV P P=2Vy/ p P (VPV 1/P)W)P

and

These are exactly the results obtained in Part 2.

9. Transverse waves of type A. Although this wave has been
dealt with in the previous paragraph, it will be considered again. Be-
cause of complexity of procedure, we have not yet given the magnitude
of rot D. It is clear that substitution (144) can be used, although
neither P nor @ in this case is a small correction, and both of these, the
magnitudes of which are obtained by the following calculation, are prop-

agated with wvelocity / f;_ » while those in the last paragraph are prop-

A+2p

agated with velocity / For convenience in discriminating P, Q,

4 and other quantites in the transverse wave of type A from those
in the longitudinal wave, we shall affix the notation “’” to those in
the transverse wave of type A, for example, P, @', 4’ and so on.

To a first approximation, we can easily obtain from (145) and (146),
neglecting the terms of the derivatives of p and s, and putting

&' =y2P' + (TzQ') 0,
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the equation
P e °Q’

o or (155)
For the components of rot D we have
2w, =0,
14
UTD=—:!-— aQ N
. rsinf ago (156)
1 2@/
2= g

10. Recapitulation of the foregoing results, and remarks. Through
a heterogeneous medium, there are propagated two energy fronts of

waves, one advancing with vc;]ocity x+,2‘” and the other with velocity

,/ £ while we have three different phase fronts of waves. These three

kmds of waves we call the “longitudinal wave,” the ¢ transverse wave
of type A” and the “transverse wave of type B.” The characteristics
of dispersion of the transverse wave of type B are simple, while those
of the other two are very complicated, with the result that all we got
was a rough approximation. At any rate, owing to the characterlstxc
dispersion of each of these waves, there are certain reductions of maX‘l-
mum amplitudes, the appearance of characteristic, damped osc1llat10n,
called the “tail”; and possibilities of the appearance of two peaks, m
the S phase in seismograms. If observations of these effects of dlspe_z;-
sion are possible, they will be useful, with the aid of the results jof
investigations of earthquake mechanism, in studying the heterogenelty
of p, 4, and x respectively, whereas analyses of travel-time curves are of
help only in the study of the heterogeneity of / “_1—)2‘” or / % .

Displacement D due to the wave motion, generally speaking, may
be expressed as a vector sum of those due to the three kinds of waves,
namely,

D=D\(y/D'=a; t)e""+ Dy(y/ P~ ait)e? + Do(y/PP—ai t')e"  (157)

in which ¢ is calculated by putting v=/ i—j , while ¢ is calculated by

putting v='//1 +)2‘" , and
f
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D, is due to the transverse wave of type B,
D, o " of type A,
D, " the longitudinal wave.
Obviously, the r-component of D, is nil, and the beginning of the for-

mer two are propagated with velocity / % , while that of the last is

propagated with- velocity l/ 1%2" These are affected by some disper-
‘(

sion characteristic of each of the three waves just mentioned.

We shall now consider some illustrative problems with the hope
of throwing some fresh light on the investigation of earthquake mecha-
nism, and consider the following two cases,

Case 1. div D=0, rot Dx0
Case 2. div D0, rot D=0.

on the surface, t=t¢,.
When dealing with a homogeneous medium, we know that in case

1, transverse waves spread out from the surface with velocity / f;,
¢

there being no (longitudinal) waves that are propagated with velocity
A+2/z

‘l

, which is quite in contrast with case 2, in which only longitud-
inal waves of velocity / ;%2‘” spread out, there being no (transverse)

waves of velocity / % .
Owing to the property of the transverse wave of type B as given
by (130), div Dy=0, and from (138) div Dy=;—- 12 { +or— } D).,

whence div D=0 gives
. 1 '
div D3=—H—2{ b or }(71)2), (158)

on the surface t=t,, where (D,), represents the r-component of Dy, ¢
and ¢ being given by (141) and (142). Since, from (144) and (154),

A
D;=grad P, approximately, where P=— :—pZz;z div D,,

D,=

l ] (7'D2)r (159)
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We shall suppose an earthquake mechanism such that a small rigid
ball performs a rotational oscillation at the origin. When the axis of
rotation coincides with the direction of #, since there are no r-components
of displacement and no change of volume, no waves other than trans-
verse wave of type B, represented by D;e”” and such that (D,),
=div D, =0, will be generated and propagated. However, when the axis
does not coincide with the direction of 7, the r-component of displacement
necessarily exists, so that, although there are no changes in volume,
there will be longitudinal waves although their magnitudes may be small,
as given by (158) and (159). Then if the medium is heterogenencous,
A+2p

{)

but not otherwise, we shall observe waves of velocity y from a

nondilatational origin.

Now, as to any function ¢, representing a wave motion propagated
with velocity v, approximately %grad ¢=%
p, in which o is an angle between the normal to the wave front and the
direction to which the gradient of ¢ is taken. Therefore, for a wave
of short period, we can put, neglecting the term of ¢ compared with that
of ¢,

cosw for a large value of

Dymgraa (2200 (10 2

(2+/l)‘l)p2 ‘1) dr /l dr}(Dz)r’ (160)

D,
2
as p increases. Consequently, considering again the above illustrative
example, the amplitude of the longitudinal wave decreases as the fre-
quency of the rotational oscillation of the rigid ball increases.
In order to study the case 2, we perform the calculation for the
operation of rotation on both members of (157). We get easily, from
(133), (153) and (156),

or, further, we see that decreases, approximately inversely fo p,

2w, =—— L i(sin()ﬂ’ +—1 or
"~ rsind | 30 aa) sinf d¢2
_1 .0 (°F 1 2@, 1 1p g 2P ) |
2= oy (T 6()) rsind 9¢ tsing 09 {GP'HW or J’ (161)
_ 1 98 oFy 1202Q 3,5 5.°P
7= rsind ar(ra‘p) r o0 a0 LT %y }

Consequently rot D=0 gives,



.

Part 2.1 Elastic Waves from a Point in an Isotropic Sphere. Part 3. 203

F=0,
9 _fopiyr2P)
: _—{eP+07 <ot (162)

in which, from (144) and (154), approximately,

2
D,=grad P, P=— +2"d1 v D, (163)
From (155) and (162),
, Q' Y I, aP]
e s 81’ PP+ (164)

F'=0 means that there are no transverse wave of type B. The dis-
placement owing to the transverse wave of type A can be calculated
from P’ and @ by a formula that is exactly the same as (144) as
already stated. Thus it has been shown that in a heterogeneous medium,
even from a pure dilatational or condensational origin, we should expect
not only longitudinal waves, but also transverse waves of type A, which

are propagated at the beginning with velocity ,/ ’;—j , according to the

following equation (approximate) :

oy (165)

—rpi=
From (162) and (164), we get, for example, the vertical and hori-

zontal components of the amplitude of displacement due to such frans-
verse wave, for large values of p, as follows;

(Dm=@+”wg=“h+ﬂ az}

pp? or pp? °r?

)+2/z<1 dp 2 dp

Ap\p dr A2 dr

(Dr)o=(grad Po=— pp? or At pt o dr

1 p x+2,1<1 dp 2 d/l)ﬁP | (166)
a p dr A—I—Z/z dr .

1 p _8‘,')+2,u(¥1‘@_ 2 dp

r ‘,,pz or At+p\p dr 242p dT>(D3)°’
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1 8 2+2u/1 dy 2 d
(D,),= (grad P'y,=—— - ”( P o2 ")( 3)¢,J

T opp? 81T)+/1 o dr  A+2pdr

on the surface t=t,. The operator of the “ grad” is equivalent to the

factor V/-,‘%p cosw, so that % decreases inversely as p increases. When
3

oP 9P .

—50—=3;=0, and the wave is propagated in the direction of #, —pp?Q’
20/

=p 632 from (165), consequently no transverse wave is generated.

It was shown above that the amplitude of the longitudinal and the
transverse wave, due to the heterogeneily of the medium, from the
transverse and longitudinal wave respectively diminishes with shorten-
ing of the period. Needless to say, it should be remembered that so far
as observations far from the surface ¢{=¢, are concerned, the attenua-
tion factor of D, in (166), for example, differs from that of D,.

"The structure of the upper layer of the earth-crust is so compli-
cated that application of the results of study outlined above to practical
problems in seismology is clearly inadequate for their solution. Howe-
ver, in the case of a deep-seated earthquake, some application will be
found in the interpretation of seismograms.

For several years past, the mechanism of earthquakes at the origin
have been investigated by a number of workers from the amplitudes of
the P phase or the S phase, and many reasonable conclusions have been
drawn, especially for deepseated earthquakes. - According to these inves-
tigations, if the earth is a homogeneous elastic medium, there ought to
be “Nodal lines” of the P-phase. There should also be “ Nodal points ”
where only the P phase is observed, and no S phase. As a matter of
fact, many seismograms have been recorded, clearly proving the exis-
tence of the “Nodal lines,” and seismograms that virtually give the
«“ Nodal points” are also recorded, although naturally less frequently.

However, upon closer investigations, owing to the heterogeneity of
the earth, these conclusions regarding the necessity for Nodal lines and
points, naturally seem to leave something to be desired.

From (159) and (152), we may calculate the amplitude of the P
phase that will be observed on the “ Nodal lines,” and from (164), (165),
and (166), we may calculate the amplitude of the S phase that is ex-
pected at the “Nodal points.” From the foregoing discussion, the
«“ Nodal lines” and the “ Nodal points” should be clearly identifiable
for a wave of short period, and, by close observations of waves of
longer period, as also by observations of the effects of dispersion of the
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P phase or the S phase, there are possibilities of estimating the order
of heterogeneity of the earth at dephth with respect to p, 2 and p.

In conclusion, the author desires to express his sincere thanks to
Professor T. Matuzawa and Dr. H. Kawasumi for their kind guidance
in the course of this study.
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